
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1718

Methodology for Managing Dynamic Collections on Semantic

Semi-Structured XMLs

Hsu-Kuang Chang

I-Shou University No.1, Sec. 1, Syuecheng Rd. Dashu Township, Kaohsiung,Taiwan
---***---

Abstract - Recently, the amount of XML document is in
increasing as electronic document systems adopt XML as the
standard format in document exchange. Like the weather,
XML document databases rarely stay the same. Information
is constantly added or removed, meaning that catalogs and
indexes become obsolete or incomplete (sometimes in a
matter of seconds). With great increase in online
information, dynamic updating XML document takes a
critical role in efficient document organization, navigation,
and retrieval of a large amount of XML documents. XML
document are modeled as a matrix, and a user's query and
updating of the XML database is represented as a vector.
Relevant XML documents in the XML database are then
identified via vector operations. For the LSI model, latent
semantic indexing, the most obvious approach to
accommodating additions (new paths or documents) is to
re-compute the SVD of the new path-by-document matrix,
but, for large XML document databases, this procedure is
very costly in time and space. Less expensive alternatives,
folding-in combine with SVD-updating, have been presented
in this paper. A new proposed method, folding-updating, is
a combination of folding-in and updating the thin-SVD that
is an even more attractive option. Folding-updating offers a
significant improvement in computation time when
compared with either re-computing the thin-SVD or
updating the thin-SVD, and yet it results in little or no loss of
accuracy.

Key Words: thin-SVD, LSI, folding-in, SVD-updating, SVD-
folding-updating, SVD-re-computing

1. INTRODUCTION

As the size of modern XML databases increases, the
importance of having efficient methods of information
retrieval (IR) increases accordingly. Latent Semantic
Indexing (LSI) is an IR method that uses procedures from
numerical linear algebra to represent a text collection as a
term-document matrix [1]. The term-document matrix
contains a column vector for each document in the text
collection, and a row for each semantically significant
term. LSI uses a matrix factorization method known as the
thin singular value decomposition (thin-SVD).
Unfortunately, traditional methods of computing the thin-
SVD are computationally intensive; most of the processing
time in LSI is spent in calculating the thin-SVD of the term-
by-document matrix [2, 3]. In a dynamic environment,

such as the Internet, the term-document matrix is altered
often as new documents are added. Given the tremendous
size of modern databases, re-computing the thin-SVD of
the matrix each time such changes occur can be
prohibitively expensive. LSI traditionally uses a method
known as folding-in to modify the thin-SVD, in order to
avoid re-computing the thin-SVD each time changes are
made to the term-document matrix. The folding-in method
has the benefit of being very fast, however its accuracy
may degrade very quickly. A much more accurate
approach is to update the thin-SVD using a method
introduced by Zha and Simon [4]. This updating method
modifies the thin-SVD of the term-document matrix to
reflect the additions that are to be made to matrix. A new
method, folding-updating, is a combination of folding-in
and updating the thin-SVD that is an even more attractive
option. Folding-updating offers a significant improvement
in computation time when compared with either re-
computing the thin-SVD or updating the thin-SVD, and yet
it results in little or no loss of accuracy. We investigate the
use of thin-SVD updating methods proposed by Zha and
Simon [4]. Although updating methods have also been
proposed by O’Brien [5] and Berry, Dumais and O’Brien
[3], research indicates that these methods give inferior
results when compared to the methods introduced by Zha
and Simon [4]. The basic idea of LSI is that if two
document vectors represent the same topic, they will
share many associated words with a keyword and they
will have very close semantic structures after dimension
reduction via truncated SVD [10, 11]. Recent studies also
indicate that retrieval accuracy of the truncated SVD
technique can deteriorate if the document sets are large
[12,13]. Several strategies have been proposed to deal
with LSI on large datasets. The specification strategy was
used to remove less important entries in truncated SVD
matrices [14]. Clustered and distributed SVD strategies
were proposed to partition large datasets [15]. Fan et al.
(1999) [16] examined a random sampling based approach
to SVD approximation and presented their results.

