

Comparative Analysis of Tuning Hyperparameters in Policy-Based DRL

Algorithm for Self-Driving Scenario

Shubhechchha Niraula1

1Tribhuvan University, Institute of Engineering, Pulchowk Campus, Lalitpur, Nepal

---***--

Abstract: This technical article makes a comparative study on the outcome of policy-based deep reinforcement learning

algorithm PPO (Proximal Policy Optimization) at different hyperparameter values in self driving scenario to analyze its

effectiveness in navigation of vehicles. The agents are trained and evaluated in OpenAI Gym CarRacing-v0 simulation

environment. The action space is continuous and the observation spaces are images of 96x96x3 dimension which is fed to the

actor-critic network architecture. Three major hyperparameters discount factor, clip range and learning rate are altered to

evaluate their performance in given environment. The behaviors of the agents while tuning the hyperparameters are observed and

analyzed against evaluation metrics such as mean episode reward, policy loss, value loss, etc. The agents were found to perform

optimally at the discount factor of 0.99, clip range of 0.2 and learning rate of 0.0003 which are also the baseline default values.

Key Words: PPO, DRL, Proximal Policy Optimization, Deep Reinforcement Learning, Self Driving

1. INTRODUCTION

Deep reinforcement learning has prevailed in recent times

as a popular algorithm to solve navigation problem for

autonomous vehicles. It is seen as the possible tool to

replace classical control mechanisms used in autonomous

systems with numerous sensors and their compute

hardware and software stack by simple output oriented

programming logic.

Various types of learning agents have been developed over

the years to accomplish multitude of tasks among which

model-based algorithms, value-based algorithms and policy

optimizing algorithms are popular among researchers.

Model based algorithms represent the system in a dynamic

model form and tries to optimize the solution. Value based

algorithms prepare a table of value for each state-action pair

which represents the possible outcome of the agent

incorporating the reward value for upcoming outcomes.

Policy optimization algorithms guides the agent directly

depending upon whether the policy is deterministic or

stochastic to maximize the reward based upon the

probability distribution of outcomes developed and

optimized previously during the training. In this article, we

will compare and analyze the performance of Proximal

Policy Optimization algorithm to evaluate its navigation

efficiency in self driving scenario. The outcomes are weighed

up in terms of evaluation metrics such as mean episode

reward, policy loss, value loss, etc.

2. RELATED WORKS

The deep learning revolution started at around 2012 as

function approximators in various domains which led

researchers to investigate the implementation of these

neural networks in pre-existing reinforcement learning

algorithms. The new approach started using images as the

state of the agent instead of position, velocity and distance

to collision with other obstacles in the surrounding. Deep Q-

Network (DQN) was introduced as a potential solution to

solve high-dimensional state space environment with

policies that worked efficiently in large array of problems

with same algorithm, network architecture and

hyperparameters [1]. The DQN agent succeeded in multiple

Atari games with pixel and game score as inputs and

performed better than majority of algorithms previously

proposed, which were effective only in domains with fully

defined, low dimensional state space. While DQN could solve

problems with discrete action spaces quite effectively, a

wide range of real physical environments are much complex

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2087

and consists of tasks requiring continuous control.

Deterministic policy gradient (DPG) algorithms were

developed to encounter the problems with continuous

action spaces [2]. REINFORCE was one of the early straight

forward policy-based algorithms which operated by

converging in the direction of performance gradient and

hence, separate network for policy evaluation was not

trained [3].

Deep Deterministic Policy Gradient (DDPG) was developed

adapting to the underlying principles of DQN which could

address the problems with continuous action domain [4].

Actor-critic architecture was incorporated in the algorithm

which could optimize its own policy based on the state

values obtained from critic network. Trust region policy

optimization (TRPO) was introduced which prevented the

policies from deviating excessively on a single cycle by

adding a surrogate objective function to the algorithm [5].

Advantage Actor Critic (A2C) was put forward as

synchronous version of Asynchronous Advantage Actor

Critic (A3C) algorithm [6]. A2C has larger batch size which

ensures the completion of training for each actor in that

particular segment before the mean parameters are

updated. Soft Actor Critic (SAC) is also a popular off-policy

deep reinforcement learning algorithm based on maximizing

the entropy by actor to optimize expected reward through

randomness [7].

Among the algorithms proposed, Proximal Policy

Optimization (PPO) is prominently used in testing self-

driving features due to its effectiveness in the given

scenario. The algorithm fine-tuned the outcome of

previously existing policy-based reinforcement learning

algorithms in which surrogate objective function is

optimized using stochastic gradient ascent [8]. PPO allows

multiple gradient updates over a data sample in mini-

batches with repeated epochs. The algorithm, when it first

launched, outperformed other online policy gradient

methods in tasks including simulated robotic locomotion

and Atari games.

