
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page

1488

Self-Protecting Technology for Web Applications

Ms. Swathi R

Researcher, Bengaluru, Karnataka, India
---***--

Abstract - Self-defense for running applications is a
security-based technology. It keeps an eye on the running
program, which keeps an eye on incoming traffic to see
whether any incoming attacks are present. If they are, it
blocks them by using the information from the current
application. By evaluating the inputs and preventing the
inputs that could enable assaults in the application, it is
claimed to enhance the security aspects of software. RASP
reduces the reliance of applications on external hardware,
such as firewalls, for runtime security protection. We outline
the fundamental ideas behind Runtime Application Self-
Protection Technology (RASP), a relatively new security
strategy that is soon to be widely adopted.

Key Words: Self Protection, Security, Network Traffic.

 1. INTRODUCTION

 Networks are expanding in size, becoming more
complicated, and becoming harder to secure. In order to
better detect risks, security providers are incorporating
new methodologies into their software products, such as
studying users' typical routines. Applications are scattered
and complicated, thus application security strategies
should be divided up to allow for a more in-depth
investigation of the system's data. Attacks are becoming
more sophisticated, and present access safeguards are no
longer able to stop them. Due to shortcomings in
application security, production applications are at danger.
Once they take place on a network, security issues have
very little visibility.

There’s a strong need of module that can:

• By keeping an eye on and analysing exploitation
attempts, you can spot attack trends and prevent callers
from accessing the application. Context-aware detection.

• Recognize and record how an application performs,
interacts with its ecosystem, and flows data in and out.

• Identify unusual searches, application inputs, feature
usages, and compare to the database.

• Recognize typical application usage patterns and
document them in the database.

If something is strange, deny access to the features.

• When an application has known vulnerabilities, defend
against assaults without the requirement for development
fixes.

1.1 EXISTING SYSTEM

RASP is a security technology that is built or linked into an
application or application runtime environment and is
capable of controlling application execution as well as
detecting and preventing real-time attacks [1].

RASP prevents attacks by self-protecting or automatically
reconfiguring in response to particular network situations
without human intervention (threats, faults, etc.).

When an application is executed (runtime), RASP becomes
active, causing the programme to supervise itself and
identify fraudulent input and behavior. RASP processes
both the application's behavior and its context in real time.

As a result, regular security analysis is used, with the
system responding appropriately to any detected attacks.
[2].

Web applications are a common target, and attackers
commonly employ them to gain access to a system
(network)[3].

Maintaining network security while preserving the
flexibility needed by web application developers is the
primary security goal of a business. The idea that a web
application firewall (WAF) is the best security measure is
one that is frequently expressed. Before running the web
application, WAF filtering and code testing methods are
implemented, evaluating incoming traffic flow for known
attack patterns and blocking inputs from reaching the
application. The consensus is that a WAF's signature base
and pattern matching engine determine how trustworthy it
is.

2. PROPOSED SYSTEM

There are two used cases involved:

I. The Self Protecting tool placed inside the
application

User attempting to log in while still logged in: This user
action can be viewed as suspicious, and the user is
prompted to log out first to preserve the integrity of the
programme. Features of the Proposed System's Security.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page

1489

a. When a user logs in or out, the log files are printed
with their timestamp and distinctive ID (such as
their account number).

b. A Boolean value is always set to true whenever a
log-in action is carried out. If the user logs out, the
value just becomes false.

c. Users who are already logged in cannot log in from
another tab of the browser without first logging
out.

d. The aforementioned modifications, which were
performed during the course of this project, were
not existent in the system that was in place before.

e. Using the current system, we were able to access
the information and identify suspicious and
harmful activity. The application in our suggested
solution does not access the database or modify
any source code. We create logs for each login and
logout event to help us detect nefarious behaviours
like several users using the same account to log in.
By analysing the real-time generated logs, our
application will look for any anomalous activity.

f. Since we won't be accessing the database, we will
save all of the routine actions in the logs itself
instead of the database, which was how the system
was set up before. Without altering the source
code, our suggested application will function as a
general-purpose add-on that keeps track of both
normal and aberrant activity. It runs in parallel in
the background. As opposed to the prior system,
where we had to access the database and modify
the source code, the application in the existing
system was not general-purpose for any web
application.

Fig- 1 : Working of 1st case

II. The Self Protecting tool placed inside the
application

Security Features in the Proposed System

a. When a user attempts to commit SQL injection,
their behavior is deemed suspect, and they are
prohibited from accessing the website. The
fundamental block diagram is displayed in Fig. 1.3.

b. The website prints a 404 message if a SQL
injection is executed.

c. The aforementioned modifications, which were
performed during the course of this project, were
not existent in the system that was in place before.

d. We were looking through the error log files on the
current system to find unusual requests and
suspicious activity. The self-protecting mechanism
is included in the application and does not access
the database in our suggested system. We use the
self-protecting tool within the programme to
detect harmful activities like SQL injection inside
the application. This tool also aids in preventing
injection assaults made to the website. Our
programme uses a self-protecting tool, as shown
in figure below, to examine all anomalous activity.

Fig- 2 : Working of 2nd case

3. METHODOLOGY

Fig- 1 : Block Diagram of Proposed System

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page

1490

RASP limits attacks and only permits authorised users to
access the programme by distinguishing between intruders
and legitimate users for information. It serves as an
additional layer of security for the application and keeps
intruders out while it is running. Even small vendors can
employ runtime self-protecting applications to secure their
products because they are affordable. The size or kind of
the application has no bearing on it.

