
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 143

Comparitive Analysis of Secure SDLC Models

Sarthak Tirpude1

1Student, Department of Software Engineering, Delhi Technological University, Delhi, India
---***---

Abstract - Most firms have a well-oiled machine in place for developing, delivering, and maintaining functional software.
However, when it comes to safeguarding that programme, not so much. Many development teams still see security as an
impediment, something that creates roadblocks and compels them to redo work, preventing them from bringing innovative
new things to market. However, unsecure software puts firms at risk. Cool new features will not protect you or your consumers
if your product contains exploitable flaws that hackers can exploit. Instead, your team must incorporate security across the
software development life cycle (SDLC) so that it facilitates, rather than hinders, the delivery of high-quality, highly secure
products to market. The aim of this paper is to evaluate these three security approaches by discussing their common process,
strength, and limitations. Moreover, we discuss why these approaches do not effectively increase software security, and then
we set the stage for a future framework to enhance and simplify the application of various security activities within the SDLC.
The structure of this paper is as follows. First, briefly describing the Touchpoints, CLASP, and SDL approaches respectively,
then the comparison between the three approaches based on a set of criteria. Followed by critical evaluation of the three
approaches, I discuss activities that are shared among the approaches, then I illustrate the strength and the weakness for each
one, comparing more models at the end.

Key Words: Secure SDLC

1.INTRODUCTION

What is the secure SDLC ?

A software development life cycle (SDLC) is a framework for the development of an application from conception to
decommissioning. Various SDLC models have arisen over the years, ranging from waterfall and iterative to, more recently,
agile and CI/CD, which increase the speed and frequency of deployment.

SDLCs typically involve the following phases:

Preparation and prerequisites
Design and architecture
Coding and test planning
Testing and outcomes
Maintenance and release

Previously, organisations would only execute security-related tasks as part of testing—at the end of the SDLC. Because of
this late-game strategy, they would not discover faults, weaknesses, and other vulnerabilities until they were significantly
more expensive and time-consuming to address. Worse, they would not discover any security flaws at all.

According to IBM's Systems Sciences Institute, fixing a fault discovered after implementation costs six times as much as
fixing one discovered during design. Furthermore, according to IBM, the cost of resolving flaws discovered during the
testing phase might be 15 times that of fixing those discovered during the design phase.

So it's significantly better, not to mention faster and less expensive, to incorporate security testing throughout the SDLC,
rather than just at the end, to help uncover and mitigate vulnerabilities early on, effectively building security in.
Architecture analysis during design, code review during coding and build, and penetration testing prior to release are all
examples of security assurance activities.

The following are some of the major benefits of a secure SDLC approach:

Because security is a constant concern, your programme is more secure.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 144

Security concerns are known to all stakeholders.

Design defects are detected early, before they are coded into reality. You save money because of early defect detection and
resolution. You reduce your organization's overall underlying business risks.

When software began to play more active roles in numerous businesses in the last century, software security challenges
arose. However, the software development process did not follow a mature engineering approach and did not include an
explicit security step.

Even though the software development process has embraced a systematic engineering method such as Software
Development Life Cycle (SDLC), the number of security vulnerabilities has increased over time, particularly with the broad
adoption of new applications such as social network platforms.

Many studies have identified the root cause of the rise in security issues; one of the most prominent reasons is that
security is not considered at any level of the SDLC. Researchers have proposed solutions to this problem since the 1980s
and continue to do so now. Integrating security into each phase of the development process is one of the greatest
recommendations that have gained the most attention from diverse parties. This concept has been offered by researchers
for the past 30 years.

Despite the fact that various security approaches have appeared to tackle security concerns and integrate security with
SDLC for a long time, the number of security challenges continues to grow. The source of rising security concerns is that
software development firms continue to ignore security in their SDLC, owing to problems in implementing one of these
methodologies, such as time and cost.

The following are the most commonly recommended techniques for integrating security with SDLC: the Open Web
Application Security Project (OWASP) organization's Comprehensive Lightweight Application Security Process (CLASP),
McGraw's Touchpoints, and Microsoft's Security Development Lifecycle (SDL).

