
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 572

Study on Different Code-Clone Detection Techniques & Approaches to Mitigate Code

Reuse Attacks

Bhaumik Tyagi, Avishek Chaudhary, Dr. Amrita

Department of Computer Science & Engineering, Sharda University
---***---

Abstract - Code clones in software development are types
of fragments of code that must be identified by using a clone
detection tool. This paper discusses reviews on different
code-clone detection techniques, code reuse or cold cloning
issues, and ROP (Return Oriented Programming). Review of
“clone detection precision using machine learning
techniques” which thereby seeks to eliminate false-positive
clone classes outlined by a clone recognition tool. Pyclone: “A
Python code clone test bank generator” which testifies a
new tool that will take a kernel of ‘source code’(python) &
give rise to Type1, Type2, and Type3 code clones in python.
After reviewing these papers, we have found some research
gaps that are briefly mentioned in this review paper. Code
clones or code reuse could create a serious issue when it
comes to software maintenance, testing, and debugging also
makes the system vulnerable so, it may be easily exploited
by unauthorized people. Also, it culminates that there exist
numerous types of research to identify type1, type2, type3,
and type4 clones. However, there is a necessity to remodel
new methodologies using proper tool support in order to
discover all types of emulations cooperatively and mitigate
code cloning and code reuse attacks. Moreover, it is also
essential to propose more methodologies and techniques to
streamline the expansion of Program Dependency Graph
(PDG) while dealing with the recognition of type4 clones.
Also, cloning issues like exploitation of code, and code reuse
attacks are discussed along with approaches to mitigate
code reuse attacks.

Keywords - ML, Clone Detection, Decision Tree, AST,
Code Reuse, ROP (Return Oriented Programming),
Malware

I. Introduction

In the software development industry, the recent trend is
to reuse existing code [17], libraries, components, etc. by
replication, and fixing fragments of source code is a generic
pursuit. The outcome of these activities is replicated code
i.e., code clones. Code clones introduce issues in the form
of bugs, and complexity in software maintenance. The
developer’s habit of replicating code, rather than
refactoring code, leads to code clones in programs. Cloning
and reusing of code are similar terms in software

development. The developer performing the code reuse
task is not aware of further complexity, which is much
more difficult to handle.

In this busy world everybody wants to complete their task
on time and because of peer pressure developer also takes
the easy route to accomplish the development of the
software by using code cloning and code reusing. Also,
nowadays most of the shared libraries and components
are already available by the framework and compiler. If
similar software is already developed in this case, we try
to reuse existing code and introduce new software.

Above all the scenario is hands down to develop the
software but it may introduce a large number of issues
and vulnerabilities to the software where e hacker or
another unauthorized person who is used to those
libraries and know to flow of code can easily exploit the
software. And that is not good practice for software
development.

Recently, the log4j library, one of the most popular
libraries of java, was exploited by a malicious code
injection by a hacker. This negatively impacts
development, and other java packages were also at high
risk of disclosure.

Code reuse attacks and code cloning are one of the major
concerns in software development practices nowadays. It
is important to mitigate code reuse attacks and code
cloning by using randomization techniques and early
recognition of code replicas during the development of
code.

This is a well-known research topic in software
development intending to detect such replicated
fragments of code in the software.

Also, if two code fragments are similar with minor
modifications they are called code clones. These code
clones can cause trouble in the software maintenance and
debugging process.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 573

class P:

def_init_(self, x):

self_x = x def

get_x(self):

return self_x

class P:

def_init_(self,

x):

self_x = x

def get_x(self):

return self_x def

set_x(self, x):

self_x = s

Fig 1: Life Cycle of Code Clone Detection

Types of clones:

Type-1: includes clones that are identical code
snippets, neglecting whitespaces and comments.

Type-2: include clones with only disparities in using
parameters & formatting style. (i.e., literals, type,
literals, variable, function).

Type-3: include clones with variations including
modified statements.

Type-4: include clones that don’t comprehend the
identical structure (syntactical more precisely) and
still instigate similar functionalities.

In this paper, we will review two techniques of clone
detection and mitigation of code reuse attacks and
briefly discuss their flaws.

