
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1939

 Handwritten Text Recognition and Translation with Audio

 Patibandla Vishnu Deepak1, Vishnu Vardhan2, Yogesh Gautam3, Jayashree4

1VIII Semester, Dept. of CSE, BNMIT
2VIII Semester, Dept. of CSE BNMIT

3Asst. Professor, Dept of CSE, BNMIT, Karnataka, India
---***---

Abstract - This project attempts to classify any unique
handwritten text in order to convert the text material to a
digital format. To complete this objective, we used two
different methods: direct word classification and separating
each character. Using a Convolutional Neural Network (CNN)
with different architectures, we train a model that can
accurately categorize words for the former. To create boxes
for each particular character, we employ a special LSTM with
convolution. Where LSTM is Long Short-Term Memory. These
separated characters are then forwarded into a CNN for
categorizing, and each particular word is subsequently
reassembled using the classification and separation findings.

Key Words: Optical character recognition, Convolutional
Networks, Text detection and recognition, translation, audio
speech.

1.INTRODUCTION

Despite the prevalence of electronic writing devices, many
people still choose taking notes on paper and a pen. Though,
there are certain advantages there are specific disadvantages
to writing text by hand and are provided below. It's tough to
efficiently keep and access physical documents, as well as to
efficiently search, sort them from a huge pile of documents.
Sharing these documents can also stressful.

Consequently, lots of valuable information is misplaced or
never analysed since these documents are never converted
to digital format. We chose to address this issue in our
research because we believe that the far better ease of
managing digital text compared to written language will
enable people to more easily access, search, share, and
analyse their records while still allowing them to use their
preferred writing method. The purpose of this project is to
delve deeper into the task of classifying handwritten text and
converting it to a digital representation. Handwritten text is
a broad phrase, and we intended to reduce the scope of the
project by defining handwritten writing specifically for our
needs. We took on the task of identifying the visual of any
handwritten word, whether it was in cursive or block script,
for this research. This work can be combined with
algorithms that separate words from lines in a given line
image, which can then be used with algorithms that separate
lines from lines in a given image of a whole handwritten
page. With these classes added, our project could be in the
form of a distributable file used by the end user and would

be a fully functional template that would prompt the user to
take a picture of the notes page, allowing users solve the
problem of converting handwritten documents to digital
format. Note that while some extra layers need to be added
to our model to create a fully functional deliverable product
to end users, we believe the categorization of the problem is
interesting. the most delicious and the hardest, that's why
we chose to approach it. instead of line-to-word, document-
to-line, etc.

Because CNNs function better on raw input pixels data
rather than specific features or sections of an particular
image, we can address this problem with complete word
pictures. We expect the improvement by extracting
characters from each particular word image and then
classifying each word character individually to re-construct a
whole word, based on our findings using entire word images.
In summary, our models in both ways take in an
image/picture of the word and then output the word's name.

2. RELATED WORK

2.1 Early Scanners

The first motivation for the classification of handwritten texts
was the digit classification of mail. Early postal readers, such
as Jacob Rabinow's, used integrated scanning and processing
devices to recognize fixed-spaced fonts. Allum et al. He
refined this by developing a sophisticated scanner that
allowed more variation in the way text was written and put
the data into a barcode that was printed directly on the
letter.in text input and that also encoded the information
onto a bar-code that was printed directly on the letter.

2.2 To the Digital Age

In 1974, Ray Kurzweil developed the first known piece of
OCR software that could identify any typeface. In this
software, the matrix technique was used more frequently
(pattern matching). In essence, this would determine which
character it most closely resembled by comparing the
bitmaps of the template character with the read character.
The drawback of this programme was that it was sensitive to
variations in font size and writing style. To improve
templating, OCR software switched from using templates to
feature extraction. Software would look for each character's
geometric moments, zoning, and projection histograms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1940

2.3 Machine Learning

The Lecun concentrated on utilizing gradient-based learning
approaches with multi-module ML models, which served as
the forerunner for the first end-to-end modern deep
learning models.

Adoption of a Hidden Markov Model for OCR was the next
big advancement in attaining high OCR accuracy. This
method uses each letter as a specific state, and then
considering the context of the character when choosing the
next hidden variable. In comparison to feature extraction
technique and the Naive Bayes approach, this resulted in
higher accuracy. The manual extraction elements remained
the biggest drawback, since they required prior language
expertise and were not especially robust to the diversity and
complexity of handwriting.

