
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3328

Security Introspection for Software Reuse

Sheleshma Shukla1, Dr.Dhirendra Pandey2

1, 2 Department of Information Technology, Babasaheb Bhimrao Ambedkar University,

Lucknow, Uttar Pradesh

---***---

Abstract - Both scholars and practitioners agree that
software reuse is a good idea. By depending on established
relationships, a system can become more secure, or more
insecure, by exposing a wider security vulnerabilities via
susceptible repositories. In order to build on a previous study
and shed further light on the topic, we look into the link
between reusability and security flaws. We utilize a multiple-
case research to examine 1244 open-source projects in order
to investigate and debate the distribution of security
vulnerabilities in code generated by a project team as well as
code reproduced through dependents. For this, we take into
account both possible vulnerabilities discovered through static
analysis and publicly published flaws. The results indicate that
the amount of possible vulnerabilities in both native and
reused code is linked to the scale of a development.
Furthermore, we noticed that the number of dependent and
the number of vulnerability are closely related. According to
our research, source code reuse is neither a panacea for
addressing vulnerabilities nor a terrifying werewolf that

entails an excessive number of them.

Key Words: Vulnerabilities, Flexibility, Security
Hazardous, Software Reuse etc.

1. INTRODUCTION

Modern component-based and service-oriented systems
make use of reuse to provide multiple productivity and cost-
cutting benefits. Instead of building entire applications and
systems from the ground up, they are instead assembled
from existing and newly developed components and
services, reducing money and time to market. However,
when such systems contain safety and security features,
these gains are outweighed by a number of problems.
(Although safety and security are two distinct domains, we
will treat them together in this work wherever possible.) The
link between software reuse and safety and security has at
least two major difficulties. The attainment of flexibility is
directly linked to reuse (see, for example, [1] for an
economic analysis of flexibility in reuse). Traditional security
and safety assurance concepts for monolithic systems, which
rely on fixed, inflexible structures ideal for the types of
analyses employed in privacy and protection assessment,
approval, and accreditation, are irreconcilable with mobility.

Because both safety and security are emergent aspects of a
system [2], ensuring individual components of the system is
extremely challenging. Assurance is usually performed at the

system level. The "local" nature of reusability vs the "global"
nature of safety and security raises many challenges. The
"local" nature of reusable components vs the "global" aspect
of protection and wellbeing raises many challenges. The
inventor of a component is difficult to know ahead of time
the precise safety or security context in which it would be
used, finding it challenging to develop well with appropriate
attributes.

A software engineer is more likely to create a component
than just a cyber-security or risk specialist. It's not always a
smart idea to incorporate security features into elements
since it blends functional requirement attributes, making
repurposing more difficult. We've taken an as double
approach to the problem. Prototype techniques for designing
independent security rules and safety continuation;
separation of responsibilities principle for decoupling non-
functional features.

2. LITERATURE REVIEW

2.1 Security Concern:

 Reusing software isn't a panacea. Some of its flaws are
described as "hazardous" rather than "concerning," in the
sense that one of the most significant adverse effects is the
potential for security problems. In a study involving Kula et
al. [1], it was found that, although more open-source
software systems exist, over 80% of the systems relied on
out-of-date external libraries, and 69% of the systems. Any
security concerns presented were unknown to the
developers questioned. Furthermore, in the state of New
York, Snyk discusses the troubling findings of the Open-
Source Security report.The number of disclosed cases
increased by 88% between 2017 and 2019. Open-source
libraries have vulnerabilities.

2.2 Detecting Vulnerable code:

Pham et al. [3] suggested to the automated identification of
non-useful of vulnerable codes in the area of finding
susceptible codes. The authors introduced SecureSync, an
open-source programme that analyses previously revealed
vulnerabilities and they recommend systems and builds
models to recognize similar suspicious trends in the data
from different systems.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3329

2.3 Policies and Requirements:

Security, like beauty, is a subjective concept. A public
library's perspective on computer security will certainly
differ from that of a major clearing house for interbank
transactions. The specific security needs of a particular
installation can only be determined after a thorough
examination of the business environment, user preferences,
and/or defence posture. The set of laws, policies, and
practices that regulate how an organization manages,
secures, and distributes sensitive information," according to
the TCSEC [3] Glossary. The application of a high-level
organizational policy to particular system needs is referred
to as a security aspect. To match current usage, we'll use the
phrase "security policy" to refer to both "policy" and
"requirement" in the following sections.