The rest of the paper is organized as follows. The section
2 gives a brief preprocessing XML documents into vector
space model and overview of the SVD process. Section 3
outlines our incremental SVD algorithm. Section 4
presents our experimental procedure, results and
discussion. The final section provides some concluding
remarks and future research directions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1719

2. Preparation for Semantic-based XML
Documents

2.1. Preprocessing XML documents

In this section, we first introduce pre-processing steps for
the incorporation of hierarchical information in encoding
the XML tree’s paths. It is based on the preorder tree
representation (PTR) [6] and will be introduced after a
brief review of how to generate an XML tree from an XML
document. To do so, we have to first go through the
following five preprocessing steps for XML documents.
The five preprocessing steps are conversion, path
extraction, nested and duplicated path removal, similar
element identification and transformation, and path
elements encoding.

From five steps preprocess, now XML document is
modeled as a XML tree T=(V,E). T is connected tree with

V={ v1, v2,} as a set of vertices and V1 , V2 ,

Evv ),(21 as a set of edges. One distinguished vertex

Vr is designated the root, and for all Vv , there is a

unique path from r to v. As an example, Figure 1 depicts a
sample XML tree containing some information about
collection of books. The book consists of intro tags, each
comprising title, author and date tags. Each author
contains fname and lname, each date includes year and
month tags. Figure 1 left shows only the first letter of each
tag for the simplicity.

Figure 1 Example of XML Document

XML document has a hierarchical structure and this
structure is organized with tag paths. Each tag path
represents document characteristics that can predict the
contents of XML document. Strictly speaking, it shows the
semantic structural characteristics of XML document. In
this paper, we propose a method for calculating the
similarity using all tag paths of XML tree representing the
semantic structural information of XML document. From
now, a tag path as a term is called a path element. Figure 3
shows path elements obtained from XML document of
Figure 2.

Figure 2 XML Documents Example

PEL-1 PEL-2 PEL-3 PEL-4

/B/I/T/D /I/T/D /T/D D

/B/I/A/F /I/A/F /A/F F

/B/I/A/L /I/A/L /A/L L

/M/I/A/L /I/T /T

/B/I/T/ /I/A /A

/B/I/A /I

/B/I/

/B

/M/I/T

/M

/M/I

Figure 3 Path elements example

2.2. Modeling Document into Path Element Vector
Space Model (PEVSM)

Vector model represents a document as a vector whose
path elements are the weights of the elements within a
document. In calculating the weight of each element
within a document, Term Frequency and IDF (Inverse
Document Frequency) method is used [7]. In this paper,
we use path elements of XML tree as a term. And we
propose the method to calculate the weights of path
elements. We define PESSW (Path Element Structural
Semantic Weight) that calculate the weight of a path
element in a XML document. The PESSW is PEWF (Path
Element Weighted Frequency) multiplied by PEIDF (Path
Element Inverse Document Frequency). PESSWij of ith
path element in the jth document is shown in equation (1).

 ijijij PEIDFPEWFPESSW  (1)

ijPEWF is shown in equation(2).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1720

nijij

x
freqPEWF

1
 (2)

where, ijfreq is a frequency of jth path element in a ith

document and it is multiplied by level weight
nx

1
 in order

to consider the semantic importance of a path element in a
document. x refers to the level number of the highest tag
of a tag path. The level number of the root tag is 1. That of
a tag under the root tag is 2. And so on. n is a real number
larger than 1. In this paper, 1 is chosen for the value of n.
PEIDFij is shown in equation (3).

j

ij
DF

N
PEIDF log (3)

where, N be the total number of documents and DFj be the
number of documents in which the jth path element
appears. Table 1 shows PEWF, PEIDF, and PESSW on an
example trees in Figure 2.

