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Abstract - Recently, the amount of XML document is in 
increasing as electronic document systems adopt XML as the 
standard format in document exchange.  Like the weather, 
XML document databases rarely stay the same. Information 
is constantly added or removed, meaning that catalogs and 
indexes become obsolete or incomplete (sometimes in a 
matter of seconds).  With great increase in online 
information, dynamic updating XML document takes a 
critical role in efficient document organization, navigation, 
and retrieval of a large amount of XML documents.  XML 
document are modeled as a matrix, and a user's query and 
updating of the XML database is represented as a vector. 
Relevant XML documents in the XML database are then 
identified via vector operations.  For the LSI model, latent 
semantic indexing, the most obvious approach to 
accommodating additions (new paths or documents) is to 
re-compute the SVD of the new path-by-document matrix, 
but, for large XML document databases, this procedure is 
very costly in time and space. Less expensive alternatives, 
folding-in combine with SVD-updating, have been presented 
in this paper.  A new proposed method, folding-updating, is 
a combination of folding-in and updating the thin-SVD that 
is an even more attractive option. Folding-updating offers a 
significant improvement in computation time when 
compared with either re-computing the thin-SVD or 
updating the thin-SVD, and yet it results in little or no loss of 
accuracy. 

Key Words: thin-SVD, LSI, folding-in, SVD-updating, SVD-
folding-updating, SVD-re-computing 

1. INTRODUCTION 

As the size of modern XML databases increases, the 
importance of having efficient methods of information 
retrieval (IR) increases accordingly. Latent Semantic 
Indexing (LSI) is an IR method that uses procedures from 
numerical linear algebra to represent a text collection as a 
term-document matrix [1]. The term-document matrix 
contains a column vector for each document in the text 
collection, and a row for each semantically significant 
term.  LSI uses a matrix factorization method known as the 
thin singular value decomposition (thin-SVD).  
Unfortunately, traditional methods of computing the thin-
SVD are computationally intensive; most of the processing 
time in LSI is spent in calculating the thin-SVD of the term-
by-document matrix [2, 3].  In a dynamic environment, 

such as the Internet, the term-document matrix is altered 
often as new documents are added. Given the tremendous 
size of modern databases, re-computing the thin-SVD of 
the matrix each time such changes occur can be 
prohibitively expensive. LSI traditionally uses a method 
known as folding-in to modify the thin-SVD, in order to 
avoid re-computing the thin-SVD each time changes are 
made to the term-document matrix. The folding-in method 
has the benefit of being very fast, however its accuracy 
may degrade very quickly. A much more accurate 
approach is to update the thin-SVD using a method 
introduced by Zha and Simon [4]. This updating method 
modifies the thin-SVD of the term-document matrix to 
reflect the additions that are to be made to matrix. A new 
method, folding-updating, is a combination of folding-in 
and updating the thin-SVD that is an even more attractive 
option.  Folding-updating offers a significant improvement 
in computation time when compared with either re-
computing the thin-SVD or updating the thin-SVD, and yet 
it results in little or no loss of accuracy.  We investigate the 
use of thin-SVD updating methods proposed by Zha and 
Simon [4]. Although updating methods have also been 
proposed by O’Brien [5] and Berry, Dumais and O’Brien 
[3], research indicates that these methods give inferior 
results when compared to the methods introduced by Zha 
and Simon [4]. The basic idea of LSI is that if two 
document vectors represent the same topic, they will 
share many associated words with a keyword and they 
will have very close semantic structures after dimension 
reduction via truncated SVD [10, 11]. Recent studies also 
indicate that retrieval accuracy of the truncated SVD 
technique can deteriorate if the document sets are large 
[12,13]. Several strategies have been proposed to deal 
with LSI on large datasets. The specification strategy was 
used to remove less important entries in truncated SVD 
matrices [14]. Clustered and distributed SVD strategies 
were proposed to partition large datasets [15]. Fan et al. 
(1999) [16] examined a random sampling based approach 
to SVD approximation and presented their results. 