Beginning with Pyclone, which was composed to generate
code clones based on a kernel of python files conceded to
it. With the vision of mutation of AST (Abstract Syntax
Tree) is created next to the kernel files.

In a machine learning-based technique, the author picked
“19 clone class metrics” that depict diverse descriptions of
cloned and non-cloned classes and a decision tree binary
classifier to facilitate filtering out clone classes from the
original clone result given by a clone detection tool. Here,
A supervised learning algorithm “Decision Tree Algorithm”
is used that produces decision nodes via the information
gain attained from the value of each feature. The
classification is made by accepting the data through the
tree from the top to a leaf node.

II. Related Work

a) “Pyclone”: This can create a documented no. of
code clones centered at the objective of transformation of
Abstract Syntax Tree (AST) created from the kernel
records. In this paper, the very first step is to examine the
kernel files & create ASTs for the same. “An AST is
basically a tree representation of abstract code structure.
If the code is dissimilar amid the two projects, the ASTs
will also contrast.”

In order to compile the python code into bytecode, python
uses a compiler associated with AST. A Python package
called Astor is also used by Pyclone. Astor permits
Pyclone to develop ASTs based on justifiable Python files
and alter the same.

Fig 2: Cloning a Class Method

Original
code

Type 1
code

Type 2
code

Type 3
code

Type 4
Code

int x = 9; int x = 9;
int y
= 0;

while(
y<=x)
{ y++;

}

int a = double a =
9;

double b =
0;

while(b
<=a) {
b +1 =

1.0;
}

double
int y = 0;
// Com

9;
int b = 0;

a =
(18/2);

double b =
0;

ment
while(
y<=x)

while(a
<=b) {
b++;

while(b
<=a) {

{ y++;
}

} b +1=
1.0;

 }

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 574

Here, the generation of Type 3, Type 2, and Type 1, has
been accomplished by using the Abstract Syntax Tree
method.

b)”Clone detection using Machine Learning”,19 clone
metrics are chosen that accumulate diverse emulated
and non-emulated classes.

The methodology of this research consists of an
“Experimental framework, Dataset and clone
validation, error measures, Model Training, Tuning,
and evaluation of the clone filter on clones in another
language.”

There are two Research Questions in this paper. The
first is the effectiveness of a Machine Learning clone
filter to advance clone detection precision & the second
is the effectiveness of applying a Machine Learning
clone filter directed from one to another language.

The ML clone filter is efficient in refining clone
recognition precision. When integrated decision tree
filter into i-clones displays that it can improve i-clones
accuracy from 0.94 to 0.98.

A large training data set is required in the direction to
generate a more comprehensive clone filter. Also, the
developed metrics may not efficiently capture the
features of clones in a different language.

Original precision = 0.94, Filter’s precision

= 0.98.

c)”Search-based software engineering (SBSE) in
clone- detection optimization”,

To find a set of parameter values, two approaches used
SBSE that maximizes the contract amongst a collective
of clone detection tools.[7][8] Also, Eva-Clone, is an
approach using a genetic algorithm to discover the
alignment space of clone detection tools and to achieve
the best parameter backgrounds. However, Eva- Clone
gives undesirable results in terms of clone quality.

d) “Tree-based clone detection”, creates an
abstract syntax tree (AST) for each code fragment and
then leverages tree matching algorithms to detect
similar subtrees.[9]

e) “Deep-learning-based-research” in software
engineering, researchers have recently used deep
learning to solve problems in software
engineering.[12],[13],[14],[15]

Nevertheless, they did not compare their methodology
with a prevailing clone detection technique using any
renowned clone benchmark.

III. III. Research Gap

In a study of Pyclone, the whole system works on the
injection-based framework and due to the class of this
framework, it could be probable that by injecting novel
code or new lines of code or removing them, an accidental
clone could be established with an unintended code
fragment.

As, “Type 1 and Type 2 clones” are forthright, as they are
nearly indistinguishable replicas of the novel code.
Nevertheless, the detection of “Type 3 or Type 4 clones”
might hinge on the performance of the tools for retrieving
clones, and the specified tool may not define “Type 3 or
Type 4” as similar as the way the tool has generated them,
with this clone may be misidentified or not caught at all in
case of Type 3, Type 4 in case of using Pyclone.

