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Abstract: This technical article makes a comparative study on the outcome of policy-based deep reinforcement learning 

algorithm PPO (Proximal Policy Optimization) at different hyperparameter values in self driving scenario to analyze its 

effectiveness in navigation of vehicles. The agents are trained and evaluated in OpenAI Gym CarRacing-v0 simulation 

environment. The action space is continuous and the observation spaces are images of 96x96x3 dimension which is fed to the 

actor-critic network architecture. Three major hyperparameters discount factor, clip range and learning rate are altered to 

evaluate their performance in given environment. The behaviors of the agents while tuning the hyperparameters are observed and 

analyzed against evaluation metrics such as mean episode reward, policy loss, value loss, etc. The agents were found to perform 

optimally at the discount factor of 0.99, clip range of 0.2 and learning rate of 0.0003 which are also the baseline default values.  
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1. INTRODUCTION 

Deep reinforcement learning has prevailed in recent times 

as a popular algorithm to solve navigation problem for 

autonomous vehicles. It is seen as the possible tool to 

replace classical control mechanisms used in autonomous 

systems with numerous sensors and their compute 

hardware and software stack by simple output oriented 

programming logic.   

Various types of learning agents have been developed over 

the years to accomplish multitude of tasks among which 

model-based algorithms, value-based algorithms and policy 

optimizing algorithms are popular among researchers. 

Model based algorithms represent the system in a dynamic 

model form and tries to optimize the solution. Value based 

algorithms prepare a table of value for each state-action pair 

which represents the possible outcome of the agent 

incorporating the reward value for upcoming outcomes. 

Policy optimization algorithms guides the agent directly 

depending upon whether the policy is deterministic or 

stochastic to maximize the reward based upon the 

probability distribution of outcomes developed and 

optimized previously during the training. In this article, we 

will compare and analyze the performance of Proximal 

Policy Optimization algorithm to evaluate its navigation 

efficiency in self driving scenario. The outcomes are weighed 

up in terms of evaluation metrics such as mean episode 

reward, policy loss, value loss, etc.  

2. RELATED WORKS 

The deep learning revolution started at around 2012 as 

function approximators in various domains which led 

researchers to investigate the implementation of these 

neural networks in pre-existing reinforcement learning 

algorithms. The new approach started using images as the 

state of the agent instead of position, velocity and distance 

to collision with other obstacles in the surrounding. Deep Q-

Network (DQN) was introduced as a potential solution to 

solve high-dimensional state space environment with 

policies that worked efficiently in large array of problems 

with same algorithm, network architecture and 

hyperparameters [1]. The DQN agent succeeded in multiple 

Atari games with pixel and game score as inputs and 

performed better than majority of algorithms previously 

proposed, which were effective only in domains with fully 

defined, low dimensional state space. While DQN could solve 

problems with discrete action spaces quite effectively, a 

wide range of real physical environments are much complex 
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and consists of tasks requiring continuous control. 

Deterministic policy gradient (DPG) algorithms were 

developed to encounter the problems with continuous 

action spaces [2]. REINFORCE was one of the early straight 

forward policy-based algorithms which operated by 

converging in the direction of performance gradient and 

hence, separate network for policy evaluation was not 

trained [3].  

Deep Deterministic Policy Gradient (DDPG) was developed 

adapting to the underlying principles of DQN which could 

address the problems with continuous action domain [4]. 

Actor-critic architecture was incorporated in the algorithm 

which could optimize its own policy based on the state 

values obtained from critic network. Trust region policy 

optimization (TRPO) was introduced which prevented the 

policies from deviating excessively on a single cycle by 

adding a surrogate objective function to the algorithm [5]. 

Advantage Actor Critic (A2C) was put forward as 

synchronous version of Asynchronous Advantage Actor 

Critic (A3C) algorithm [6]. A2C has larger batch size which 

ensures the completion of training for each actor in that 

particular segment before the mean parameters are 

updated. Soft Actor Critic (SAC) is also a popular off-policy 

deep reinforcement learning algorithm based on maximizing 

the entropy by actor to optimize expected reward through 

randomness [7].   