The rest of the paper is organized as follows.    The section 
2 gives a brief preprocessing XML documents into vector 
space model and overview of the SVD process. Section 3 
outlines our incremental SVD algorithm. Section 4 
presents our experimental procedure, results and 
discussion. The final section provides some concluding 
remarks and future research directions. 
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2. Preparation for Semantic-based XML 
Documents 

2.1. Preprocessing XML documents 

In this section, we first introduce pre-processing steps for 
the incorporation of hierarchical information in encoding 
the XML tree’s paths. It is based on the preorder tree 
representation (PTR) [6] and will be introduced after a 
brief review of how to generate an XML tree from an XML 
document. To do so, we have to first go through the 
following five preprocessing steps for XML documents. 
The five preprocessing steps are conversion, path 
extraction, nested and duplicated path removal, similar 
element identification and transformation, and path 
elements encoding.  

From five steps preprocess, now XML document is 
modeled as a XML tree T=(V,E). T is connected tree with 

V={ v1, v2, ....} as a set of vertices and V1 , V2 , 

Evv ),( 21 as a set of edges. One distinguished vertex 

Vr  is designated the root, and for all Vv , there is a 

unique path from r to v.  As an example, Figure 1 depicts a 
sample XML tree containing some information about 
collection of books. The book consists of intro tags, each 
comprising title, author and date tags. Each author 
contains fname and lname, each date includes year and 
month tags. Figure 1 left shows only the first letter of each 
tag for the simplicity. 

 

Figure 1 Example of XML Document 

XML document has a hierarchical structure and this 
structure is organized with tag paths. Each tag path 
represents document characteristics that can predict the 
contents of XML document. Strictly speaking, it shows the 
semantic structural characteristics of XML document. In 
this paper, we propose a method for calculating the 
similarity using all tag paths of XML tree representing the 
semantic structural information of XML document.  From 
now, a tag path as a term is called a path element. Figure 3 
shows path elements obtained from XML document of 
Figure 2. 

 
Figure 2 XML Documents Example 

PEL-1 PEL-2 PEL-3 PEL-4 

/B/I/T/D /I/T/D /T/D D 

/B/I/A/F /I/A/F /A/F F 

/B/I/A/L /I/A/L /A/L L 

/M/I/A/L /I/T /T 

/B/I/T/ /I/A /A 

/B/I/A /I 

/B/I/ 

/B 

/M/I/T 

/M 

/M/I 

 
Figure 3 Path elements example 

2.2. Modeling Document into Path Element Vector 
Space Model (PEVSM) 
 

Vector model represents a document as a vector whose 
path elements are the weights of the elements within a 
document.  In calculating the weight of each element 
within a document, Term Frequency and IDF (Inverse 
Document Frequency) method is used [7].  In this paper, 
we use path elements of XML tree as a term.  And we 
propose the method to calculate the weights of path 
elements.  We define PESSW (Path Element Structural 
Semantic Weight) that calculate the weight of a path 
element in a XML document.  The PESSW is PEWF (Path 
Element Weighted Frequency) multiplied by PEIDF (Path 
Element Inverse Document Frequency).  PESSWij of ith 
path element in the jth document is shown in equation (1). 

      ijijij PEIDFPEWFPESSW     (1) 

ijPEWF is shown in equation(2).  
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nijij

x
freqPEWF

1
           (2) 

where, ijfreq is a frequency of jth path element in a ith 

document and it is multiplied by level weight 
nx

1
 in order 

to consider the semantic importance of a path element in a 
document.  x refers to the level number of the highest tag 
of a tag path.  The level number of the root tag is 1.  That of 
a tag under the root tag is 2. And so on.  n is a real number 
larger than 1.  In this paper, 1 is chosen for the value of n.  
PEIDFij is shown in equation (3). 

      
j

ij
DF

N
PEIDF log            (3) 

where, N be the total number of documents and DFj be the 
number of documents in which the jth path element 
appears. Table 1 shows PEWF, PEIDF, and PESSW on an 
example trees in Figure 2. 