Table 1. An example of PTWF, PTIDF and PESSW

2.3. Integrating path element semantics vector
model into SVDLSI

Vector Space Model (VSM) [8] has long been used to
represent unstructured documents as document feature
vectors containing element occurrence statistics. By
taking the vector space approach for representing XML
documents, PEVSM as described previous section, inherits
the limitation of VSM—terms are assumed to be
independent of each other. Lacking the capability to
represent terms’ semantic relationships could result in
problematic cases caused by polysemies and synonyms.
Latent Semantic Indexing (LSI) [9] is a technique

commonly used in information retrieval for overcoming
the aforementioned problems caused by synonyms and
polysemies. In particular, LSI projects a document from
the original document feature space onto a corresponding
“semantic” space via singular value decomposition (SVD)
so that more robust semantic-based document similarity
measure can be resulted. Using LSI, the original path

element document matrix mxnPESSW is first

decomposition into three matrices:

T

nxnmxnmxmmxn VSUPESSW 

where U and V contain orthonormal columns and S is
diagonal. By restricting the matrices U, V and S to their
first k <min(m,n) columns, one obtains the matrix

T

kxnkxkmxkmxnmxn VSUPESSWD ˆˆˆ)(ˆ 

where D̂ is the best square approximation of D by a
matrix of rank k [9]. The newly defined path element
document matrix will contain document feature vectors
with path element semantics (obtained based on path
element co-occurrence statistics) taken into consideration.
To deal with novel documents not included in the path
element-document matrix D, one can project the novel
document vector onto the “semantic space” of dimension k
and measure distance directly in the semantic space.
According to [9], a novel document d’s projection can be
computed as:

1 SUdd TT

LSI

where
1SU is the transformation for the projection.

Another alternative is to use simply U and the
corresponding pseudo document projection becomes

 Udd TT

LSI 

which is equivalent to put
0SUdd TT

LSI  .

 To apply SVDLSI to PESSW, XML documents are first
partitioned into segments based on the element tags.
SVDLSI is then applied to the segment-path element matrix.
Thus, an XML document will eventually be represented as

a matrix
kxm

x Rd  , with each column being the

projection of the element-specific feature vector on the
semantic space. The rationale is that each XML element
instance should be a semantically self-contained unit. We
call this version of PESSW as PESSW-SVDLSI in the
subsequent sections.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1721

3. Incremental SVD Managing Dynamic Collections

Our new folding-updating method uses a combination of
folding-in and updating to modify the thin-SVD of the
path-document matrix. The method determines when to
update based on the number of documents that have been
folded-in, relative to the size of the initial path-document
matrix, or to the size of the last updated matrix if updates
have already taken place. The method begins by folding-in
documents, but only until the number of documents
folded-in reaches a predetermined percentage p of the
documents in the original matrix. The changes that have
been made to matrix Vk by the folding-in process are then
discarded, and the thin-SVD is updated using the updating
methods of Zha and Simon [4]. Folding-in is then resumed
until the number of new documents folded-in reaches a
predetermined percentage p of the updated matrix, and so
on. This process requires saving the document vectors
that have been folded-in between updates, but repays this
overhead with faster computation times than updating
alone, and better accuracy than folding-in alone.

3.1. Folding-In. Folding a new document vector into the
column space of an existing path-by-document matrix
amounts to finding coordinates for that document in the

basis Uk. The first step in folding a new 1t document

vector pd̂ into the column space is to project it onto that

space. Let pd
~

 represent the projection of pd̂ ; then,

 p

T

kkp dUUd ˆ~
 (4)

This equation shows that the coordinates of pd
~

 in the

basis Uk are given by the elements of the vector p

T

k dU ˆ .