1.1 McGraw’s Touchpoints:

McGraw proposed the Touchpoints approach as a collection of security measures to be used during the software
development process. They consist of both harmful and positive acts. Destructive activities include attacks, exploits, and
breaking software; these are referred to as black hat (offence) activities. Constructive activities include design, defence,
evaluation, and functionality, and are referred to as white hat (defence) activities. Both sorts of activities (offensive and
defensive) are required, and they include:

 • 1) Code review.

 • 2) Architectural risk analysis.

 • Penetration testing.

 • 4) Risk-based security tests.

 • 5) Abuse cases.

 • 6) Security requirements.

 • 7) Security operations.

1.2 OWASP’s CLASP

Since 2006, the OWASP organisation has promoted the CLASP strategy, describing it as a well-organized and systematic
approach for incorporating security issues into the early stages of the SDLC. It is a prescriptive strategy that includes
paperwork and tools to help in implementation. It is an activity driven by a set of processes that are explicitly specified as
the best practises for integrating security into existing or new SDLCs. The CLASP was built by OWASP to be adaptable and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 145

simple to integrate into existing development processes. It is made up of three major parts: CLASP Views, CLASP
Resources, and Vulnerability Use Cases.

The main characteristic that distinguishes the approach is its activities that are divided into separated subprocesses and
assign to specific project role (project manager, security auditor, developer, architect, tester, and others). Also, it contains
a large vulnerability lexicon which is structured from many perspectives that help the development team in each phase.

1.3.Microsoft’s SDL:

SDL was created by Microsoft and is utilised internally inside the Windows Vista project. They defined it as a set of
necessary security actions that must be carried out in a specified order. However, Microsoft has demonstrated that
security activities carried out as part of a software development process achieve higher security objectives than actions
carried out piecemeal or ad hoc based on practical experience.
Microsoft SDL includes 16 actions, the majority of which include resources such as reference, training materials
(presentations, films, or webcasts), templates or examples that can be downloaded, and tools that can be used to
implement the activities.

2.Comparing Touchpoints, SDL and CLASP:

2.1 Number of the Activities

Each technique has a varied amount of activities; the Touchpoints approach has the fewest, with only seven. The CLASP
includes 24 activities; the security advisor may remove some of them based on their assessment. The SDL includes 16 core
activities as well as optional activities that can be used in critical applications to boost security.

2.2 Activities Dependence

Because activities are dependent, the selection process and order of execution are left open and flexible. CLASP and
Touchpoints activities are distinct. The SDL, on the other hand, is dependent on events that are properly organised and
staged.

2.3 Nature of the Approach (Heavyweight and Lightweight) :

The Nature of the Method denotes the approach's features, such as the required team size, the flexibility of the approach to
be utilised in any SDLC process, the time and money required to implement it, and activity dependency. The SDL is deemed
heavyweight and severe. Touchpoints and CLASP, on the other hand, are lighter and more adaptable.

2.4 Organization Size Suitability

Because it is heavyweight and rigid, it is assumed that the SDL is appropriate for large organisations. Touchpoints and
CLASP are suitable for both small and large companies due to their lightweight and adaptability.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 146

2.5Activities Type (Destructive and Constructive)

There are two types of activities: constructive (defence) and destructive (attack) (offense). The Touchpoints encompass
both constructive and destructive actions; it includes Penetration Testing, which is destructive, and Code Reviews, which
is constructive. The SDL and CLASP, on the other hand, only cover constructive tasks such as security requirements, risk
assessments, and code reviews .

2.6 Educating and Training

Because there are a very limited number of developers with relevant security knowledge, educating or training a team
prior to the commencement of a project is a highly important job. This activity guarantees that other security operations
are completed with high quality. The SDL and CLASP methods value this activity highly; it provides team members with a
security awareness programme to help them gain the necessary security knowledge . The SDL only gives the security
awareness programme to developers, and it contains a means to assess the developers' security understanding after the
programme. The CLASP provides a security awareness programme to the entire development team, which includes people
with varied jobs. The most significant downside of the Touchpoints technique is the lack of training activity.