Table 1. An example of PTWF, PTIDF and PESSW 

 

2.3. Integrating path element semantics vector 
model into SVDLSI  
 

Vector Space Model (VSM) [8] has long been used to 
represent unstructured documents as document feature 
vectors containing element occurrence statistics.  By 
taking the vector space approach for representing XML 
documents, PEVSM as described previous section, inherits 
the limitation of VSM—terms are assumed to be 
independent of each other.  Lacking the capability to 
represent terms’ semantic relationships could result in 
problematic cases caused by polysemies and synonyms. 
Latent Semantic Indexing (LSI) [9] is a technique 

commonly used in information retrieval for overcoming 
the aforementioned problems caused by synonyms and 
polysemies.  In particular, LSI projects a document from 
the original document feature space onto a corresponding 
“semantic” space via singular value decomposition (SVD) 
so that more robust semantic-based document similarity 
measure can be resulted.  Using LSI, the original path 

element document matrix mxnPESSW is first 

decomposition into three matrices: 

  
T

nxnmxnmxmmxn VSUPESSW   

where U and V contain orthonormal columns and S is 
diagonal.  By restricting the matrices U, V and S to their 
first k <min(m,n) columns, one obtains the matrix 

   
T

kxnkxkmxkmxnmxn VSUPESSWD ˆˆˆ)(ˆ   

where D̂  is the best square approximation of D by a 
matrix of rank k [9].  The newly defined path element 
document matrix will contain document feature vectors 
with path element semantics (obtained based on path 
element co-occurrence statistics) taken into consideration. 
To deal with novel documents not included in the path 
element-document matrix D, one can project the novel 
document vector onto the “semantic space” of dimension k 
and measure distance directly in the semantic space.  
According to [9], a novel document d’s projection can be 
computed as:  

   
1 SUdd TT

LSI  

where 
1SU  is the transformation for the projection.  

Another alternative is to use simply U and the 
corresponding pseudo document projection becomes 

  Udd TT

LSI   

which is equivalent to put 
0SUdd TT

LSI  . 

 To apply SVDLSI to PESSW, XML documents are first 
partitioned into segments based on the element tags.  
SVDLSI is then applied to the segment-path element matrix.  
Thus, an XML document will eventually be represented as 

a matrix 
kxm

x Rd  , with each column being the 

projection of the element-specific feature vector on the 
semantic space.  The rationale is that each XML element 
instance should be a semantically self-contained unit.  We 
call this version of PESSW as PESSW-SVDLSI in the 
subsequent sections. 
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3. Incremental SVD Managing Dynamic Collections 
 

Our new folding-updating method uses a combination of 
folding-in and updating to modify the thin-SVD of the 
path-document matrix. The method determines when to 
update based on the number of documents that have been 
folded-in, relative to the size of the initial path-document 
matrix, or to the size of the last updated matrix if updates 
have already taken place. The method begins by folding-in 
documents, but only until the number of documents 
folded-in reaches a predetermined percentage p of the 
documents in the original matrix. The changes that have 
been made to matrix Vk by the folding-in process are then 
discarded, and the thin-SVD is updated using the updating 
methods of Zha and Simon [4]. Folding-in is then resumed 
until the number of new documents folded-in reaches a 
predetermined percentage p of the updated matrix, and so 
on. This process requires saving the document vectors 
that have been folded-in between updates, but repays this 
overhead with faster computation times than updating 
alone, and better accuracy than folding-in alone. 

3.1.  Folding-In. Folding a new document vector into the 
column space of an existing path-by-document matrix 
amounts to finding coordinates for that document in the 

basis Uk. The first step in folding a new 1t document 

vector pd̂ into the column space is to project it onto that 

space. Let pd
~

 represent the projection of pd̂ ; then, 

             p

T

kkp dUUd ˆ~
           (4) 

This equation shows that the coordinates of pd
~

 in the 

basis Uk are given by the elements of the vector p

T

k dU ˆ .  

The new document is then folded in by appending the k-

dimensional vector p

T

k dU ˆ  as a new column of dk  the 

matrix
T

kkVS .  Because the latter matrix product is not 

actually computed, the folding-in is carried out implicitly 

by appending 
1ˆ 

kk

T

p SUd  as a new row of Vk to form a 

new matrix
'

kV . The implicit product 
'

kkVS  is then the 

desired result. Note that the matrix 
'

kV  is no longer 

orthonormal. In addition, the row space of the matrix 
T

kV '
 

does not represent the row space of the new path-by-

document matrix. Furthermore, if the new document pd
~

 

is nearly orthogonal to the columns of Uk, most 
information about that document is lost in the projection 
step.  Our proposed folding document describe as the 
following algorithm. 