Ng and colleagues used a sliding window to apply CNNs to
the issue of identifying text that is observed in the real world
(signs, written, etc.) within an image. A sliding window scans
the picture to see if any characters might be present. Each
character was classified using a CNN with two of each
convolutional layers, and average pooling layers lastly a fully
connected layer.

Scan, and Read: End-to-End MDLSTM Handwritten
Paragraph Recognition One of the most renowned
publications for the task of handwritten text detection is
Attention. An LSTM layer was utilised to encode the raw
image data to a feature map for each scanning direction.

After then, the model would use attention to give particular
feature maps more priority than others. The attention map
was created, then it was given to the decoder, which used the
visual summary and state to anticipate the character. This
approach was distinctive in that it combined the
segmentation and classification processes into a single
model rather than separating them. Due to the lack of a
language model for producing character and word
sequences, this approach has one drawback. Without
considering the context of the invented word, it solely relies
on each character's aesthetic categorization.

We also found that using a project from CS 231N in the past
helped us with our job. Yan uses the Faster R- CNN model to
categorize and identify specific characters within a word..
This method initially determines whether an object exists
within the image's bounds by dragging a window across it.
The bounded image is then classified to the character that
corresponds to it. Yan also uses edit distance, which lets
users to make changes to the separated word to see if
another separated word (for example, xoo versus zoo) is
more likely to be correct.

3. DATA

The IAM Handwriting Dataset was our primary source for
handwriting recognition training. The handwritten text in
this dataset totals 5500 phrases and 11500 words, and it was
written on more than 1500 forms (a form is a sheet of paper
with lines of text) by more than 600 authors. The words were
segmented and meticulously checked before being delivered
with all relevant form label metadata in associated XML files.
The source material was taken from the Lancaster-
Oslo/Bergen (LOB) corpus, which comprises over 1 million
words of entire English sentences. There are another 1,066
forms in the database, written by roughly 400 distinct
authors.

Fig -1: a form from the IAM Handwriting dataset as an
example. The dataset's word pictures were taken from

such formats.

Because of its breadth, depth, and quality, this database is
often used as the foundation for many handwriting
recognition tasks, this is the reason for choosing the IAM
Handwriting Dataset as the foundation of our training,
validation, and test data for our models. Lastly, large
datasets—even those that contain multiple pre-trained
models—are essential for deep learning, and this dataset,
which contained over 100K word instances, satisfied those
requirements. Deep learning models need at best 105 -106
training examples to work properly, regardless of transfer
learning.

4. PRE-PROCESSING STAGE

Pre-processing is a sequence of procedures applied to the
captured image. In essence, it improves the depiction of the
image to make it segmentation-ready. A lot of procedures are
carried out on an image as part of its pre-processing as given
below.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1941

4.1 Noise Removal

This pre-processing stage raises the quality of the raw image
and increases the data relevance. This stage is also known as
pixel level or low-level processing. Skew correction of an
image is carried out during the pre-processing stage to
accurately display the article text lines, threshold to convert
a colour or grayscale image into a binary image, and noise
reduction to reduce superfluous data, as illustrated in Figure
2.

Dust, spots, dots, and lines are all examples of noise
that can contaminate scanned documents and significantly
alter recognition outcomes. A scanned article image needs to
be cleaned of any noise in order to make it suitable for
further processing. To enhance the image that a machine or
person is viewing, image enhancement techniques are used.

Noise reduction uses smoothing and nonlinear processes like
morphological operations.

Fig -2: Results from the pre-processing phase, including
noise removal and skew correction.

4.2 Skew Correction

If the text line in scanned document images is not
horizontally aligned after scanning, skew correction is
employed to fix it. On the document or line level, the skew
correction can be implemented. A global skew correction is
implemented on the document level during the pre-
processing stage.

4.3 Slant Correction

To adjust the writing style's inclination, slant correction is
used. The writings are altered from their slant to their
upright state by means of a shear transformation. Numerous
directions are affected by a shear transformation. The pixel
values of the same image that have been vertically moved by
distances d and -d are added to the converted image data for
each direction, as illustrated in Figure 3.