The new document is then folded in by appending the k-

dimensional vector p

T

k dU ˆ as a new column of dk  the

matrix
T

kkVS . Because the latter matrix product is not

actually computed, the folding-in is carried out implicitly

by appending
1ˆ 

kk

T

p SUd as a new row of Vk to form a

new matrix
'

kV . The implicit product
'

kkVS is then the

desired result. Note that the matrix
'

kV is no longer

orthonormal. In addition, the row space of the matrix
T

kV '

does not represent the row space of the new path-by-

document matrix. Furthermore, if the new document pd
~

is nearly orthogonal to the columns of Uk, most
information about that document is lost in the projection
step. Our proposed folding document describe as the
following algorithm.

Algorithm 1 Algorithm for SVDLSI-Folding Documents

/* Let
dm

pd ˆ be the d new documents that should be

folded to the existing document at the right of the old
path-document matrix. */

1: Input: k,
dm

p

kn

k

kk

k

km

k dVSU   ˆ,,, .

2: Compute the projection:
dmT

kkpp UUdd  ˆ~
.

3: Compute the
1ˆ  kk

T

pk SUdd , where
dm

kd  .

4: Append the
1ˆ 

kk

T

p SUd as a new row of kV to form a new

matrix
'

kV where new matrix
ddd

kV )('
.

5: Output: The best rank-k approximation of

)ˆ,(pkd dDE  is given by:

T

kkk

d

k VSUE '
 ,

where .,,)(' dnkT

k

kk

k

km

k VSU  

Note that kk SU , are unchanged and
'

kV is no longer

orthonormal.

3.2. SVD-Updating. An alternative to folding-in that
accounts for the effects that new terms and documents
might have on term-document associations while still
maintaining orthogonality was first described in [3] and
[5]. This approach comprises the following three steps:
updating terms, updating documents, and updating term
weights. As pointed out by Simon and Zha [3], the
operations discussed in [3] and [5] may not produce the
exact SVD of the modified reduced-rank LSI model. Those
authors provide alternative algorithms for all three steps
of SVD-updating, and we now review them. For
consistency with our earlier discussion, we use column
pivoting in the QR factorizations, although it is not used in
[3], [5], and [4]. Our proposed SVD-Updating document
describes as the following algorithm.

Algorithm 2 Algorithm for SVDLSI-Updating Documents

/* Let
dm

pd ˆ be the d new documents that should be

added to the existing document at the right of the old path-
document matrix. */

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1722

1: Input: k,
dm

p

kn

k

kk

k

km

k dVSU   ˆ,,, .

2: Compute the projection:
dm

p

T

kkmp dUUId  ˆ)(
~

.

3: Compute the QR decomposition: ddp RQd ˆˆ~
 , where

dd

p

dm

d RQ   ˆ,ˆ .

4: Compute the SVD of matrix

)()(

ˆ0

ˆ
ˆ dkdk

dkd

p

T

kk

R

dUS 



















 in the form:

),()ˆ,ˆ(),(ˆ T

kkdk

T

kk vvdiaguu   ,

where
kdk

kk vu )(, and
kk

k

̂ .

5: Output: The best rank-k approximation of

)ˆ,(pkd dDE  is given by:

T

k

dkd

dnk

kkdk

d

k v
I

V
uQUE 






















0

0
ˆ])ˆ,[( , where

kdk

d uQUU)ˆ,(
 , and k

d

kd v
I

V
V 










0

0
, kkS ̂ .

4. Experimental Evaluation

Examples for this paper are run using Rstudio/R i386
4.1.2 on a Window 10. These results are produced using
the real sets of the XML documents. Based upon these sets
of XML documents with dynamic updating characteristics,
their accuracy of information retrieval were computed,
analyzed and reported as follows. The measure of
similarity is the cosine of the angle between the query and
document vectors. The path-document matrix DPESSW is
partitioned such that the first 200 columns form the initial
matrix, and the remaining 600 columns are added
incrementally. In each example, the average precision for
each of the queries at the eleven standard recall levels
(0%, 10%, . . . , 100%) is averaged to produce the overall
average precision at each increment. The average
precisions for the four methods discussed in this paper
(re-computing, folding-updating, updating, and folding-in)

are compared. For each example, k = 120, where k is the
number of singular values and corresponding left and
right singular vectors computed, and p = 10; when the
folding-up method has folded-in documents equal to 10%
of the initial path-document matrix, the thin-SVD is
updated, and then folding-in resumes until the number of
new documents folded-in reaches 10% of the updated
matrix, and so on.