 

Algorithm 1 Algorithm for SVDLSI-Folding Documents 

/* Let 
dm

pd ˆ  be the d new documents that should be 

folded to the existing document at the right of the old 
path-document matrix. */ 

1: Input: k, 
dm

p

kn

k

kk

k

km

k dVSU   ˆ,,, . 

2: Compute the projection: 
dmT

kkpp UUdd  ˆ~
. 

3: Compute the 
1ˆ  kk

T

pk SUdd , where 
dm

kd  . 

4: Append the 
1ˆ 

kk

T

p SUd  as a new row of kV to form a new 

matrix 
'

kV  where new matrix 
ddd

kV  )('
. 

5: Output: The best rank-k approximation of 

)ˆ,( pkd dDE  is given by:  

T

kkk

d

k VSUE '
 ,  

where .,, )(' dnkT

k

kk

k

km

k VSU    

Note that kk SU ,  are unchanged and 
'

kV  is no longer 

orthonormal. 

3.2. SVD-Updating. An alternative to folding-in that 
accounts for the effects that new terms and documents 
might have on term-document associations while still 
maintaining orthogonality was first described in [3] and 
[5]. This approach comprises the following three steps: 
updating terms, updating documents, and updating term 
weights. As pointed out by Simon and Zha [3], the 
operations discussed in [3] and [5] may not produce the 
exact SVD of the modified reduced-rank LSI model.  Those 
authors provide alternative algorithms for all three steps 
of SVD-updating, and we now review them. For 
consistency with our earlier discussion, we use column 
pivoting in the QR factorizations, although it is not used in 
[3], [5], and [4].  Our proposed SVD-Updating document 
describes as the following algorithm. 

 

Algorithm 2 Algorithm for SVDLSI-Updating Documents 

/* Let 
dm

pd ˆ  be the d new documents that should be 

added to the existing document at the right of the old path-
document matrix. */ 
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1: Input: k, 
dm

p

kn

k

kk

k

km

k dVSU   ˆ,,, . 

2: Compute the projection: 
dm

p

T

kkmp dUUId  ˆ)(
~

. 

3: Compute the QR decomposition: ddp RQd ˆˆ~
 , where 

dd

p

dm

d RQ   ˆ,ˆ . 

4: Compute the SVD of matrix 

             
)()(

ˆ0

ˆ
ˆ dkdk

dkd

p

T

kk

R

dUS 

















   

   in the form: 

             ),()ˆ,ˆ(),(ˆ T

kkdk

T

kk vvdiaguu   ,  

where 
kdk

kk vu  )(,  and 
kk

k

̂ . 

5: Output: The best rank-k approximation of 

)ˆ,( pkd dDE  is given by:  

T

k

dkd

dnk

kkdk

d

k v
I

V
uQUE 






















0

0
ˆ])ˆ,[(   , where  

kdk

d uQUU )ˆ,(
 , and k

d

kd v
I

V
V 










0

0
, kkS ̂ . 

 

4. Experimental Evaluation 

 
Examples for this paper are run using Rstudio/R i386 
4.1.2 on a Window 10. These results are produced using 
the real sets of the XML documents.  Based upon these sets 
of XML documents with dynamic updating characteristics, 
their accuracy of information retrieval were computed, 
analyzed and reported as follows.  The measure of 
similarity is the cosine of the angle between the query and 
document vectors. The path-document matrix DPESSW is 
partitioned such that the first 200 columns form the initial 
matrix, and the remaining 600 columns are added 
incrementally.  In each example, the average precision for 
each of the queries at the eleven standard recall levels 
(0%, 10%, . . . , 100%) is averaged to produce the overall 
average precision at each increment. The average 
precisions for the four methods discussed in this paper 
(re-computing, folding-updating, updating, and folding-in) 

are compared. For each example, k = 120, where k is the 
number of singular values and corresponding left and 
right singular vectors computed, and p = 10; when the 
folding-up method has folded-in documents equal to 10% 
of the initial path-document matrix, the thin-SVD is 
updated, and then folding-in resumes until the number of 
new documents folded-in reaches 10% of the updated 
matrix, and so on. 

