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Abstract - This project attempts to classify any unique 
handwritten text in order to convert the text material to a 
digital format. To complete this objective, we used two 
different methods: direct word classification and separating 
each character. Using a Convolutional Neural Network (CNN) 
with different architectures, we train a model that can 
accurately categorize words for the former. To create boxes 
for each particular character, we employ a special LSTM with 
convolution. Where LSTM is Long Short-Term Memory. These 
separated characters are then forwarded into a CNN for 
categorizing, and each particular word is subsequently 
reassembled using the classification and separation findings.  

Key Words:  Optical character recognition, Convolutional 
Networks, Text detection and recognition, translation, audio 
speech. 

1.INTRODUCTION 

Despite the prevalence of electronic writing devices, many 
people still choose taking notes on paper and a pen. Though, 
there are certain advantages there are specific disadvantages 
to writing text by hand and are provided below. It's tough to 
efficiently keep and access physical documents, as well as to 
efficiently search, sort them from a huge pile of documents. 
Sharing these documents can also stressful.  

Consequently, lots of valuable information is misplaced or 
never analysed since these documents are never converted 
to digital format. We chose to address this issue in our 
research because we believe that the far better ease of 
managing digital text compared to written language will 
enable people to more easily access, search, share, and 
analyse their records while still allowing them to use their 
preferred writing method. The purpose of this project is to 
delve deeper into the task of classifying handwritten text and 
converting it to a digital representation. Handwritten text is 
a broad phrase, and we intended to reduce the scope of the 
project by defining handwritten writing specifically for our 
needs. We took on the task of identifying the visual of any 
handwritten word, whether it was in cursive or block script, 
for this research. This work can be combined with 
algorithms that separate words from lines in a given line 
image, which can then be used with algorithms that separate 
lines from lines in a given image of a whole handwritten 
page. With these classes added, our project could be in the 
form of a distributable file used by the end user and would 

be a fully functional template that would prompt the user to 
take a picture of the notes page, allowing users solve the 
problem of converting handwritten documents to digital 
format. Note that while some extra layers need to be added 
to our model to create a fully functional deliverable product 
to end users, we believe the categorization of the problem is 
interesting. the most delicious and the hardest, that's why 
we chose to approach it. instead of line-to-word, document-
to-line, etc. 

Because CNNs function better on raw input pixels data 
rather than specific features or sections of an particular 
image, we can address this problem with complete word 
pictures. We expect the improvement by extracting 
characters from each particular word image and then 
classifying each word character individually to re-construct a 
whole word, based on our findings using entire word images. 
In summary, our models in both ways take in an 
image/picture of the word and then output the word's name. 

2. RELATED WORK 

2.1 Early Scanners 

The first motivation for the classification of handwritten texts 
was the digit classification of mail. Early postal readers, such 
as Jacob Rabinow's, used integrated scanning and processing 
devices to recognize fixed-spaced fonts. Allum et al. He 
refined this by developing a sophisticated scanner that 
allowed more variation in the way text was written and put 
the data into a barcode that was printed directly on the 
letter.in text input and that also encoded the information 
onto a bar-code that was printed directly on the letter. 

2.2 To the Digital Age   

In 1974, Ray Kurzweil developed the first known piece of 
OCR software that could identify any typeface. In this 
software, the matrix technique was used more frequently 
(pattern matching). In essence, this would determine which 
character it most closely resembled by comparing the 
bitmaps of the template character with the read character. 
The drawback of this programme was that it was sensitive to 
variations in font size and writing style. To improve 
templating, OCR software switched from using templates to 
feature extraction. Software would look for each character's 
geometric moments, zoning, and projection histograms. 
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2.3 Machine Learning 

The Lecun concentrated on utilizing gradient-based learning 
approaches with multi-module ML models, which served as 
the  forerunner for the first end-to-end modern deep 
learning models. 

Adoption of a Hidden Markov Model for OCR was the next 
big advancement in attaining high OCR accuracy. This 
method uses each letter as a specific state, and then 
considering the context of the character when choosing the 
next hidden variable. In comparison to feature extraction 
technique and the Naive Bayes approach, this resulted in 
higher accuracy. The manual extraction elements remained 
the biggest drawback, since they required prior language 
expertise and were not especially robust to the diversity and 
complexity of handwriting.  

Ng and colleagues used a sliding window to apply CNNs to 
the issue of identifying text that is observed in the real world 
(signs, written, etc.) within an image. A sliding window scans 
the picture to see if any characters might be present. Each 
character was classified using a CNN with two of each 
convolutional layers, and average pooling layers lastly a fully 
connected layer. 