Kiran et al. have outlined the development of deep

reinforcement learning algorithms on autonomous driving

scenario [9]. Chen et al. discussed and experimented with

model free DRL algorithms for urban driving conditions

[10]. Deep reinforcement learning has been proposed as a

solution for mapless navigation, and ways to bridge the gap

between virtual and real environment was also addressed

[11]. Apart of ground vehicles, DRLs have also been

researched and utilized in the domain of unmanned aerial

vehicles (UAV) and unmanned underwater vehicles (UUV)

[12].

3. SIMULATION SETUP

Despite of reinforcement learning algorithms performing

quite well in controlled environments with finite state

spaces and pre-defined quantifiable goals, autonomous

driving is much complex scenario, especially in real world

applications. The challenges are even higher given its safety

issues. Hence, the algorithms are tested and evaluated in

oversimplified gaming or simulated environments to verify

its outcome.

3.1 Environment

The algorithms, in this article, are tested and evaluated on

OpenAI Gym CarRacing-v0 environment which is much

simplified version for autonomous driving scenario. The

environment does not contain any static or dynamic

obstacles which makes the task much easier than what

would be expected in real world application. Stable baseline

algorithm provided by the platform is compared against

agents with varied hyperparameter values. Each agent was

trained for an approximate of 200,000 timesteps to obtain

the result.

Fig - 1: OpenAI Gym sample racetrack

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2088

3.2 Action/Observation Spaces

The action space is continuous with steering value ranging

from –1 to 1 for extreme left and right, and 0 for no

movement. The gas amount can be increased or decreased

within the range of 0 to 1 depending upon the amount of

acceleration required. Similarly, braking range is within the

value of 0 to 1 for no braking to full stop. The observation

spaces are the images of 96x96x3 pixel size and color

channels.

Fig - 2: Observation space sample

3.3 Reward Functions

The racecar environment is considered solved when the

agent consistently scores 900+ points. Given that the

number of tiles visited is N, reward of +1000/N is granted

for every track tile visited. Also, 0.1 point is reduced on each

frame encouraging the vehicle to reach the designated score

point faster. An episode is completed when all the tiles of the

track are visited. If the vehicle is too far away from the track,

100 point is reduced which eventually terminates the

episode.

3.4 Network Architecture

Proximal Policy Optimization (PPO) adopts actor critic

architecture, and in case of stable baselines provided by

OpenAI, the network consists of two separate parts. The

feature extractor class uses Convolutional Neural Network

(CNN) to extract useful information from the image and is

shared by both actor and critic to reduce computation time.

The fully connected network maps the features to actions or

state value depending upon whether it is being used by actor

or critic. The loss function is given by:

Lt
CLIP+VF+S(θ) = Ê [Lt

CLIP(θ)-c1Lt
VF(θ)+c2S[πθ](st)]

In above equation,

Lt
CLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1-ɛ, 1+ ɛ)Ât)]

Also, the 2nd and 3rd term with co-efficient c1 and c2 are the

mean squared error of value function and entropy loss

respectively. The rt(θ) term is the ratio of new policy to the

old policy.

PPO limits the update to policy network by restricting this

ratio to certain values so that the sudden performance drop

prevalent in actor-critic architecture is avoided. The term Ât

is introduced to identify the good states and provide

advantage to these sates. Also, the learning iterations during

training is carried out over small fixed length trajectory of

memories and multiple network update per sample is done.

3.5 Hyperparameters

The default hyperparameters and arguments used by the

baseline algorithm are tabulated below.

Table - 1: Default hyperparameter values

Hyperparameters Argument Default value

Learning rate learning_rate 0.0003

Number of steps n_steps 2048

Mini-batch size batch_size 64

Number of epochs n_epochs 10

Discount factor gamma 0.99

Trade-off factor (bias vs
variance)

gae_lambda 0.95

Clipping parameter clip_range 0.2

Entropy co-efficient ent_coef 0.0

Value function co-
efficient

vf_coef 0.5

Maximum gradient
clipping value

max_grad_norm 0.5

Verbosity level verbose 0

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2089

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

The code is written and executed on Jupyter Notebook using

PyTorch framework with no GPU acceleration.