Fig -3: Steps in Slant correction.

4.4 Line Segmentation

An image with an alphabetic sequence is broken down into
smaller images that represent individual characters during
this segmentation stage of pre-processing. By giving each
alphabet a number via a labelling procedure, the pre-
processed input image is separated into distinct alphabets.
The labelling indicates how many characters are there in the
image. For the categorization and identification stage, every
single character is uniformly reconstructed into 90*60

pixels.

5. METHODOLOGY

5.1 Training Level

Following SoftMax activation, we trained each of our models
on a cross-entropy loss function using the ADAM Optimizer.
With the exception of changing the last completely
connected output layer to map to the number of classes
(word/character vocabulary), we kept the identical
architectures for the Visual Geometry Group (VGG) and
Residual Networks (RESNET) models. We started from
scratch while training the word and character classifier. We
reasoned that the enormous SoftMax layer output size (more
than 10,000 words in our training vocabulary and well over
100,000 words in only the English language) and the
difficulty of fine-grained word picture identification were
impacting our performance for word-level classification. We
came to the conclusion that character-level classification
might be a more effective strategy because the SoftMax's
computational complexity can be greatly reduced by using a
character vocabulary that is significantly less complex than a
word vocabulary (the characters A-Za-z0-9 only have 62
distinct symbols). In addition, due to the constrained
character set, character identification in an image is an
easier challenge than word recognition in an image. The
separation of word specific images into their component
character images will be the first significant obstacle we
would have to overcome in order to evaluate this strategy.
The second major difficulty would be identifying word
breaks in images and connecting consecutively identified
letters in between these word breaks to make words. In this
section, we'll focus on the first of these problems. We used
the brand-new CNN/LSTM engine powered by Tesseract 4.0
neural networks to carry out this task. This model is set up
as a text line recognizer that can automatically identify more
than 100 languages. It was originally developed by HP and is
now maintained by Google. The Tesseract model had been
trained on roughly 400000 text lines spread among about
4500 fonts for Latin-based languages, including English. On
our IAM handwriting dataset, we then adjusted this
pretrained model's parameters. The original word input
images were split into their hypothetical component
character images after the model was tweaked, and these
output segmented character images were fed into our
character-level categorization system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1942

5.2 Each Word-Level Classification

We started using VGG-19 to train our Word-level
classification model. First off, considering the quantity of
parameters it needs, we discovered that this model is
difficult to train. Initially, we tried using the whole
vocabulary, but we discovered that the run time was too
slow. We limited the vocabulary to 50 terms that were
chosen at random and showed up at least 20 times in our
dataset in order to get results. Because some of the chosen
words, like "the," contained hundreds of training examples,
training was still quite slow. In order to have enough data to
benchmark outcomes with a better trade-off on the run time,
we limited each word to 20 occurrences. Our VGG-19 model
was subsequently trimmed, and training with numerous
parameters was started. Our learning rate was too high
during our first runs, which led to low end training and
validation accuracy. We increased the learning rate of our
Adam Optimizer, which achieved training accuracy of 28%
and validation accuracy of 22%.

Graph -1: When we first started training, Our learning rate
was set too quickly, which resulted in inconsistent accuracy.

We looked for alternative architectures after realizing that
VGG-19 was fairly slow due to the quantity of parameters it
needs. We discovered CNN-benchmarks that suggested
RESNETi-18 could deliver comparable results at
substantially faster speeds. Furthermore, we also thought
that our model's ability to train the residual layer of the
RESNET architecture would improve our accuracy,
especially with deeper networks, as our model would be
modified or taught to achieve optimality for the residual

layer.

Graph -2: We found that our loss was steadily decreasing
after modifying our learning rate and model input.

We have discovered that limiting the number of epochs used
when experimenting with various parameters is a good
method. We trained our model on two epochs, compared the
results, and then reran it on more epochs with a subset of
parameters that produced the best results and those whose
loss/accuracy graphs looked the most promising because
our training and validation processes took a long time and
we wanted to find the best parameters. In terms of training,
this method undoubtedly saved us a ton of time, but it also
had drawbacks. Some parameters, for example, might have
taken longer to converge but eventually attained their best
value in the end. If their graphs did not appear sufficiently
promising and their findings were subpar when compared to
the other parameters, we might have overlooked such
parameters. Due to a lack of resources, this presented a
hurdle for us, but we made an effort to overcome it by taking
into account the parameter graphs in addition to the raw
data they supplied.