Scan, and Read: End-to-End MDLSTM Handwritten 
Paragraph Recognition One of the most renowned 
publications for the task of handwritten text detection is 
Attention. An LSTM layer was utilised to encode the raw 
image data to a feature map for each scanning direction. 

After then, the model would use attention to give particular 
feature maps more priority than others. The attention map 
was created, then it was given to the decoder, which used the 
visual summary and state to anticipate the character. This 
approach was distinctive in that it combined the 
segmentation and classification processes into a single 
model rather than separating them. Due to the lack of a 
language model for producing character and word 
sequences, this approach has one drawback. Without 
considering the context of the invented word, it solely relies 
on each character's aesthetic categorization. 

We also found that using a project from CS 231N in the past 
helped us with our job. Yan uses the Faster R- CNN model to 
categorize and identify specific characters within a word.. 
This method initially determines whether an object exists 
within the image's bounds by dragging a window across it. 
The bounded image is then classified to the character that 
corresponds to it. Yan also uses edit distance, which lets 
users to make changes to the separated word to see if 
another separated word (for example, xoo versus zoo) is 
more likely to be correct. 

 

 

3. DATA  

The IAM Handwriting Dataset was our primary source for 
handwriting recognition training. The handwritten text in 
this dataset totals 5500 phrases and 11500 words, and it was 
written on more than 1500 forms (a form is a sheet of paper 
with lines of text) by more than 600 authors. The words were 
segmented and meticulously checked before being delivered 
with all relevant form label metadata in associated XML files. 
The source material was taken from the Lancaster-
Oslo/Bergen (LOB) corpus, which comprises over 1 million 
words of entire English sentences. There are another 1,066 
forms in the database, written by roughly 400 distinct 
authors. 
                  

 

Fig -1: a form from the IAM Handwriting dataset as an 
example. The dataset's word pictures were taken from 

such formats. 

Because of its breadth, depth, and quality, this database is 
often used as the foundation for many handwriting 
recognition tasks, this is the reason for choosing the IAM 
Handwriting Dataset as the foundation of our training, 
validation, and test data for our models. Lastly, large 
datasets—even those that contain multiple pre-trained 
models—are essential for deep learning, and this dataset, 
which contained over 100K word instances, satisfied those 
requirements. Deep learning models need at best 105 -106 
training examples to work properly, regardless of transfer 
learning. 

4. PRE-PROCESSING STAGE 

Pre-processing is a sequence of procedures applied to the 
captured image. In essence, it improves the depiction of the 
image to make it segmentation-ready. A lot of procedures are 
carried out on an image as part of its pre-processing as given 
below. 
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4.1 Noise Removal 

This pre-processing stage raises the quality of the raw image 
and increases the data relevance. This stage is also known as 
pixel level or low-level processing. Skew correction of an 
image is carried out during the pre-processing stage to 
accurately display the article text lines, threshold to convert 
a colour or grayscale image into a binary image, and noise 
reduction to reduce superfluous data, as illustrated in Figure 
2. 

Dust, spots, dots, and lines are all examples of noise 
that can contaminate scanned documents and significantly 
alter recognition outcomes. A scanned article image needs to 
be cleaned of any noise in order to make it suitable for 
further processing. To enhance the image that a machine or 
person is viewing, image enhancement techniques are used. 

Noise reduction uses smoothing and nonlinear processes like 
morphological operations. 

 

Fig -2: Results from the pre-processing phase, including 
noise removal and skew correction. 

4.2 Skew Correction  

If the text line in scanned document images is not 
horizontally aligned after scanning, skew correction is 
employed to fix it. On the document or line level, the skew 
correction can be implemented. A global skew correction is 
implemented on the document level during the pre-
processing stage. 

4.3 Slant Correction  

To adjust the writing style's inclination, slant correction is 
used. The writings are altered from their slant to their 
upright state by means of a shear transformation. Numerous 
directions are affected by a shear transformation. The pixel 
values of the same image that have been vertically moved by 
distances d and -d are added to the converted image data for 
each direction, as illustrated in Figure 3. 

 

Fig -3: Steps in Slant correction. 

 

4.4 Line Segmentation 

An image with an alphabetic sequence is broken down into 
smaller images that represent individual characters during 
this segmentation stage of pre-processing. By giving each 
alphabet a number via a labelling procedure, the pre-
processed input image is separated into distinct alphabets. 
The labelling indicates how many characters are there in the 
image. For the categorization and identification stage, every 
single character is uniformly reconstructed into 90*60 

pixels. 

