’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 09 Issue: 08 | Aug 2022

www.irjet.net

p-ISSN: 2395-0072

Dynamic Data Masking Mechanism on Cloud Platform

Chirag Dave, Deepa Dave

Chirag Dave, Program Manager, Department of Education
Deepa Dave, Snowflake Lead Consultant, Under Armor

Abstract - In recent years, Cloud Computing is gaining
popularity and has changed the overall business computing
environment. It is flexible and cost effective. However, this
change has brought its own set of Data Security challenges.

In this paper, the author has focused on explaining the
application of Dynamic Data Masking policies using ELT tool
named Data Build Tool (DBT). This paper attempts to describe
a detailed approach to create the DDM policies on Cloud
Datawarehouse (Snowflake) and applying those DDM policies
to DBT models which will selectively mask the plain text data
and view columns at query time within Snowflake before
sharing it outside the organization. This white paper
addresses the Data masking aspects for most of the projects
which use Snowflake and DBT as their Data Warehouse and
ELT tool respectively.

Key Words: Cloud Computing, Data Security, Data
Sharing, Data Masking, Data Build Tool, Snowflake, DBT
Macro, DDM Policies

1. INTRODUCTION

With humongous Data Sharing capabilities on Cloud
Platform, Organization’s sensitive information has been the
utmost threat, as most of third-party infrastructure can
access this information remotely and from anywhere around
the world. One of the instrumental solutions to overcome
this Data Security threat, is to protect this sensitive
information from unauthorized access is with the
implementation of Dynamic Data Masking (DDM) on Cloud
Data Warehouse.

2. BACKGROUND OF THE PROJECT

There are numerous projects that have sensitive Customer
and Personally Identifiable Information, which requires
special Authentication for anyone in the organization to
access it. The Customer may also be responsible to not share
this information with Third Party vendors and Consultants.
Below outlined is the high-level architecture of the project
and the highlighted area is where the masking policies has
been applied.

3. SOLUTION IMPLEMENTATION

Dynamic Data Masking is a Column-level Security feature
that uses masking policies to selectively mask plain-text data
in table and view columns at query time.

— S 5
T —*| coF i =
inbound outbound
SDS SDS

Chart -1: DBT Orchestration

Detailed Description of DDM policies that are
available in DBT:

Ifyour role access is approved in the DDM policy you will see
the raw value, otherwise a masked value will be returned.

1. Hashed DDM (for string data types)

Purpose: Maintains privacy while allowing the column
value to still be joinable to other objects that have the same
Hashed DDM policy

Policy: hash_mask

Masked Value: sha2(concat(lower(val), 'salt'))

2. Asterisks DDM (for string data types)

Purpose: Maintains privacy while allowing approved
Snowflake roles to see the raw value.

Policy: asterisks_mask
Masked Value; ### ki
3. Asterisks DDM (for binary data types)

Purpose: Maintains privacy while allowing approved
Snowflake roles to see the raw value.

Policy: asterisks_binary_mask

Masked Value: to_binary("***# ke 1ytf.g")

© 2022,IRJET | ImpactFactor value: 7.529

ISO 9001:2008 Certified Journal | Page 1321

’l, International Research Journal of Engineering and Technology (IRJET)

JET Volume: 09 Issue: 08 | Aug 2022

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

STEPS TO CREATE MASKING POLICIES IN
SNOWFLAKE:

Based on business requirement and the way customer wants
to encrypt sensitive information can be implemented using
below steps in Snowflake. Customer can choose one of the
DDM policies outlined above and mask the data accordingly.

3.1. Masking policies are currently stored in CDF’s
UTIL schemas and managed by the
ddm_masking admin role.

These policies should be created in each DEV/QA/PROD
environment under CDF database.

USE role ddn masking aduin;

/| This example creates a "general mask” policy that returns a SHA256 hash value
/] when current/secondary role is not DAZL ENGINEER GRP
CREATE (R REPLACE masking policy dapl cdf xxx db.util.gencral mask AS (val string) RETURNS string ->
CASE
WEEN is role in session('CDF ENGINEER (2') THEN val
ELSE shaZ (LOWER (val))
ED

'

// This example alters the above policy by returning asterisks instead of SHA256
ALTER masking policy dapl cdf mix db.util.general mask set bedy ->
CASE
WEEN is role in session{'CDF ENGINEER GRE') THEN val
ELSE '7rert!
]

Fig -1: Masking Policy Creation

3.2. Once masking policies are created, we would
need to grant role access to these policies, and
these can be carried using admin role.

use role securityadmin;

// Thiz example GRANT= roles TO apply masking policies

GRANT apply ON masking policy dapl cdf xxx db general mask TO role cdf enginee
GRANT zpply ON masking 1 mask TO role elt de
GRANT apply ON masking policy dapl_cdf 1 mask TO role elt devel _external grp;
GRANT apply ON masking policy dapl_cdf general mask TO role elt_dbt dev_service grp;
GRANT apply ON masking policy dapl_cdf db.util.general mask T0 role elt dbt_gas_service grp;
GRANT apply ON masking policy dapl cdf xxx db.util.general mask T0 role elt dot prd service grp;