Among the algorithms proposed, Proximal Policy 

Optimization (PPO) is prominently used in testing self-

driving features due to its effectiveness in the given 

scenario. The algorithm fine-tuned the outcome of 

previously existing policy-based reinforcement learning 

algorithms in which surrogate objective function is 

optimized using stochastic gradient ascent [8]. PPO allows 

multiple gradient updates over a data sample in mini-

batches with repeated epochs. The algorithm, when it first 

launched, outperformed other online policy gradient 

methods in tasks including simulated robotic locomotion 

and Atari games.   

Kiran et al. have outlined the development of deep 

reinforcement learning algorithms on autonomous driving 

scenario [9]. Chen et al. discussed and experimented with 

model free DRL algorithms for urban driving conditions 

[10]. Deep reinforcement learning has been proposed as a 

solution for mapless navigation, and ways to bridge the gap 

between virtual and real environment was also addressed 

[11]. Apart of ground vehicles, DRLs have also been 

researched and utilized in the domain of unmanned aerial 

vehicles (UAV) and unmanned underwater vehicles (UUV) 

[12].  

3. SIMULATION SETUP 

Despite of reinforcement learning algorithms performing 

quite well in controlled environments with finite state 

spaces and pre-defined quantifiable goals, autonomous 

driving is much complex scenario, especially in real world 

applications. The challenges are even higher given its safety 

issues. Hence, the algorithms are tested and evaluated in 

oversimplified gaming or simulated environments to verify 

its outcome.  

3.1 Environment  

The algorithms, in this article, are tested and evaluated on 

OpenAI Gym CarRacing-v0 environment which is much 

simplified version for autonomous driving scenario. The 

environment does not contain any static or dynamic 

obstacles which makes the task much easier than what 

would be expected in real world application. Stable baseline 

algorithm provided by the platform is compared against 

agents with varied hyperparameter values. Each agent was 

trained for an approximate of 200,000 timesteps to obtain 

the result.  

 

Fig - 1: OpenAI Gym sample racetrack 

          International Research Journal of Engineering and Technology (IRJET)              e-ISSN: 2395-0056 
           Volume: 09 Issue: 08 | Aug 2022              www.irjet.net                                                                                   p-ISSN: 2395-0072 

© 2022, IRJET       |           Impact Factor value: 7.529       |           ISO 9001:2008 Certified Journal         |     Page 2088 
 



  

3.2 Action/Observation Spaces 

The action space is continuous with steering value ranging 

from –1 to 1 for extreme left and right, and 0 for no 

movement. The gas amount can be increased or decreased 

within the range of 0 to 1 depending upon the amount of 

acceleration required. Similarly, braking range is within the 

value of 0 to 1 for no braking to full stop. The observation 

spaces are the images of 96x96x3 pixel size and color 

channels.  

 

Fig - 2: Observation space sample 
 

3.3 Reward Functions 

The racecar environment is considered solved when the 

agent consistently scores 900+ points. Given that the 

number of tiles visited is N, reward of +1000/N is granted 

for every track tile visited. Also, 0.1 point is reduced on each 

frame encouraging the vehicle to reach the designated score 

point faster. An episode is completed when all the tiles of the 

track are visited. If the vehicle is too far away from the track, 

100 point is reduced which eventually terminates the 

episode.  

3.4 Network Architecture  

Proximal Policy Optimization (PPO) adopts actor critic 

architecture, and in case of stable baselines provided by 

OpenAI, the network consists of two separate parts. The 

feature extractor class uses Convolutional Neural Network 

(CNN) to extract useful information from the image and is 

shared by both actor and critic to reduce computation time. 

The fully connected network maps the features to actions or 

state value depending upon whether it is being used by actor 

or critic. The loss function is given by:  

Lt
CLIP+VF+S(θ) = Ê [Lt

CLIP(θ)-c1Lt
VF(θ)+c2S[πθ](st)] 

In above equation,  

Lt
CLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1-ɛ, 1+ ɛ)Ât)] 

Also, the 2nd and 3rd term with co-efficient c1 and c2 are the 

mean squared error of value function and entropy loss 

respectively. The rt(θ) term is the ratio of new policy to the 

old policy.   