5. METHODOLOGY 

5.1 Training Level  

Following SoftMax activation, we trained each of our models 
on a cross-entropy loss function using the ADAM Optimizer. 
With the exception of changing the last completely 
connected output layer to map to the number of classes 
(word/character vocabulary), we kept the identical 
architectures for the Visual Geometry Group (VGG) and 
Residual Networks (RESNET) models. We started from 
scratch while training the word and character classifier. We 
reasoned that the enormous SoftMax layer output size (more 
than 10,000 words in our training vocabulary and well over 
100,000 words in only the English language) and the 
difficulty of fine-grained word picture identification were 
impacting our performance for word-level classification. We 
came to the conclusion that character-level classification 
might be a more effective strategy because the SoftMax's 
computational complexity can be greatly reduced by using a 
character vocabulary that is significantly less complex than a 
word vocabulary (the characters A-Za-z0-9 only have 62 
distinct symbols). In addition, due to the constrained 
character set, character identification in an image is an 
easier challenge than word recognition in an image. The 
separation of word specific images into their component 
character images will be the first significant obstacle we 
would have to overcome in order to evaluate this strategy. 
The second major difficulty would be identifying word 
breaks in images and connecting consecutively identified 
letters in between these word breaks to make words. In this 
section, we'll focus on the first of these problems. We used 
the brand-new CNN/LSTM engine powered by Tesseract 4.0 
neural networks to carry out this task. This model is set up 
as a text line recognizer that can automatically identify more 
than 100 languages. It was originally developed by HP and is 
now maintained by Google. The Tesseract model had been 
trained on roughly 400000 text lines spread among about 
4500 fonts for Latin-based languages, including English. On 
our IAM handwriting dataset, we then adjusted this 
pretrained model's parameters. The original word input 
images were split into their hypothetical component 
character images after the model was tweaked, and these 
output segmented character images were fed into our 
character-level categorization system. 
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5.2 Each Word-Level Classification 

We started using VGG-19 to train our Word-level 
classification model. First off, considering the quantity of 
parameters it needs, we discovered that this model is 
difficult to train. Initially, we tried using the whole 
vocabulary, but we discovered that the run time was too 
slow. We limited the vocabulary to 50 terms that were 
chosen at random and showed up at least 20 times in our 
dataset in order to get results. Because some of the chosen 
words, like "the," contained hundreds of training examples, 
training was still quite slow. In order to have enough data to 
benchmark outcomes with a better trade-off on the run time, 
we limited each word to 20 occurrences. Our VGG-19 model 
was subsequently trimmed, and training with numerous 
parameters was started. Our learning rate was too high 
during our first runs, which led to low end training and 
validation accuracy. We increased the learning rate of our 
Adam Optimizer, which achieved training accuracy of 28% 
and validation accuracy of 22%. 

     

Graph -1: When we first started training, Our learning rate 
was set too quickly, which resulted in inconsistent accuracy. 

We looked for alternative architectures after realizing that 
VGG-19 was fairly slow due to the quantity of parameters it 
needs. We discovered CNN-benchmarks that suggested 
RESNETi-18 could deliver comparable results at 
substantially faster speeds. Furthermore, we also thought 
that our model's ability to train the residual layer of the 
RESNET architecture would improve our accuracy, 
especially with deeper networks, as our model would be 
modified or taught to achieve optimality for the residual 

layer. 

 

 

Graph -2: We found that our loss was steadily decreasing 
after modifying our learning rate and model input. 

We have discovered that limiting the number of epochs used 
when experimenting with various parameters is a good 
method. We trained our model on two epochs, compared the 
results, and then reran it on more epochs with a subset of 
parameters that produced the best results and those whose 
loss/accuracy graphs looked the most promising because 
our training and validation processes took a long time and 
we wanted to find the best parameters. In terms of training, 
this method undoubtedly saved us a ton of time, but it also 
had drawbacks. Some parameters, for example, might have 
taken longer to converge but eventually attained their best 
value in the end. If their graphs did not appear sufficiently 
promising and their findings were subpar when compared to 
the other parameters, we might have overlooked such 
parameters. Due to a lack of resources, this presented a 
hurdle for us, but we made an effort to overcome it by taking 
into account the parameter graphs in addition to the raw 
data they supplied. 

Because only one class dominated the weight updates at the 
beginning of our training efforts and at the end, all of the 
instances were assigned to that class, the validation accuracy 
was initially practically random. We discovered that the 
problem was in fact with the weights and that the updates 
were too large, saturating weight values at the beginning and 
inhibiting learning after printing the weights and their 
changes for two samples. 

Table -1: Results of Classification at the Word and 
Character Levels. 

 

Architecture Training Accuracy Validation 
Accuracy 

Test 
Accuracy 

VGG-19 28% 22% 20% 

RESNET-18 31% 23% 22% 

RESNET-34 35% 27%        25%  

Char-Level 38% 33% 31%  
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RESNET-34 was implemented to deepen the network in 
response to our RESNET-18 results, which we used in 
conjunction with our model. The accuracy we achieved 
during training was 35%, while accuracy during validation 
was 27%. In order to avoid having parameter updates occur 
too frequently and slow down our model, we decided to 
utilize a reasonably large mini-batch size of 50. A bigger 
mini-batch size would collect too much data all at once to 
indicate the gradient's direction. Due to the need for semi-
regular updates and the avoidance of the gradient's value 
being distorted, this was crucial for our model. 