In our study of the Machine Learning Technique, the
author only focuses on replicas of Type 1 to Type 3
because of their syntactic similarity. But the main problem
is with Type 4 which is spotless in this paper. Moreover,
the finding of this very research is centered only on
Python “open-source project” (Django) & Java “open-
source project” (J Free Chart). Also, the efficiency of the
filter is associated with a Decision Tree Model. Dataset or
Datapoints should be increased to instruct and assess the
model by using more balanced & larger ground reality
data, more precise models are normally anticipated.

Instead of using a Decision Tree, more sophisticated
techniques like Random Forest should be taken into
consideration. It might present an improved
implementation than the present model.

IV. Code Cloning Issues

a) Vulnerability of Code: Vulnerability is considered as
the major concern in software development which is
introduced in the code because of bad coding habits,
practice, not following coding standards, and also
using the code block without knowing the
functionality of that block of code.

b) Code Reuse Attacks: Another major issue in software
development is caused by the copying of malicious
code or the libraries in the software. ROP (Return
oriented programming) is a technique where an
attacker introduces a set of instructions called

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 575

gadgets to exploit the code. It is depending on the
flow of memory design where code is executed.

c) Exploitation of Code: Malicious code leads to exploit
the software by using exploitation techniques hacker
hacks or theft the important information from the
user’s system. This is also another major issue that is
caused by code cloning.

d) Complex to Manage Code: Code cloning is not only
introducing the major issue or vulnerability in the
system/software but also makes complex to manage
the software in the future. Hard to debug and track the
bug in the system. Cause the code is not written by the
concerned developer.

V. Approach to Mitigate code Reuse Attack

1. Code Randomization: Code Randomization consist of
two phases the first phase also consists of two-part
one is used to extract the information from function
blocks and flow control, and the second part is used to
separate the code segment. The second phase makes
shuffles the block of code and function.

2. Optimization of Code: It is a technique to modify the
code to reduce the size code, and consume less
memory during execution. By detecting the code
cloning level, we can able to optimize and refactor the
code so, complexity and vulnerability can be resolved.

3. Other techniques which are used to reduce the code
reuse attacks are: ILR[18], MARLIN [17], STIR [19],
XIFER [21], DROP [20], CFL [24], CCFIR,
ROPDEFENDER [23]

VI. Conclusion

Type 3 - Type 4 clones are much more complex to weight
and resolve as well. As, in Pyclone, the filter was fairly
suitable for “Type 1 and Type 2” replicas in contrast to
“Type 3 and Type 4”. Also, using an injection-based
framework is unsuitable if we want to avoid accidental or
unintended clones. In, the ML technique, Pyclones
illustrates that the filter was not efficient in the other
programming languages & future work is required
proceeding this problem.

Also, by using the Randomization technique and
optimization technique which are mentioned above we
can able to reduce the code reuse attacks and early
detection of code cloning which helps to refactor the code
and reduce the complexity.

By increasing the data points, we can get more accurate
results, and also by using a more sophisticated technology
we can increase the performance and accuracy of our
model. In the software industry, there are tools out there
that can catch Type 3 clones effectively but still Type 4 is a
big issue in the software world.

VII. References

[1] Qurat Ul Ain1,Wasi Haider Butt1,
Muhamad Waseem Anwar1,Farooque
Azam1,AndBilalMaqbool1RecentAdvancem ents inCode
Clone Detection Techniques and Tools

[2] Schaeffer Duncan1, Andrew Walker1, Caleb
DeHaan1, Stephanie Alvord1,Tomas Cerny1, and Pavel
Tisnovsky2 Pyclone: A Python Code Clone Test Bank
Generator

[3] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng
and Barbara Ryder CCLearner: A Deep LearningBased
Clone Detection Approach

[4] Vara Arammongkolvichai, Rainer Koschke,
Chaiyong Ragkhitwetsagul, Morakot Choetkiertikul,
Thanwadee Sunetnanta Improving Clone Detection
Precision using Machine Learning Techniques