 

PPO limits the update to policy network by restricting this 

ratio to certain values so that the sudden performance drop 

prevalent in actor-critic architecture is avoided. The term Ât 

is introduced to identify the good states and provide 

advantage to these sates. Also, the learning iterations during 

training is carried out over small fixed length trajectory of 

memories and multiple network update per sample is done. 

3.5 Hyperparameters 

The default hyperparameters and arguments used by the 

baseline algorithm are tabulated below. 

Table - 1: Default hyperparameter values 
 

Hyperparameters Argument Default value 

Learning rate learning_rate 0.0003 

Number of steps n_steps  2048 

Mini-batch size batch_size 64 

Number of epochs n_epochs 10 

Discount factor gamma 0.99 

Trade-off factor (bias vs 
variance) 

gae_lambda 0.95 

Clipping parameter clip_range 0.2 

Entropy co-efficient ent_coef 0.0 

Value function co-
efficient 

vf_coef 0.5 

Maximum gradient 
clipping value 

max_grad_norm 0.5 

Verbosity level verbose 0 
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The code is written and executed on Jupyter Notebook using 

PyTorch framework with no GPU acceleration. 

4. OBSERVATIONS AND DISCUSSIONS 

The algorithms are compared and evaluated in terms of 

average reward per episode during training and evaluation 

cycles. Loss and time metrics are also analyzed to better 

understand the advantage and shortcomings of each 

algorithm. Three major hyperparameters i.e. discount factor 

(γ), clip range and learning rate (α) are altered and their 

behavior over 200,000 timesteps are observed to analyze 

their performance. The results are visualized using 

tensorboard log data and graphs provided by the platform. 

4.1 Discount Factor 

The discount factor is the measure of how much the policy is 

influenced by possible return from future steps compared to 

the immediate reward. The discount factor was altered 

within the range of 0.8 to 0.999 and the graphs were plotted 

in Tensorboard. In the figures below, orange, dark blue, light 

blue, red and pink plots represent the discount factor of 0.8, 

0.9, 0.95, 0.99 and 0.999 respectively. The rewards and 

losses are plotted in y-axis against the timesteps in x-axis. 

4.1.1 Graphs 

The graphs obtained from the Tensorboad are shown below: 

 

Chart – 1: Mean episode reward (y) vs. timesteps (x) 

 

Chart – 2: Mean episode length (y) vs. timesteps (x) 

 

Chart – 3: Policy gradient loss (y) vs. timesteps (x) 

 

Chart – 4: Value loss (y) vs. timesteps (x) 
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Chart – 5: Frame per second (y) vs. timesteps (x) 

4.1.2 Inference 

The mean episode reward was found to be maximum at 

discount factor of 0.99 as represented by red curve which is 

also the baseline default value. The discount factor was 

increased and decreased to 0.999 and 0.95 which gave the 

mean reward of 202 and 204 respectively at 200,000 

timesteps, which is much lesser than 594 points obtained 

from 0.99. The discount factor was further decreased to 0.9 

and 0.8 as represented by dark blue and orange curve which 

further lowered the outcome to 200 and 135 respectively. 

Hence, it can be inferred from the experiments above that 

the discount factor of 0.99 is best suited among the tested 

values for the given environment.  

The policy gradient loss seemed to be gradually increasing 

initially in either direction of the axis and decreasing as the 

timestep progressed. It can be expected from the pattern 

that the curve will converge towards zero near the end if it is 

further trained to 1-2 million timesteps. The policy loss was 

higher initially because the agent had not learned as much in 

the beginning, hence large policy update occurred in each 

iteration. However, the more the agent learned, the policy 

started becoming more stable resulting in lower loss per 

update.  

4.2 Clip Range 

The restriction imposed on the ratio of new policy to old 

policy of the agent which determines the extent of update 

that a network can have per iteration is given by clip range. 

The algorithm was tested against three clip range values 0.1, 

0.2 and 0.3 represented by blue, orange and red plots 

respectively. The progression of timesteps is plotted along x-

axis and the rewards and losses are mapped in y-axis. 