Qualitatively, the findings of word classification are 
encouraging; they demonstrate that, despite data 
constraints, we can still obtain respectable accuracy for a 
highly complex issue. We are aware, however, that larger 
vocabulary sizes will make it more difficult to gather the 
essential data and will drastically impair accuracy, 
undermining the capacity to effectively convert handwritten 
text to a digital format. This motivated us to start looking 
into the character segmentation technique. 

 

Fig -4: When we first started training, Our learning rate 
was set too quickly, which resulted in inconsistent 

accuracy. 

5.3 Character Classification Level 

We then move on to letter segmentation and word 
reconstruction by classifying each character separately to 
improve the direct word classification results. The Tesseract 
LSTM model with convolution was firstly downloaded and 
pre-trained on the aforesaid English datasets before it being 
refined onto our dataset. We then had to modify each of our 
input data so that it included not only input image, but also 
bounding box labels of each particular character in that 
image and the closest approximation in the four top left, 
bottom top left, top right, and top left of each personality 
character, which we extracted from the XML data. 

Given the pertinent data, the Tesseract contains programs to 
automatically construct this dataset. Following that, we 
created a character vocabulary made up of single-digit 
numerals, uppercase, and lowercase letters. Adam, the 
optimization technique we ultimately used in our final model 
was also used, but we used a different kind of loss that was 

more appropriate for the issue: CTC loss. In a nutshell, CTC 
(Connectionist Temporal Classification) is a technique/loss 
function created by Graves et al. for teaching recurrent 
neural networks to label output sequences (labels for 
characters in our example) from unsegmented input data the 
input word picture in our case. RNNs with CTC loss have 
been shown to be more efficient than more conventional 
methods like CRFs (Conditional Random Fields) and HMMs 
for tasks like labelling speech signal data with word-level 
transcriptions because of their automated learning process, 
need for only an input/output data representation as 
opposed to substantial hand-engineered features, and ability 
to more generally capture context over time and space in 
their hidden state. CTC can separate and label each of the 
unstructured input data available by assessing network 
outputs as a probability distribution over all possible label 
sequences, conditioned on a given input sequence” created 
by considering segmentation of the input sequence given a 
certain minimum segment size and starting training of the 
network from there. We provided these final segmented 
character photos to our model after honing and completing 
our segmentation model, as previously described. With the 
same model designs for classification and even with the 
possibility of segmentation error, we discovered that 
character-level classification was more successful, as seen in 
the accuracy graph for character vs. word-level classification. 
These findings corroborated our hypotheses that the 
performance was improved by the model's initial feature 
representation problem, which for characters was 
significantly less in scope than for words, and its final 
labelling problem. Due to a lack of data that was enough for 
the extent of our issue and flaws in the segmentation model, 
we believed that our model did not perform any better. 

 

Fig -5: For each word, we can segment each character 
using Tesseract LSTM. For example, we can extract the 
start and end coordinates of each character in the word 

"MOVE". 

Due to the breakdown in the borders between some cursive 
letters, our model, like most segmentation models, has 
difficulty segmenting cursive characters. In fact, because our 
segmentation model and character classification model were 
trained independently, we were unable to precisely pinpoint 
whether our classification model or segmentation model was 
to blame for the inaccuracy. Last but not least, writers' 
handwriting varies greatly, making it difficult to distinguish 
between all of the many ways that a word or character is 
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written. We reasoned that, as is frequently the case with 
deep learning challenges, even additional data (over the 
course of millions more words) would have assisted in 
teaching our model a more generalized feature 
representation for the issue, which would have improved its 
performance. 

3. CONCLUSIONS 

Deep learning has gained popularity in recent years and has 
started to be used in a variety of fields, including facial 
recognition, target identification, and optical character 
recognition (OCR). Target detection is consistently used by 
researchers. Networks of various types, from the Faster and 
RCNN OCR area, used to find texts. in comparison to text 
recognition in the classical sense by embedded. With 
consistent noise immunity, deep learning is more accurate 
and durability. It has the capacity to fend off effects like 
alterations in the backdrop. The deep learning end-to-end 
network is more precise when applied to text detection, 
when compared to customary picture processing and 
cutting. Machine learning enables character classification. 
Apart from the text detection and conversion it into digital 
format this application also provides with translating the 
text into other languages mainly focusing on English and 
Hindi. 
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