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Abstract - The restrictions of neighborhood-based 
Collaborative Filtering (CF) methods including scalability 
and inadequate information present impediments to 
efficient recommendation systems. These strategies result in 
less precision, accuracy and consume a huge amount of time 
in recommending items. Model-based matrix factorization is 
an effective approach used to overcome the previously 
mentioned limitations of CF. In this paper, we are going to 
discuss a matrix factorization technique called singular 
value decomposition, which would help us model our 
recommendation system and result in good performance. 
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1. INTRODUCTION  
 
A recommender system, also known as a recommendation 
engine or platform, is a type of information filtering 
system that attempts to forecast a user's "rating" or 
"preference" for an item.These algorithms are used to 
recommend products to online customers in online 
advertising ,ott and e-commerce platforms. When you look 
at a product on an e-commerce site, the recommender 
system may offer additional products that are similar to 
the one you're looking at.In general, there are two sorts of 
recommendation system approaches, content-based and 
collaborative filtering based systems. 
 

1.1 Content Based Recommendation 
 
The content filtering approach creates a profile for each 
user or product to characterize its nature. For example, a 
movie profile could include attributes regarding its genre, 
the participating actors, its box office popularity, and so 
forth.User profiles might include demographic information 
or answers provided on a suitable questionnaire. The 
profile allows us to associate users with matching 
products. Of course, content-based strategies require 
gathering external information that might not be available 
or easy to collect. 

1.2 Collaborative Filtering  
 
The limitation of content-based recommendation systems 
in collecting various attributes and characteristics of users 
and items is addressed by collaborative filtering. This 
method attempts to account for interactions between 

users and items. There are two different kinds of 
collaborative filtering systems. 

(i) Neighborhood/Memory Based:  This method takes 
into account a user-item matrix including user ratings on 
items and calculates the similarity between user-user or 
item-item. To suggest items to a user using a user-user 
similarity-based strategy, the system detects users who 
are similar to the target user and recommends items that 
are rated highly by those users. Because user interests 
vary over time, this strategy does not work in real world 
circumstances. An item-item-based system tries to 
recommend an item to a user based on previous items that 
the user liked. Sparsity is one of the primary concerns with 
this technique. Because the user-item matrix is sparse, 
computing similarities would be inaccurate. 

(ii) Model Based:  The model based approach intends to 
build a recommender system using machine learning 
techniques  and poses the recommendation system  as an 
optimization problem , where the algorithm learns the 
parameters to best predict the ratings . This  way, we can 
overcome the problems faced  by memory based 
techniques. 

 

Fig -1: User-User vs Item-Item Model 

 

2. LATENT FACTOR MODEL 
 
The Latent Factor model explains the ratings by  
characterizing both items and users according to many 
factors inferred from the rating pattern. This method 
represents the user and item profiles in k-dimension space 
.This is known as the k- rank approximation of a matrix. 
Although this method is highly inspired by Singular Value 
Decomposition (SVD) , we approach it by formulating a 
minimization problem because SVD is not defined when 
the matrix has missing values. 
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2.1 Eigenvalue Decomposition 
 
Eigenvalue decomposition (EVD) is a method of breaking a 
square matrix into its components. factorization of a 
matrix. It can be thought of as an analogy for factoring an 
integer . 

EVD states that every square matrix Anxn can be 
decomposed as product of three matrices namely  U Λ U-1  

where U is a matrix containing eigenvectors of A as its 
columns and Λ is diagonal matrix containing eigenvalues 
of A as its elements. 

Let u1, u2, . . . , un be the eigenvectors of a matrix A and let 
λ1, λ2, . . . , λn be the corresponding eigenvalues. Consider 
a matrix U whose columns are u1, u2, . . . , un. 

By definition of Eigenvectors we can write, 

    Aui = λiui    ∀ 1 ≤ i ≤ n 

 

                   AU = UΛ 

Now , If  U-1 exists, then we can write, 

    AUU-1  =  UΛU-1 

    A = UΛU-1
  (∵ U-1U = I) [eigenvalue 

decomposition]  

and  

          U-1AU  =  U-1UΛ  

          U-1AU = Λ (∵ U-1U = I) [diagonalization of A] 

 

Note that U-1 only exists if the columns of U are linearly 
independent and since the U contains eigenvectors 
corresponding to different eigenvalues of A, they are 
linearly independent. 