4. OBSERVATIONS AND DISCUSSIONS

The algorithms are compared and evaluated in terms of

average reward per episode during training and evaluation

cycles. Loss and time metrics are also analyzed to better

understand the advantage and shortcomings of each

algorithm. Three major hyperparameters i.e. discount factor

(γ), clip range and learning rate (α) are altered and their

behavior over 200,000 timesteps are observed to analyze

their performance. The results are visualized using

tensorboard log data and graphs provided by the platform.

4.1 Discount Factor

The discount factor is the measure of how much the policy is

influenced by possible return from future steps compared to

the immediate reward. The discount factor was altered

within the range of 0.8 to 0.999 and the graphs were plotted

in Tensorboard. In the figures below, orange, dark blue, light

blue, red and pink plots represent the discount factor of 0.8,

0.9, 0.95, 0.99 and 0.999 respectively. The rewards and

losses are plotted in y-axis against the timesteps in x-axis.

4.1.1 Graphs

The graphs obtained from the Tensorboad are shown below:

Chart – 1: Mean episode reward (y) vs. timesteps (x)

Chart – 2: Mean episode length (y) vs. timesteps (x)

Chart – 3: Policy gradient loss (y) vs. timesteps (x)

Chart – 4: Value loss (y) vs. timesteps (x)

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2090

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

Chart – 5: Frame per second (y) vs. timesteps (x)

4.1.2 Inference

The mean episode reward was found to be maximum at

discount factor of 0.99 as represented by red curve which is

also the baseline default value. The discount factor was

increased and decreased to 0.999 and 0.95 which gave the

mean reward of 202 and 204 respectively at 200,000

timesteps, which is much lesser than 594 points obtained

from 0.99. The discount factor was further decreased to 0.9

and 0.8 as represented by dark blue and orange curve which

further lowered the outcome to 200 and 135 respectively.

Hence, it can be inferred from the experiments above that

the discount factor of 0.99 is best suited among the tested

values for the given environment.

The policy gradient loss seemed to be gradually increasing

initially in either direction of the axis and decreasing as the

timestep progressed. It can be expected from the pattern

that the curve will converge towards zero near the end if it is

further trained to 1-2 million timesteps. The policy loss was

higher initially because the agent had not learned as much in

the beginning, hence large policy update occurred in each

iteration. However, the more the agent learned, the policy

started becoming more stable resulting in lower loss per

update.

4.2 Clip Range

The restriction imposed on the ratio of new policy to old

policy of the agent which determines the extent of update

that a network can have per iteration is given by clip range.

The algorithm was tested against three clip range values 0.1,

0.2 and 0.3 represented by blue, orange and red plots

respectively. The progression of timesteps is plotted along x-

axis and the rewards and losses are mapped in y-axis.

4.2.1 Graphs

The graphs obtained from the Tensorboad are shown below:

Chart – 6: Mean episode reward (y) vs. timesteps (x)

Chart – 7: Mean episode length (y) vs. timesteps (x)

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2091

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

Chart – 8: Policy gradient loss (y) vs. timesteps (x)

Chart – 9: Value loss (y) vs. timesteps (x)

4.2.2 Inference

The average episode reward started increasing faster in case

of clip range 0.3 represented by red curve, however, the

growth was not steady and stopped increasing after about

120,000 timesteps. The blue curve representing the clip

range of 0.1 started sloping up later than other curves and

yet succeeded in overtaking the clip range of 0.3. The

average episode reward of default agent with clip range of

0.2 was still maximum than other agents at the landmark of

200,000 timesteps. The above experiment implies that

tuning the clip range towards the lower value than the

baseline default may produce better results than tuning it

towards higher value if it is to be done at all.

The value loss curves were as expected for PPO learning

cycles. The loss increased in its early cycles and came down

to a steady range once the agent stabilized. The orange and

red curve representing the clip range of 0.2 and 0.3

respectively started ascending at around 30k-40k timesteps

and reached their peaks at about 100,000 timesteps. The

curves started descending and stabilized around the value of

6. The blue curve with clip range of 0.1 started ascending

much later and may give better results at higher timesteps if

trained for longer. However, at 200,000 mark, the loss was

found to be lowest for clip range of 0.2 with the approximate

value of 3.5.

4.3 Learning Rate

PPO performs mini-batch stochastic gradient ascent for

updating its network parameters, and learning rate controls

the pace at which the updates take place. The baseline

algorithm was tested against varying learning rate values

ranging from 0.03 to 0.000003 to analyze its influence in the

agent’s overall performance. The learning rate values of

0.03, 0.003, 0.0003, 0.00003 and 0.000003 are depicted by

dark blue, light blue, orange, red and pink respectively. As

usual, x-axis represents timesteps and y-axis represents

rewards and losses.