2.7 Adaptation

Adaptation, or the flexibility of the technique to be used in any software development process, is a critical requirement.
Because Microsoft created it for their internal development process, it is heavyweight, and their operations are dependant,
the SDL is the most difficult to modify in any SDLC and may not adapt. Touchpoints is the simplest because it is lightweight
and contains a few independent tasks. Furthermore, because the CLASP is a series of autonomous activities with rich
resources that link to the project responsibilities, it is simple to adapt in any SDLC process.

2.8 Activities Distribution

The SDL activities are divided into SDLC phases (education and awareness, project inception, analysis, design,
implementation, testing and verication, and deployment and support). The CLASP activities are assigned to SDLC phases
based on the function that is in charge of the activity. The operations of the Touchpoints are applied to various software
objects .

2.9 Security Testing Type

The SDL testing type emphasises black box testing, whereas the CLASP emphasises white box testing. The Touchpoints
technique emphasises black box testing in penetration testing and white box testing in risk-based security tests .

2.10 Guidance

The guidance process is an important step in simplifying the method. Most activities can be guided by the CLASP and SDL's
beneficial resources and papers, such as recommended tools and checklists. Touchpoints, on the other hand, has relatively
limited resources and materials .

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 147

2.11 Privacy

Privacy is a critical notion in security. The SDL approach is the only one with a specific activity (Security and Privacy Risk
Assessment) linked to privacy, whilst the CLASP and Touchpoints do not have any [12].

2.12 Security Procedures

It is a vital activity for critical software that creates security policies for an organisation, process, and product. CLASP is the
only model that offers a separate activity for security policy (Identify global security policy). Because the SDL and
Touchpoints do not have isolated activities to create a security policy, the security policy may be set in the security
requirements

Nonetheless, I discovered that the notions of the following actions are shared by the three systems.

1) Security Requirements

Security Requirements activity is present in all three models, but in different ways; it is an important activity that is used
in other SDLC phases, such as the design phase to examine security risks and the testing phase to check specified security
requirements. It could refer to access control, privacy, law enforcement, abuse cases, anti-requirements, identifying
resources and trust boundaries, and specifying the operating environment.

2) Risk Analysis/Threat Modeling

Risk Analysis (Threat Modeling) is a design phase activity that identifies the most important vulnerabilities and the most
difficult defects. Unfortunately, because of some difficulties, only a few people do it correctly, i.e. most people do not
understand it, do not know how to do it, are unable to do it, do not know if a tool can be used, do not know which tool is
useful, and they focus solely on the architect design and eliminate or ignore the business design.

Examples of design problems that lead to a high- security risk and should be discovered in the Risk Analysis (Threat
Modeling) activity are the following: error handling, sharing objects, incorrect or missing access control mechanisms, lack
of auditing or logging, and time of check to time of use (TOCTOU), race conditions, ordering, and timing errors especially in
multithreaded systems.

3) Static Source Code Review

In the name and details, Static Source Code Review is a shared activity between the three techniques (explicitly). Most
software development firms use it exclusively since it detects the most frequent vulnerabilities without the need for
professionals and in the shortest amount of time and money.

The other ways, which are Create Quality Gates/Bug Bars, Fuzz Testing, Incident Response Plan, and Release Archive, do
not include important software. On the other side, it is intended for Microsoft, which makes it heavyweight and difficult to
implement in many SDLCs. It also does not include any harmful action or operations in the operating phase.

OWASP Software Assurance Maturity Model

Governance, design, implementation, verification, and operations are the five business functions of SAMM. Each function
has three security procedures, each of which has three stages of maturity.