4. IMPLEMENTATION

Server Web Apache (Apache HTTP Server)

Open-source web server software includes Apache HTTP
Server. The term "web server" refers to a device that
enables website owners to publish material online.

i. Selected a web application and following was
implemented:

a. Disable the web application access from remote

system
b. Understanding Apache HTTP Server
c. Creating a Virtual Host in Apache and direct all

communication of each web application through
that each Host when access remotely

ii. Apache's HTTP request interpretation includes
logging the following information in a file:

a. the date and time,
b. the URL or module that was requested,
c. and any unusual activity.

iii. The development of a Java class that will read the

following input and print it to the console
a. Web Application Name
b. User login details

iv. Calling the JAVA Class from Apache and provide

the inputs.

Traffic & Data Analysis

There are numerous phases involved in traffic analysis,
such as gathering network data, examining that data, and
analysing it to improve system performance.

Steps:

i. Network Data Analysis
ii. Active Passive Attacks

Create a second Java class that analyses the CSV file's
contents and transforms it into scenarios or policies (a
series of instructions in the form of a txt, prop, or XML file)
that prevent users from accessing the website.

Implementation of Self protecting tool placed outside
the application

Fig- 3 : Implementation of 1st case

We access the GET request in the Apache proxy when the
user tries to access the programme using the URL, and we
extract the account number from there. We have our
details to be obtained with information taken from the GET
request header. These details are subsequently
transmitted to a Perl script, where validation occurs. At the
back end, we execute the Perl script, which calls the Java
executable file. The header information is checked against
the user's previously collected data. Jar file running in the
background does validation. We read the JAR log file and
do the appropriate tests. This log file is read in Jar, and
user authentication is verified.

The information will be provided by the Jar file, and we
have established the prerequisites for carrying out the
action. The specific account number obtained from the log
file and the GET request in Apache (account number of the
user if the user has logged in or logged out). The log file
contains all information on each user's login or logout.

Jar generates 0 or 1 depending on the data in the log file.
Values 0 and 1 show that the user has previously logged
out and hasn't done so recently, respectively. This data was
submitted to a Perl script. So, we look to see if the user has
engaged in any suspicious behaviour. If so, a message
about unauthorised access is displayed. An error notice
therefore develops if the value is 1. It prevents the user
from using the application. If the number is zero, the user
has logged out and is now free to utilise the website. He
can then carry out any function within the application.
Creating a new account or logging into an existing one can
be done next.

Implementation of Self protecting tool placed inside
the application

We send the user request to the gateway when a user
attempts to access an application via a URL, and the
gateway then sends the information to the plugin. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page

1491

plugins check for the presence of binary SQL injection
patterns, and if they do, they return 0 otherwise. If the
result is 0, the user is prohibited from visiting the website;
otherwise, they are permitted. If a pre-existing account is
accessed, we verify that the username, password, and
account number are correct and that the user has logged
out. Access is not permitted if it is invalid. Allow the user to
carry out operations like checking the balance, transferring
money, withdrawing money, or closing the account if it is
valid. Delete the entry from the database if the user closes
their account.

Fig – 4: Implementation of 2nd case

5. OUTCOMES

Fig - 5: Real time view of web application

Fig – 6: Legitimate user allowed when self-protecting tool
is used

Fig -7 : illegitimate user not allowed to access when self-
protecting tool is used

6. CONCLUSION

Self-Protecting Applications are software friendlier, rely
little on the type of software, and require minimal technical
expertise to utilize. They also offer a respectable service for
safeguarding Web Applications against criminal activity. It
prevents data leakage and shields the application from the
outside world. It safeguards the system from emerging
dangers posed by any user simply by evaluating the
patterns of user behavior. With its extremely transparent
and practical methods, SPA, in contrast to other security
software that is difficult to use and incompatible, can be
utilized by any web site, from a straightforward single page
web application to a large social media application.
Additionally, it doesn't call for any modifications to the
Application's source code. SPA is therefore genuine
software for protecting Web applications.

REFERENCES

[1] Gartner, IT Glossary, http://www.gartner.com/it-
glossary/runtime- application-self-protection-rasp/

[2] Veracode,
https://www.veracode.com/security/runtime-
application-self-protection-rasp

[3] Zhongxu Yin, Zhufeng Li & Yan Cao “A Web
Application Runtime Application Self-protection
Scheme against Script Injection Attacks” 2018

[4] Salemi Macro "Automated rules generation into Web
Application Firewall using Runtime Application Self-
Protection" 2020

[5] Amal Saha and Sugata Sanyal. Application layer
intrusion detection with combination of explicit-
rule-based and machine learning algorithms and
deployment in cyber-defence program!
https://arxiv.org/pdf/1411.3089.pdf, November
2014.

[6] Alexander Fry. Runtime application self-protection
(rasp), investigation of the eectiveness of a rasp
solution in protecting known vulnerable target
applications. https://www.sans.org/reading-
room/whitepapers/ application/runtime-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page

1492

application-self-protectionrasp-investigation-
effectiveness-rasp-solutionprotecting-vulnerable-
target-applications-38950, April 2019.

[7] Vivek Gite. Linux incrond inotify monitor directories
for changes and take action.
https://www.cyberciti.biz/faq/linux-
inotifyexamples-to-replicate-directories/, December
2018.

[8] Adrian Lane. Understanding and selecting runtime
application self- protection.
https://securosis.com/assets/library/attachments/
Understanding_RASP_Immunio_V2.pdf, August 2016.

[9] Dariusz PałkaMarek and ZacharaMarek Zachara.
Learning web application rewall - benets and
caveats. https://www.researchgate.
net/publication/226351120_Learning_Web_Applica
tion_ Firewall_-_Benefits_and_Caveats, August 2011.

Amal Saha and Sugata Sanyal. Application layer
intrusion detection with combination of explicit-
rule-based and machine learning algorithms and
deployment in cyber-defence program!
https://arxiv.org/pdf/1411.3089.pdf, November
2014.

[10]