4.2.1 Graphs 

The graphs obtained from the Tensorboad are shown below: 

 

Chart – 6: Mean episode reward (y) vs. timesteps (x) 

 

Chart – 7: Mean episode length (y) vs. timesteps (x) 
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Chart – 8: Policy gradient loss (y) vs. timesteps (x) 

 

Chart – 9: Value loss (y) vs. timesteps (x) 

4.2.2 Inference  

The average episode reward started increasing faster in case 

of clip range 0.3 represented by red curve, however, the 

growth was not steady and stopped increasing after about 

120,000 timesteps. The blue curve representing the clip 

range of 0.1 started sloping up later than other curves and 

yet succeeded in overtaking the clip range of 0.3. The 

average episode reward of default agent with clip range of 

0.2 was still maximum than other agents at the landmark of 

200,000 timesteps. The above experiment implies that 

tuning the clip range towards the lower value than the 

baseline default may produce better results than tuning it 

towards higher value if it is to be done at all.  

The value loss curves were as expected for PPO learning 

cycles. The loss increased in its early cycles and came down 

to a steady range once the agent stabilized. The orange and 

red curve representing the clip range of 0.2 and 0.3 

respectively started ascending at around 30k-40k timesteps 

and reached their peaks at about 100,000 timesteps. The 

curves started descending and stabilized around the value of 

6. The blue curve with clip range of 0.1 started ascending 

much later and may give better results at higher timesteps if 

trained for longer. However, at 200,000 mark, the loss was 

found to be lowest for clip range of 0.2 with the approximate 

value of 3.5.   

4.3 Learning Rate  

PPO performs mini-batch stochastic gradient ascent for 

updating its network parameters, and learning rate controls 

the pace at which the updates take place. The baseline 

algorithm was tested against varying learning rate values 

ranging from 0.03 to 0.000003 to analyze its influence in the 

agent’s overall performance. The learning rate values of 

0.03, 0.003, 0.0003, 0.00003 and 0.000003 are depicted by 

dark blue, light blue, orange, red and pink respectively. As 

usual, x-axis represents timesteps and y-axis represents 

rewards and losses.  

4.3.1 Graphs: 

The graphs obtained from the Tensorboad are shown below: 

 

Chart – 10: Mean episode reward (y) vs. timesteps (x) 
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Chart – 11: Mean episode length (y) vs. timesteps (x) 

 

Chart – 12: Total loss (y) vs. timesteps (x) 

 

Chart – 13: Value loss (y) vs. timesteps (x) 

 

4.3.2 Inference  

The mean episode reward of baseline algorithm with 

learning rate 0.0003 was found to be at an approximate of 

590 points (unsmoothed value) after 200,000 timesteps as 

depicted by the orange curve. However, while increasing the 

learning rate to 0.03, the mean episode reward came down 

to –65 points as shown by dark blue curve. Hence, the 

learning rate was further decreased to 0.00003 and the 

episode reward reached an average value of 470 points 

which is still lesser than that obtained from baseline default. 

The learning rate was then increased one unit higher than 

the baseline value to 0.003 which also gave similar result as 

that of 0.03. On the last experiment, the learning rate was 

decreased to 0.000003, however, the algorithm didn’t 

converge at all leaving negative average reward. It can be 

inferred from the above experiments that the learning rate 

of 0.0003 is optimum among the tested values for the given 

environment.   

In case of the loss plot, a consistent pattern was observed in 

the total loss of agent with learning rate of 0.03 represented 

by dark blue curve. The loss appeared to peak up abruptly at 

times taking much longer time to fall back to its previous 

range. This is possibly due to the performance falling of 

actor critic architecture which became prominent when the 

learning rate was not restricted to small value.  

5. CONCLUSION 

It can be concluded from the above observations that the 

hyperparameters used by baseline algorithm as shown in 

Table 1 are optimized to give the best possible outcome in 

majority of scenarios. However, the data and graphs 

obtained were based on training carried out for 200,000 

timesteps which is much less to infer the agent’s behavior in 

longer run. In majority of cases, the mean episode reward is 

within 400-500 which is only half the expected reward for 

the racetrack to be considered completed. Hence, training 

the agent for longer timesteps i.e. an approximate of 1-2 

millions could yield better insight into the performance of 

algorithm at different hyperparameter values. For future 

work, the baseline algorithm can be tweaked to fit in other 

tools and techniques such as image processing, altering 
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frame stacks and/or discretizing the action space to improve 

performance in terms of training time and accuracy.  
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