OWASP BSIMM:

The Building Security In Maturity Model (BSIMM) assists enterprises in the planning, implementation, and measurement
of software security projects. A BSIMM assessment provides an objective, data-driven review on which leaders wishing to
improve their security postures can base resource, time, budget, and priority decisions. The yearly BSIMM report provides
analysis based on hundreds of assessments from many industry verticals and acts as a significant benchmark for security
professionals, academic curricula, and analysts. BSIMM also has a vibrant community where members discuss best
practises and special content, as well as cooperate with security peers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 148

NIST SSDF

NIST's SSDF, also known as NIST 800-218, provides a foundational set of secure development principles that can be
applied across the Software Development Lifecycle (SDLC). SSDF differs from BSIMM and SAMM in that it does not specify
its own unique techniques, but instead draws from current secure software development guidance and sources such as
BSIMM, SAMM, OWASP ASVS, and existing NIST guidelines, among others.

SSDF, like BSIMM, specifies safe software development techniques but does not specify how to implement them. This
enables a dynamic and adaptable framework focused on secure software results rather than precise implementation
specifics. SSDF also uses plain English, making it a useful tool for addressing secure development methods across
communities of business owners/executives, software makers, and users.

ASVS:

The ASVS, which stands for Application Security Verification Standard, was created to standardise industry terminology
for assessing the security of applications/products. Once everyone is on the same page with the terminology,
organisations can buy software with confidence that it is compliant with a pre-defined security level; and it can be
confident that it is compliant with this level because it was verified according to common / standard requirements, and if
this is performed by an external vendor, because this is a well-defined standard.

The ASVS is generally a new initiative because most organisations have not yet begun implementing it, but it can be a great
business driver for them because it aims to set a higher security level pan-organizationally, which will help organisations
communicate in a uniform manner (across departments and divisions) and with similar external bodies.

Furthermore, the ASVS mandates Security Code Review, ranging from totally automated (basic level) to a combination of
automated and manual, to assist assure software security - an essential issue that Comsec has been addressing with
CODEFENDTM.

From our initial study, the SAMM appears to be a good model that may assist firms in integrating security into their
development lifecycle, and it is very comparable to the Comsec in-house designed model. This is especially important for
SMEs or businesses that lack the maturity to implement a large-scale and comprehensive model like the MS-SDL.

Comparitive Analysis of Other frameworks:

One significant distinction between SAMM and BSIMM is that SAMM is a prescriptive model whereas BSIMM is descriptive.
As a result, SAMM specifies concrete activities and procedures that businesses can implement to improve software
assurance. SAMM is an open-source framework, which means it is not proprietary and can be improved by the community.

What exactly is the ASVS?

The OWASP Application Security Verification Standard (ASVS) Project provides a foundation for verifying technical
security controls in online applications, as well as a list of requirements for secure development.

The OWASP Application Security Verification Standard (ASVS) Project's major goal is to standardise the range of coverage
and level of rigour available in the market when performing Web application security verification using a commercially-
workable open standard. The standard establishes a foundation for evaluating application technical security measures, as
well as any other technical security controls in the environment, that are used to protect against vulnerabilities such as
Cross-Site Scripting (XSS) and SQL injection. This standard can be used to establish trust in the security of Web
applications. The requirements were created with the following goals in mind:

 • Use as a metric - Provide application developers and application owners with a yardstick with which to assess the
degree of trust that can be placed in their Web applications,

 • Use as guidance - Provide guidance to security control developers as to what to build into security controls in
order to satisfy application security requirements, and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 149

 • Use during procurement - Provide a basis for specifying application security verification requirements in
contracts.

Both the ASVS and SAMM standards are regarded somewhat less commonly integrated activities in the information
security sector that have now been designated as OWASP projects.

A common origin:

The beginnings of BSIMM (Building Security In Maturity Model) and SAMM (Software Assurance Maturity Model) are
similar, dating back to 2008-2009. I'm regularly asked what similarities and differences exist between the two models, so I
created this comparison to assist organisations in determining which of these two models may be a better fit for their
purposes.