2.4 Bringing Security and System models together:

Software engineers use models initiation is the first phase to
improve the performance of artefacts like requirements
papers. Early in a project's life cycle (e.g., requirement,
design), attention to quality leads to defect discovery and
avoid ability. It is commonly recognized that undiagnosed
flaws can propagate downstream, dramatically increasing
the cost of identification and eradication. Initiation is the
first phase, the use of high-level, entity models (such as
UML) to aid requirement problems and design processes has
become widespread[4]. The ontology of the application
domain is thoroughly examined in contemporary constraints
modelling and entity design approaches. The rest of the
requirements process is driven by the creation of a domain
ontology model [5, 6, 7]. As evidenced by the Fu-sion [8]
technique, this method was found to be helpful in practice
and is frequently used in enterprise, notably in the
implementation of the information systems. Reverse
engineering can also benefit from modeling. Tools have been
developed to extract models from an existing system [10, 9].
These kind of models can be useful for upkeep and re-
engineering.

3. CONCLUSIONS

Software reuse is seen as a method to increase the efficiency
and quality of software development. There is a lot of study
going on in the field of software reuse. Lifecycle of software
development. This paper is about security of reuse have
been highlighted. The issue of reuse must be addressed.
Where it satisfies the requirements of industry, as well as
client requirements.

ACKNOWLEDGEMENT

I am grateful to my guide Dr. Dhirendra Pandey for their
support in bringing out this paper successfully.

REFERENCES

[1]. Favaro, J., Favaro, K., Favaro, P.: Value Based Software
Reuse Investment, Annals of Software Engineering (5), 1998,
pp. 5-52.

[2]. Leveson, N.: Safeware: system safety and computers,
ACM Press, New York, NY, 1995

[3] N. H. Pham, T. T. Nguyen, H. A. Nguyen, X. Wang, A. T.
Nguyen,T. N. Nguyen, Detecting Recurring and Similar
Software Vulnerabilities, in:40 Proc. 32nd ACM/IEEE Int.
Conf. Software Engineering (ICSE ’10), ACM,875 Cape Town,
South Africa, 2010, pp. 227–230.
doi:10.1145/1810295.1810336.

[4] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse :
Architecture Process and Organization for Business Success.
Addison Wesley, 1997.

[5] A. Borgida, S. J. Greenspan, and J. Mylopoulos. Knowledge
representation as the basis for require- ments specifications.
IEEE Computer, 18(4):82-91, 1985.

[6] J. Mylopoulos, A. Borgida, M. Jarke, and M. K-
oubarakis.Telos: Representing knowledge about in-
formation systems. A CM Transactions on Office In-
formation Systems, 8(4):325-362, October 1990.

[7] B. Nuseibeh and S. Easterbrook. Requirements engi-
neering: a roadmap. In A. Finkelstein, editor, "The Future of
Software Engineering", Special Volume pub- lished in
conjunction with ICSE 2000, 2000.

[8] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F.
Hayes, and P. Jeremaes. Object- Oriented Development: The
Fusion Method. Prentice- Hall, 1994.

[9] P. Devanbu and W. Frakes.Extracting formal domain
models from existing code for generative reuse. ACM Applied
Computing Review, 1997.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3330

[10] D. Jackson and A. Waingold. Lightweight extraction of
object models from bytecode. In Proceedings of the 1999
international conference on Software engineer- ing, Los
Angeles, CA, May 1999.

BIOGRAPHIES

Sheleshma Shukla is a M.Tech
Scholar of Department of
Information Technology in
Babasaheb Bhimrao Ambedkar
University, Lucknow. Her research
areas are software engineering and
software security.

Dr. Dhirendra Pandey is working in
the Department of Information
Technology of Babasaheb Bhimrao
Ambedkar University, Lucknow
and he has obtained MPhil Degree
in Computer Science from M. K.
University, Madurai in 2008 and
received PhD Degree in Computer
Science from Devi Ahilya
University, Indore in 2012. He has
more than 15 years of Teaching
and Research experience. Dr.
Pandey has successfully executed
Major Research Project from
Council of Science and Technology
of Uttar Pradesh under Young
Scientist Scheme. He has published
more than 75 research papers in
various reputed International
Journals and authored 06 Books
and 07 Book Chapters. Dr.
Pandey’s research areas are
Software Engineering, Theoretical
Computer Science, Software
Security and Data Mining and
Warehousing.

2nd Author
Photo