4.1 Working on Real Data Sets

The following five DTDs were downloaded from ACM’s
SIGMOD Record homepage [17]: 300 XML documents from
OrdinaryIssuePage.dtd (O in short),
ProceedingsPage1999.dtd (P-1999 in short),
ProceedingsPage2002.dtd (P-2002 in short),
IndexTerm1999.dtd (IT-1999 in short), Ordinary2002.dtd
(Ord-2002 in short) and Ordinary2005.dtd (Ord-2005 in
short). For another real data set we used the documents
on ADC/NASA [18]:150 XML documents from adml.dtd
(Astronomical Dataset Markup Language DTD). Also we
download the nigara data [18]: 150 XML documents from
movie.dtd, department.dtd, club.dtd, and personnel.dtd.
Based upon these sets of XML documents with their
precision for four methods, re-computing, folding-
updating, updating, and folding-in, were computed,
analyzed and reported as follows.

In the first example (see Figure 5), the initial path-
document matrix of 862 terms and 200 documents has
600 documents added to it in 60 increments of 10
documents each, simulating a dynamic environment in
which frequent small changes are made to the path-
document matrix. Note that the initial matrix more than
doubles in size as a result of the incremental additions. As
expected, Figure 5 indicates that the average precision for
the folding-in method deteriorates rapidly compared with
the other methods. The average precision for the updating
method does not deteriorate until the initial matrix has
approximately doubled in size, and then the deterioration
is very slight. The folding-up method gives similar results
to re-computing the thin-SVD at every increment, but as
Table 2 illustrates, in this example the folding-up method
is more than 400 times faster than re-computing. The
folding-up method gives even better results than the
updating method for much of Figure 5 and yet, in this
example, it is more than three times faster than the
updating method.

In the second example (see Figure 6), the initial path-
document matrix with 862 terms and 200 documents once
again has 600 documents added to it, but in this case there
are 30 increments of 20 documents each. As in the first
example, this simulates a dynamic environment in which
the path-document matrix is enlarged frequently. As in the
previous example, Figure 6 shows that the average
precision for the folding-in method deteriorates rapidly
compared to the other methods. In this example both the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1723

updating method and the folding-updating method give
similar results when compared to the method of re-
computing at each increment, but the updating method is
more than 120 times faster than re-computing, and the
folding-up method is more than 200 times faster than re-
computing.

Table 2: CPU times (seconds): 600 documents added in 10
and 20.

Method CPU time CPU time

 Increments of 60 Increments of 30

Recomputing

Folding-update

Updating

Folding

2537.84

6.25

19.63

0.61

 1341.55

 6.05

 10.66

 0.34

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

200 300 400 500 600 700 800 900
Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

Recompution
Folding-UP
Updating
Folding-in

FFigure 5: Average precisions for four methods using
DPESSW: 600 documents added in 60 increments of 10.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

200 300 400 500 600 700 800 900
Number of Documents

A
ve

ra
ge

 P
re

ci
si

o
n

Recompution
Folding-UP
Updating
Folding-in

Figure 6: Average precisions for four methods using DPESSW:
600 documents add

5. Conclusion

The experiment result is two-fold. First, we have
demonstrated that the updating methods proposed by Zha
and Simon [4] are effective in a dynamic environment in
which there are many small updates made to the path-
document matrix. This method of updating the thin-SVD
achieves similar average precision to re-computing the
thin-SVD, using only a fraction of the computation time.
This in itself is significant, but we have also demonstrated
that our new hybrid method, folding-updating, is an even
more attractive option than updating alone. As with the
updating method, the new folding-updating method
achieves average precision similar to that of re-computing
the thin-SVD, but the folding-up method requires less
computation time than either re-computing or updating
the thin-SVD. Next research issue will go through the
efficient indexing method such as the R-tree in order to
efficiently search interesting documents by user’s request.