Because only one class dominated the weight updates at the
beginning of our training efforts and at the end, all of the
instances were assigned to that class, the validation accuracy
was initially practically random. We discovered that the
problem was in fact with the weights and that the updates
were too large, saturating weight values at the beginning and
inhibiting learning after printing the weights and their
changes for two samples.

Table -1: Results of Classification at the Word and
Character Levels.

Architecture Training Accuracy Validation
Accuracy

Test
Accuracy

VGG-19 28% 22% 20%

RESNET-18 31% 23% 22%

RESNET-34 35% 27% 25%

Char-Level 38% 33% 31%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1943

RESNET-34 was implemented to deepen the network in
response to our RESNET-18 results, which we used in
conjunction with our model. The accuracy we achieved
during training was 35%, while accuracy during validation
was 27%. In order to avoid having parameter updates occur
too frequently and slow down our model, we decided to
utilize a reasonably large mini-batch size of 50. A bigger
mini-batch size would collect too much data all at once to
indicate the gradient's direction. Due to the need for semi-
regular updates and the avoidance of the gradient's value
being distorted, this was crucial for our model.

Qualitatively, the findings of word classification are
encouraging; they demonstrate that, despite data
constraints, we can still obtain respectable accuracy for a
highly complex issue. We are aware, however, that larger
vocabulary sizes will make it more difficult to gather the
essential data and will drastically impair accuracy,
undermining the capacity to effectively convert handwritten
text to a digital format. This motivated us to start looking
into the character segmentation technique.

Fig -4: When we first started training, Our learning rate
was set too quickly, which resulted in inconsistent

accuracy.

5.3 Character Classification Level

We then move on to letter segmentation and word
reconstruction by classifying each character separately to
improve the direct word classification results. The Tesseract
LSTM model with convolution was firstly downloaded and
pre-trained on the aforesaid English datasets before it being
refined onto our dataset. We then had to modify each of our
input data so that it included not only input image, but also
bounding box labels of each particular character in that
image and the closest approximation in the four top left,
bottom top left, top right, and top left of each personality
character, which we extracted from the XML data.

Given the pertinent data, the Tesseract contains programs to
automatically construct this dataset. Following that, we
created a character vocabulary made up of single-digit
numerals, uppercase, and lowercase letters. Adam, the
optimization technique we ultimately used in our final model
was also used, but we used a different kind of loss that was

more appropriate for the issue: CTC loss. In a nutshell, CTC
(Connectionist Temporal Classification) is a technique/loss
function created by Graves et al. for teaching recurrent
neural networks to label output sequences (labels for
characters in our example) from unsegmented input data the
input word picture in our case. RNNs with CTC loss have
been shown to be more efficient than more conventional
methods like CRFs (Conditional Random Fields) and HMMs
for tasks like labelling speech signal data with word-level
transcriptions because of their automated learning process,
need for only an input/output data representation as
opposed to substantial hand-engineered features, and ability
to more generally capture context over time and space in
their hidden state. CTC can separate and label each of the
unstructured input data available by assessing network
outputs as a probability distribution over all possible label
sequences, conditioned on a given input sequence” created
by considering segmentation of the input sequence given a
certain minimum segment size and starting training of the
network from there. We provided these final segmented
character photos to our model after honing and completing
our segmentation model, as previously described. With the
same model designs for classification and even with the
possibility of segmentation error, we discovered that
character-level classification was more successful, as seen in
the accuracy graph for character vs. word-level classification.
These findings corroborated our hypotheses that the
performance was improved by the model's initial feature
representation problem, which for characters was
significantly less in scope than for words, and its final
labelling problem. Due to a lack of data that was enough for
the extent of our issue and flaws in the segmentation model,
we believed that our model did not perform any better.

Fig -5: For each word, we can segment each character
using Tesseract LSTM. For example, we can extract the
start and end coordinates of each character in the word

"MOVE".