4.3.1 Graphs:

The graphs obtained from the Tensorboad are shown below:

Chart – 10: Mean episode reward (y) vs. timesteps (x)

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2092

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

Chart – 11: Mean episode length (y) vs. timesteps (x)

Chart – 12: Total loss (y) vs. timesteps (x)

Chart – 13: Value loss (y) vs. timesteps (x)

4.3.2 Inference

The mean episode reward of baseline algorithm with

learning rate 0.0003 was found to be at an approximate of

590 points (unsmoothed value) after 200,000 timesteps as

depicted by the orange curve. However, while increasing the

learning rate to 0.03, the mean episode reward came down

to –65 points as shown by dark blue curve. Hence, the

learning rate was further decreased to 0.00003 and the

episode reward reached an average value of 470 points

which is still lesser than that obtained from baseline default.

The learning rate was then increased one unit higher than

the baseline value to 0.003 which also gave similar result as

that of 0.03. On the last experiment, the learning rate was

decreased to 0.000003, however, the algorithm didn’t

converge at all leaving negative average reward. It can be

inferred from the above experiments that the learning rate

of 0.0003 is optimum among the tested values for the given

environment.

In case of the loss plot, a consistent pattern was observed in

the total loss of agent with learning rate of 0.03 represented

by dark blue curve. The loss appeared to peak up abruptly at

times taking much longer time to fall back to its previous

range. This is possibly due to the performance falling of

actor critic architecture which became prominent when the

learning rate was not restricted to small value.

5. CONCLUSION

It can be concluded from the above observations that the

hyperparameters used by baseline algorithm as shown in

Table 1 are optimized to give the best possible outcome in

majority of scenarios. However, the data and graphs

obtained were based on training carried out for 200,000

timesteps which is much less to infer the agent’s behavior in

longer run. In majority of cases, the mean episode reward is

within 400-500 which is only half the expected reward for

the racetrack to be considered completed. Hence, training

the agent for longer timesteps i.e. an approximate of 1-2

millions could yield better insight into the performance of

algorithm at different hyperparameter values. For future

work, the baseline algorithm can be tweaked to fit in other

tools and techniques such as image processing, altering

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2093

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

frame stacks and/or discretizing the action space to improve

performance in terms of training time and accuracy.

REFERENCES

[1] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,

Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015).

Human-level control through deep reinforcement

learning. nature, 518(7540), 529-533.

[2] Silver, David & Lever, Guy & Heess, Nicolas & Degris,

Thomas & Wierstra, Daan & Riedmiller, Martin.

(2014). Deterministic Policy Gradient Algorithms.

31st International Conference on Machine Learning,

ICML 2014.

[3] Williams, R. J. (1992). Simple statistical gradient-

following algorithms for connectionist

reinforcement learning. Machine learning, 8(3), 229-

256.

[4] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,

T., Tassa, Y., ... & Wierstra, D. (2015). Continuous

control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971.

[5] Schulman, J., Levine, S., Abbeel, P., Jordan, M., &

Moritz, P. (2015, June). Trust region policy

optimization. In International conference on

machine learning (pp. 1889-1897). PMLR.

[6] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,

T., Harley, T., ... & Kavukcuoglu, K. (2016, June).

Asynchronous methods for deep reinforcement

learning. In International conference on machine

learning (pp. 1928-1937). PMLR.

[7] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,

S., Tan, J., ... & Levine, S. (2018). Soft actor-critic

algorithms and applications. arXiv preprint

arXiv:1812.05905.

[8] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &

Klimov, O. (2017). Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347.

[9] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al

Sallab, A. A., Yogamani, S., & Pérez, P. (2021). Deep

reinforcement learning for autonomous driving: A

survey. IEEE Transactions on Intelligent

Transportation Systems.

[10] Chen, J., Yuan, B., & Tomizuka, M. (2019, October).

Model-free deep reinforcement learning for urban

autonomous driving. In 2019 IEEE intelligent

transportation systems conference (ITSC) (pp. 2765-

2771). IEEE.

[11] Tai, L., Paolo, G., & Liu, M. (2017, September).

Virtual-to-real deep reinforcement learning:

Continuous control of mobile robots for mapless

navigation. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems

(IROS) (pp. 31-36). IEEE.

[12] Pham, H. X., La, H. M., Feil-Seifer, D., & Nguyen, L. V.

(2018). Autonomous UAV navigation using

reinforcement learning. arXiv preprint

arXiv:1801.05086.

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2094

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