REFERENCES

[1] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.

Furnas, and R. A. Harshman, Indexing by latent
semantic analysis. Journal of the American Society of
Information Science, 41(6):391–407, 1990.

[2] M. W. Berry, S. T. Dumais, and T. A. Letsche.
Computational methods for intelligent information
access, 1995. Presented at the Proceedings of
Supercomputing.

[3] M. W. Berry, S. T. Dumais, and G. W. O’Brien, Using
linear algebra for intelligent information retrieval.
SIAM Rev., 37(4):573–595, 1995.

[4] H. Zha and H. D. Simon, On updating problems in latent
semantic indexing. SIAM J. Sci. Comput., 21(2):782–
791, 1999.

[5] G.W. O’Brien. Information tools for updating an SVD-
encoded indexing scheme, 1994, Master’s Thesis, The
University of Knoxville, Tennessee.

[6] Berry M.W. and Dumasis S.T. (1995): Using linear
algebra for intelligent information retrieval. — SIAM
Rev., Vol. 37, No. 4, pp. 573–995.

[7] Berry M.W., Drmac Z. and Jessup E.R. (1999): Matrices,
vector spaces, and information retrieval. — SIAM Rev.,
Vol. 41, No. 2, pp. 335–362.

[8] Gao J. and Zhang J. (2005): Clustered SVD strategies in
latent semantic indexing.—Inf. Process. Manag., Vol.
41, No. 5, pp. 1051–1063.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1724

[9] Ye Y.Q. (2000): Comparing matrix methods in text-
based information retrieval. — Tech. Rep., School of
Mathematical Sciences, Peking University.

[10] Gao J. and Zhang J. (2005): Clustered SVD strategies in
latent semantic indexing.—Inf. Process. Manag., Vol.
41, No. 5, pp. 1051–1063.

[11] Landauer T.K., Foltz P.W. and Laham D. (1998):
Introduction to latent semantic analysis. — Discourse
Processes, Vol. 25, pp. 259–284.

[12] Balinski J. and Danilowicz C. (2005): Ranking method
based on inter document distances.—Inf. Process.
Manag., Vol. 41, No. 4, pp. 759–775.

[13] Berry M.W. and Shakhina A.P. (2005): Computing
sparse reduced-rank approximation to sparse
matrices. — ACM Trans. Math. Software, 2005, Vol.
31, No. 2, pp. 252–269.

[14] Gao J. and Zhang J. (2005): Clustered SVD strategies in
latent semantic indexing.—Inf. Process. Manag., Vol.
41, No. 5, pp. 1051–1063.

[15] Bass D. and Behrens C. (2003): Distributed LSI:
Scalable concept based information retrieval with
high semantic resolution.—Proc. 2003 Text Mining
Workshop, San Francisco, CA, USA, pp. 72–82.

[16] Fan J., Ravi K., Littman M.L. and Santosh V. (1999):
Efficient singular value decomposition via document
samplings. — Tech. Rep. CS-1999-5, Dept. Computer
Science, Duke University, North Carolina.

[17] ACM SIGMOD Record home page
[http://www.acm.org/sigmod/record/xml]

[18] http://www.cs.wisc.edu/niagara/data/

BIOGRAPHIES

 Hsu-Kuang Chang He is associative

professor in the Department of
Information Engineering, I-Shou
University, Taiwan. His research
interests include data mining,
multimedia media database, and
information retrieval.

1’st

Athor
Photo