Type of model:

BSIMM is a descriptive model:

The BSIMM is essentially a software security benchmark. The easiest approach to apply it is to compare and contrast your
own initiative with statistics from other firms. The BSIMM also serves as an SSI roadmap. You can establish your own goals
and objectives, then use the BSIMM to assess whether additional activities are appropriate for you.
The BSIMM's goal is to measure the activities of various types of SSIs across multiple businesses.

Because these initiatives employ different approaches and language, the BSIMM requires a framework that allows us to
uniformly characterise any effort. Our software security framework (SSF) and activity descriptions provide a common
vocabulary for explaining the key elements of an SSI, allowing us to compare initiatives that use different terms, operate at
different scales, exist in different parts of the organisational chart, operate in different vertical markets, or produce
different work products.

The BSIMM's only objective as a descriptive model is to observe and report. We like to report that we went to a
neighbourhood to investigate what was going on and discovered that "there are robot vacuum cleaners in X of the Y
houses we went to." The BSIMM does not state that "all houses must have robot vacuum cleaners," that "robot vacuum
cleaners are the only acceptable type of vacuum cleaners," that "vacuum cleaners must be used every day," or any other
value judgments. We provide straightforward observations.

SAMM is a prescriptive model:

SAMM is a prescriptive model, an open framework that is easy to implement, well-defined, and measurable. The solution
details are simple enough for non-security persons to understand. It assists firms in analysing their present software
security practises, developing a security programme in defined iterations, demonstrating progressive improvements in
secure practises, and defining and measuring security-related activities.

SAMM was designed with flexibility in mind, so that it may be customised and adopted by small, medium, and big
enterprises utilising any development methodology. It enables you to identify where your organisation stands in terms of
software assurance and what steps should be taken to advance to the next level of maturity.

SAMM does not require that all organisations achieve the highest level of maturity in every category. Each business can
decide the appropriate target maturity level for each Security Practice and adjust the available templates to their own
needs.

The significance of OWASP SAMM is in giving a mechanism for your business to understand where it is on its road to
software assurance and what is advised to proceed to the next level of maturity. OWASP SAMM does not require all
businesses to attain maturity level 3 in all categories. Indeed, you decide the target maturity level for each Security
Practice that is best suited to your organization's requirements.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 150

Maturity levels:

"The BSIMM is not a standard maturity model in which a set of tasks is repeated at several depth and breadth levels—do
something at level 1, do more at level 2, do better at level 3, and so on." Instead, the BSIMM is made up of a set of distinct
activities, with activity levels utilised simply to differentiate the relative frequency with which the activities are observed
in organisations. Level 1 denotes often observed activities, level 2 denotes less frequently observed activities, and level 3
denotes infrequently observed activities."

Each security practise in SAMM has three defined maturity levels and an implicit starting point of zero. The specifics at
each level vary between practises, but they all represent

For SAMM, each of the security practices has three defined maturity levels and an implicit starting point at zero. The
details for each level differ between the practices, but they generally represent:

0 – Implicit starting point representing the activities in the practice being unfulfilled

1 – Initial understanding and ad-hoc provision of security practice

2 – Increase efficiency and/or effectiveness of the security practice

3 – Comprehensive mastery of the security practice at scale

Comparing BSIMM SAMM

Primary
categories

4 high level domains
 • Governance
 • Intelligence
 • SSDL Touchpoints
 • Deployment

5 business functions
 • Governance
 • Design
 • Implementation
 • Verification
 • Operations

Secondary
categories

3 practices per domain

Governance
 • Strategy & Metrics
 • Compliance & Policy
 • Training

Intelligence
 • Attack Models
 • Security Features & Design
 • Standards & Requirements

SSDL Touchpoints
 • Architecture Analysis
 • Code Review
 • Security Testing

Deployment
 • Penetration Testing
 • Software Environment
 • Config Mgmnt / Vuln Mgmnt

3 security practices per business function

Governance
 • Strategy & Metrics
 • Policy & Compliance
 • Education & Guidance

Design
 • Threat Assessment
 • Security Requirements
 • Secure Architecture

Implementation
 • Secure Build
 • Secure Deployment
 • Defect Management

Verification
 • Architecture Analysis
 • Requirements-driven Testing
 • Security Testing