/{ This example GRANTs roles TO usage ON the UTIL schema
GRANT USAGE ON SCHEMA dapl cdf xxx_db.util TO role cdf_em
GRANT USAGE ON SCHEMA dapl cdf xxx_db.util TO role elt
GRANT USAGE ON SCHEMA dapl cdf xxx_db.util TO role elt 1 grp;
GRANT USAGE ON SCHEMA dapl cdf xxx_db.util TO role elt db

GRANT USAGE ON SCHEMA dapl cdf xxx_db.util TO role elt db : |

GRANT USAGE ON SCHEMA dapl cdf wxx_db.util TO role elt dbt_prd service grp;

Fig -2: Access Permission
3.3. Writing a DBT post hook macro

We can write a DBT post-hook macro which will be used to
apply DDM policies to the models.

Fig -3: Post-hook DBT Macro

3.4. Applying the DDM policies on Individual DBT
model

Masking policies can be applied manually; however, it is
better to add the configuration in the individual DBT model
for easy maintenance of the code which can be re-used
anywhere.

1. Manual process:

use role cdf engineer grp;
/| This example applies an existing masking policy to 2 table column
ALTER TABLE dapl raw dev db.sfmc. subscribers
MODIFY COLUMN enail address set masking policy dapl cdf xxx db.util.general mask

/| This example removes all masking policies from 2 table colum
ALTER TABLE dapl raw dev db.sfmc. subscribers
MODIFY COLUMY enail address unset masking policy

]

Fig -4: Manual Application of DDM Policy

2. Masking configuration embedded inside DBT
Model:

{{ config(
alias='bounces’,

post_hook="{{ apply_ddn_policies to model(policies={
"subscriber key": "hash_mask",
"email address": "hash mask"

B
)1}

Fig -5: DBT Model Configuration of DDM Policy

© 2022,IRJET | ImpactFactor value: 7.529

ISO 9001:2008 Certified Journal | Page 1322

’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 09 Issue: 08 | Aug 2022

www.irjet.net

p-ISSN: 2395-0072

This is how data looks like after the DDM policies
implementation.

S

BELECT subscrber_key, enail address ©

i Data Preview
egylD SQL 167 5161291
4
Row SUBSCRIBER KEY EMAIL_ADDRESS
1 (db105d44416864edabad0ad2522c5666(e26c15036515590dBed d lec... Odb105d44416864edabad0ad2522c56661e26c1503651539bdBed Ta ...

1 fo0fbacI9b0Te5c2eablbal3T45eed274e 1562299140038 33a84d5¢d... felfbacddb0le5e2eablbal3rdSeed274c15ea229914c0364b33a84d5c47..

3 301995Baad74B7db6icDad0aT8ebalcT7bb2T T2k DeBalbd bbTchiTeBal... 301199583ac7487cbBe0ad0a1Beba2cT 70027 7b20e6albd 2bb7c6 T7eBaL..

Fig -6: Masking Implementation on Table

We can also apply DDM Policies to All DBT Models in a
specific Folder by calling the post-hook macro created in
Step 2. Folder level implementation can be done in
dbt_project.yml which is the DBT configuration file.

The policies parameter is set to apply the hash_mask policy
to column subscriber_key and asterisks_mask policy to
column email_address.

Note: The columns subscriber_key and email_address should
exist in ALL models.

mikels:
0 ta foundation:

:
ua sfnc:
Hatabase: IA2L (TF

tpost-hook: *{{ auply ddm policies to mdel (policies={"subscriber key": *qeneral mask

Fig -6: dbt_project.yml configuration

3.5. Manage the DDM policies

[This describes the policy
describe masking policy dapl cdf xix db.util.general mask;

[/ This shows all objects
use database dzpl cdf

use schema information |
select ¥ from table(infornation schena.policy references(policy name => 'dapl caf wxx db.util.general mask')) 5

using the specified nasking policy

Once the DDM policies are implemented in DBT Models, we
can easily outsource the data by creating Snowflake’s
Outbound secure data share.

+ QOpenHistor

Columns ¥/

4. CONCLUSION

Data masking is essential to organizations in adhering and
implementing various compliances. Some of the compliance
policies include HIPAA, Legal Compliances, IT and Data
Sharing Compliances, Financial and Intellectual Property
Compliances, etc.

Data Masking is one of the primary methods of storing or
transforming the data, while making it inaccessible to non-
authorized users within or outside of Organization.

Benefits of the approach mentioned in this white paper are:
e Non-availability of Raw Data in case of Data Loss

e Data protection from Insider hazard within
Organization

e Secured data transfer in case of Insecure interfaces
for data in motion

e Minimal maintenance of the DBT code
e Reusability of the code is unique

e Masked Data can be used for Joins and
Transformations (under special conditions)

REFERENCES
[1] Snowflake Community Documentation.
[21 DBT Cloud Community

[3]1 Slack Community

© 2022,IRJET | ImpactFactor value: 7.529

ISO 9001:2008 Certified Journal | Page 1323