Due to the breakdown in the borders between some cursive
letters, our model, like most segmentation models, has
difficulty segmenting cursive characters. In fact, because our
segmentation model and character classification model were
trained independently, we were unable to precisely pinpoint
whether our classification model or segmentation model was
to blame for the inaccuracy. Last but not least, writers'
handwriting varies greatly, making it difficult to distinguish
between all of the many ways that a word or character is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1944

written. We reasoned that, as is frequently the case with
deep learning challenges, even additional data (over the
course of millions more words) would have assisted in
teaching our model a more generalized feature
representation for the issue, which would have improved its
performance.

3. CONCLUSIONS

Deep learning has gained popularity in recent years and has
started to be used in a variety of fields, including facial
recognition, target identification, and optical character
recognition (OCR). Target detection is consistently used by
researchers. Networks of various types, from the Faster and
RCNN OCR area, used to find texts. in comparison to text
recognition in the classical sense by embedded. With
consistent noise immunity, deep learning is more accurate
and durability. It has the capacity to fend off effects like
alterations in the backdrop. The deep learning end-to-end
network is more precise when applied to text detection,
when compared to customary picture processing and
cutting. Machine learning enables character classification.
Apart from the text detection and conversion it into digital
format this application also provides with translating the
text into other languages mainly focusing on English and
Hindi.

ACKNOWLEDGEMENT

Vishnu Deepak Patibandla, Vishnu Vardhan and Yogesh
Gautam are grateful to Mrs. Jayashree, Assistant Professor,
BNMIT for her constant support and technical guidance over
the course this project. Also, Vishnu Deepak, Vishnu Vardhan
and Yogesh Gautam would like express our immense
gratitude towards Mrs. Chayadevi, M L HOD at BNMIT for
her constant support.

REFERENCES

[1] A Novel Approach to Classify English Handwritten
Character Using Convolutional Neural Networks by
Rupesh Sharma, Prashant Sharma, Naresh Purohit,
International Journal of Advanced Computer Science and
Applications, 21-23 Mar. 2021, West Yorkshire,
Malayasia.

[2] Handwritten character recognition using Convolutional
neural networks by Verdha Chaudhary, Mahak Bansal
and Guarav Raj, IEEE Seventh International Conference
on Intelligent Systems Design and Applications, 09 Dec.
2020, Rio de Janeiro, Brazil.

[3] CNN Based Common Approach to handwritten character
recognition of multiple scripts by Durjoy Sen Maitra,
Ujjwal Bhattacharya and Swapan K. Paru, IEEE
Proceedings of 2nd International Conference on
Document Analysis and Recognition, 20-22 Oct. 2020,
Tsukuba, Japan.

[4] Handwritten Character Recognition from Images using
CNN-ECOC by Mayur Bhargab Bora, Dinthisrang
Daimary, Khwairakpam Amitab, Debdatta Kandar.,
International Conference on Innovative Practices in
Technology and Management, 17-19 Feb. 2020, Noida,
India.

[5] Handwritten character recognition using CNN by S.
Anandh kishan, J. Clinton David, P. Sharon Femi, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 05 May. 2020, Melbourne, Australia.

[6] Transfer learning using CNN for handwritten
Devanagari Character Recognition by Nagender Aneja
and Sandhya Aneja., International Journal of Engineering
and Computer Science, 06-09 Feb. 2020, Delhi, India.

[7] Handwritten Character Recognition of Devanagari Script
by Breijeshwar Dessai Amit Patel, IEEE Proceedings of
2nd International Conference on Document Analysis and
Recognition, 20-22 Oct. 2019, Tokyo, Japan.

[8] An End-to-End System for Hindi Online Handwriting
Recognition, by Soumik Bhattacharya, DurjoySen Maitra,
Ujjwal Bhattacharya and Swapan K. Parui, IEEE third
International Conference, 2016.

[9] Automatic image-to-Text-to-Voice Conversion for
Interactively Locating Objects in Home Environments,
by Nikolas Bourbk, 20th IEEE Interactive conference on
Tools with ArtificialIntelligence,2008,1082-3409/08.

[10] Review on conversion of image to text as well as speech
using edge detection and image segmentation by
Mrunmayee patil, Ramesh kagalkar, international
journal of science and research (IJSR),2319-
7064,2012,3.358.