Operations
 • Incident Management

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 151

 • Environment Management
 • Operational Management

Activities 7-12 observed and related activities per
practice area

2 streams of activities per security practice that
compliment and build on each other

Result
comparison

BSIMM 11 has 130 contributing
organizations that were interviewed and
contributed to their comparison dataset

working on the SAMM Benchmark project to
collect data from implementing and assessing
organizations for comparison

Frequency of
updates

annual every 2-3 years

Assessment BSIMM is proprietary to Synopsys. For an
assessment you should reach out to them
for cost and logistics.

SAMM is an open model and can be self-assessed
or conducted by a number of different consulting
organizations and individuals.

References:

 • [1] F. G. Tompkins and R. S. Rice, “Integrating security activities into the software development life cycle and the
software quality assurance process,” Computers & Security, vol. 5, no. 3, pp. 218–242, 1986.

 • [2]R. Baskerville, “Information systems security design methods: implications for information systems
development,” ACM Computing Surveys, vol. 25, no. 4, pp. 375–414, Jan. 1993.

 • [3] M. Siponen and R. Baskerville, “A New Paradigm for Adding Security into is Development Methods,” Advances
in Information Security Management & Small Systems Security, pp. 99–111, 2001.

 •

[4] J. Danahy, “The ‘phasing-in ’of security governance in the SDLC,” Network Security, vol. 2008, no. 12, pp. 15–
17, 2008.

 • [5] A.-U.-H. Yasar, D. Preuveneers, Y. Berbers, and G. Bhatti, “Best practices for software security: An overview,”
2008 IEEE International Multitopic Conference, 2008.

 • [6] G. Raj, D. Singh, and A. Bansal, “Analysis for security implementation in SDLC,” 2014 5th International
Conference - Confluence The Next Generation Information Technology Summit (Confluence), 2014.

 • [7] D. Geer, “Are Companies Actually Using Secure Development Life Cycles?,” Computer, vol. 43, no. 6, pp. 12–16,
2010.

 • [8] “OWASP CLASP Project,” OWASP. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project. [Accessed: 24-Oct-2016].

 • [9] G. MacGraw, Software security: building security in. Addison-Wesley, 2006.

 • [10] “Microsoft Security Development Lifecycle,” Microsoft. [Online]. Available: https://www.microsoft.com/en-
us/sdl. [Accessed: 24-Oct- 2016].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 152

 • [11] J. Gregoire, K. Buyens, B. D. Win, R. Scandariato, and W. Joosen, “On the Secure Software Development
Process: CLASP and SDL Compared,” Third International Workshop on Software Engineering for Secure Systems
(SESS'07: ICSE Workshops 2007), 2007.

 • [12] N. Sankhwar, A. Tewari, and V. Singh, “SDL, CLASP and TOUCHPOINTS: A Comparison and Alignment of
CLASP with Waterfall Model”. International Journal of Computer and Communication System Engineering
(IJCCSE), vol. 2, no. 3, pp. 365- 376, 2015.

 • [13] I. E. Rhaffari and O. Roudies, “Benchmarking SDL and CLASP lifecycle,” 2014 9th International Conference on
Intelligent Systems: Theories and Applications (SITA-14), 2014.

 • [14] J. Alqatawna, A. Madain, A. M. Al-Zoubi, and R. Al-Sayyed, “Online Social Networks Security: Threats, Attacks,
and Future Directions,” in Social Media Shaping e-Publishing and Academia, N. Taha, R. Al- Sayyed, J. Alqatawna,
and A. Rodan, Eds. Cham: Springer International Publishing, 2017, pp. 121–132.

 • [15] J. Alqatawna, “The Challenge of Implementing Information Security Standards in Small and Medium e-

Business Enterprises“, Journal of Software Engineering and Applications, vol. 07, no. 10, pp. 883-890, 2014.