[5] Hannes Thaller, Lukas Linsbauer, Alexander
Egyed Towards Semantic Clone Detection via Probabilistic
Software Modeling

[6] HAIBO ZHANG 1 AND KOUICHI SAKURAI 2 “ A
Survey of Software Clone Detection From Security
Perspective”

[7] T. Wang, M. Harman, Y. Jia, and J. Krinke,
“Searching for better configurations: A rigorous approach
to clone evaluation,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering

[8] C. Ragkhitwetsagul, M. Paixao, M. Adham, S.
Busari, J. Krinke, and J. H. Drake, Searching for
Configurations in Clone Evaluation – A Replication Study.
Cham: Springer International Publishing, 2016

[9] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna,
and L. Bier, “Clone detection using abstract syntax trees,”
in Proceedings of the International Conference on
Software Maintenance, 1998.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 576

[10] [10] L. Jiang, G. Misherghi, Z. Su, and S.
Glondu, DECKARD: scalable and accurate tree-based
detection of code clones, 2007.

[11] H. Sajnani, V. Saini, J. Svajlenko, C.K. Roy, and
C. V. Lopes, “SourcererCC: Scaling code clone detection
to big code,”

[12] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T.
N. Nguyen, Combining deep learning with information
retrieval to localize buggy files for bug reports , 2015

[13] S. Wang, T. Liu, and L. Tan, Automatically
learning semantic features for defect prediction, in
Proceedings of the International Conference on
Software Engineering, 2016.

[14] X. Gu, H. Zhang, D. Zhang, and S. Kim, Deep
API learning, in Proceedings of the ACM International
Symposium on Foundations of Software Engineering,
2016

[15] M. White, M. Tufano, C. Vendome, and D.
Poshyvanyk, “Deep learning code fragments for code
clone detection,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software
Engineering ,2016

[16] G. E. Hinton, S. Osindero, and Y.W. Teh, “A fast
learning algorithm for deep belief networks,” Neural
Computing, 2006.

[17] A. Gupta, J. Habibi, M. S. Kirkpatrick, and E.
Bertino, "Marlin: Mitigating Code Reuse Attacks Using
Code Randomization," in IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 3, pp.
326-337, 1 May-June 2015, DOI:
10.1109/TDSC.2014.2345384.

[18] J. Hiser, A. Nguyen-Tuong, M. Co,M. Hall, and J.
W. Davidson, “ILR: Where’d my gadgets go?” in Proc.
IEEE Symp. Security Privacy, 2012, pp. 571–585.

[19] R. Wartell, V. Mohan, K. W. Hamlen, and Z.
Lin, “Binary stirring: Self- randomizing instruction
addresses of legacy x86 binary code,” in Proc. ACM
Conf. Comput. Commun. Security, 2012, pp. 157– 168.

[20] P. Chen, H. Xiao, X. Shen, X. Yin B. Mao, and
L. Xie, “DROP: Detecting return-oriented programming
malicious code,” in Proc. 5th Int. Conf. Inf. Syst.
Security, 2009, pp. 163–177.

[21] L. V. Davi, A. Dmitrienko, S. Nurnberger, and A.-
R. Sadeghi, “Gadge me if you can: Secure and efficient ad-
hoc instruction-level randomization for x86 and arm,” in
Proc. 8th ACM SIGSAC Symp. Inf. Comput. Commun.
Security, 2013, pp. 299– 310.

[22] V. Pappas, M. Polychronakis, and A. D. Keromytis,
“Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization,” in Proc.
IEEE Symp Security Privacy, 2012, pp. 601–615.

[23] L. Davi, A.-R. Sadeghi, and M. Winandy,
“ROPdefender: A detection tool to defend against return-
oriented programming attacks,” in Proc. 6th ACM Symp.
Inf. Comput. Commun. Security, 2011, pp. 40–51.

[24] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating
code-reuse attacks with control- flow locking,” in Proc.
27th Annu. Comput. Security Appl. Conf., New York, NY,
USA.