4.1 Working on Real Data Sets 

The following five DTDs were downloaded from ACM’s 
SIGMOD Record homepage [17]: 300 XML documents from 
OrdinaryIssuePage.dtd (O in short), 
ProceedingsPage1999.dtd (P-1999 in short), 
ProceedingsPage2002.dtd (P-2002 in short), 
IndexTerm1999.dtd (IT-1999 in short), Ordinary2002.dtd 
(Ord-2002 in short) and Ordinary2005.dtd (Ord-2005 in 
short).  For another real data set we used the documents 
on ADC/NASA [18]:150 XML documents from adml.dtd 
(Astronomical Dataset Markup Language DTD). Also we 
download the nigara data [18]: 150 XML documents from 
movie.dtd, department.dtd, club.dtd, and personnel.dtd.  
Based upon these sets of XML documents with their 
precision for four methods, re-computing, folding-
updating, updating, and folding-in, were computed, 
analyzed and reported as follows.   

In the first example (see Figure 5), the initial path-
document matrix of 862 terms and 200 documents has 
600 documents added to it in 60 increments of 10 
documents each, simulating a dynamic  environment in 
which frequent small changes are made to the path-
document matrix.  Note that the initial matrix more than 
doubles in size as a result of the incremental additions. As 
expected, Figure 5 indicates that the average precision for 
the folding-in method deteriorates rapidly compared with 
the other methods. The average precision for the updating 
method does not deteriorate until the initial matrix has 
approximately doubled in size, and then the deterioration 
is very slight. The folding-up method gives similar results 
to re-computing the thin-SVD at every increment, but as 
Table 2 illustrates, in this example the folding-up method 
is more than 400 times faster than re-computing. The 
folding-up method gives even better results than the 
updating method for much of Figure 5 and yet, in this 
example, it is more than three times faster than the 
updating method. 

In the second example (see Figure 6), the initial path-
document matrix with 862 terms and 200 documents once 
again has 600 documents added to it, but in this case there 
are 30 increments of 20 documents each. As in the first 
example, this simulates a dynamic environment in which 
the path-document matrix is enlarged frequently. As in the 
previous example, Figure 6 shows that the average 
precision for the folding-in method deteriorates rapidly 
compared to the other methods.  In this example both the 
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updating method and the folding-updating method give 
similar results when compared to the method of re-
computing at each increment, but the updating method is 
more than 120 times faster than re-computing, and the 
folding-up method is more than 200 times faster than re-
computing. 

Table 2: CPU times (seconds): 600 documents added in 10 
and 20. 

Method CPU time CPU time 

 Increments of 60 Increments of 30 

Recomputing 

Folding-update 

Updating 

Folding 

2537.84 

6.25 

19.63 

0.61 

              1341.55 

                   6.05 

               10.66 

                0.34 
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FFigure 5: Average precisions for four methods using 
DPESSW: 600 documents added in 60 increments of 10. 
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Figure 6: Average precisions for four methods using DPESSW: 
600 documents add 

5. Conclusion 
 

The experiment result is two-fold. First, we have 
demonstrated that the updating methods proposed by Zha 
and Simon [4] are effective in a dynamic environment in 
which there are many small updates made to the path-
document matrix. This method of updating the thin-SVD 
achieves similar average precision to re-computing the 
thin-SVD, using only a fraction of the computation time. 
This in itself is significant, but we have also demonstrated 
that our new hybrid method, folding-updating, is an even 
more attractive option than updating alone. As with the 
updating method, the new folding-updating method 
achieves average precision similar to that of re-computing 
the thin-SVD, but the folding-up method requires less 
computation time than either re-computing or updating 
the thin-SVD.  Next research issue will go through the 
efficient indexing method such as the R-tree in order to 
efficiently search interesting documents by user’s request. 
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