Furthermore, if the matrix A is symmetric and the columns 
of U are normalized to unit length we can easily prove that 
, 

          U TU = I  ( I is an identity matrix ) 

this means that  UT= U-1  and the EVD of A can be rewritten 
as,  

       A = U Λ UT 

2.2 Singular Value  Decomposition 
 
One of the major limitations of Eigenvalue decomposition 
includes that EVD exists only for a square matrix because 
eigenvalues aren't defined for rectangular matrices, so 
EVD for a non-square or rectangular matrix does not exist. 
Singular Value Decomposition(SVD) overcomes this 
problem and provides a decomposition of any matrix into 
its components. 

Note that we were able to decompose a matrix  because of 

this equation, Aui = λiui. This gave us an Eigenvalue 
decomposition for a square matrix. In the earlier scenario,  
while we were dealing with square matrices we selected  
u1, u2, . . . ,un to be eigenvectors and also  note that they 

also form a basis for the space Rn . Since we are dealing 
with rectangular matrices , they perform linear 
transformations  between two different  spaces. 

Let Amxn is a matrix which performs transformations from 
n-dimension space to m-dimension space and let v1, v2, . ,vr 

, . , vn be the basis of input space i.e., Rn and  u1, u2, . ,ur , . , 

um be the basis of output space i.e., Rm.Now our goal is to 
find these basis such that, 
 

Avi = σiui 

 

We have to select first r vi’s such that it spans the row 

space of A and is also orthogonal (where r is the rank of 
matrix A). We then have to select the remaining n-r vi’s 
such that they span the null space of A. Since the null space 
of A is orthogonal to the row space of  A, the vi’s we 

selected would act as a basis for the Rn . Now for 1 ≤ i ≤ k 
define ui to be a unit vector parallel to Avi and extend this 
basis such that it spans the left null space i.e., null space of 
AT.Since null space of AT is orthogonal to the column space 

of  A, the ui’s we selected would act as a basis for the Rm. 
 
 

 
 
Fig -2: Strang diagram of four fundamental subspaces 
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Now let's see what would be our matrix decomposition 

after selecting such a basis . Let Umxr be a matrix 
containing  u1, u2,..., ur as its columns where ui is the basis 

vector in Rm and Vnxr is a matrix containing  v1, v2, . . . ,vr as 

its columns where vi is the basis  vector in Rn. Σ is a 
diagonal matrix with the singular values. 
 

we know that  Avi = σiui  so, 
 

 
 

  Am x n Vn x r =  Um x r  Σ r x r  
 
 
We can extend the matrices U and V from n x r and m x r 
to n x n and m x m respectively by putting in the remaining 
n-r and m-r basis vectors. 
 
Hence, the equation becomes , 
 

          Am x n Vn x n =  Um x m  Σ m x n   

 

Observe that the matrix Σ dimensions now would be m x n 
wherein the last m-r rows and n-r columns would be 
zeros. 

 
Now, 

      Am x n Vn x n V-1n x n=  Um x m  Σ m x n  V-1n x n 
 
Let's assume matrix V’s columns are  normalized to unit 
length and, since we know U and V are orthogonal (by the 
way we  have constructed U and V). 
 

     Am x n  =  Um x m  Σ m x n  V-1n x n 

             ( ∵VV-1 = I) 
 

      Am x n  =  Um x m  Σ m x n  VTn x n 

             ( ∵V-1 = VT) 
 

Hence , the SVD decomposition of  any matrix A = U Σ  VT. 

 
Till now, we have discussed how to select a basis so that 
Avi = σiui  , and what decomposition would we get  if such a 

basis were selected .Now let's see how to actually compute 
U,V and Σ . 
 

we know that  A = U Σ  VT . so , 
 

      ATA  =  (U Σ  VT )T U Σ  VT  

         = V ΣT UT U Σ  VT  ∵  (AB)T  = BT AT 

   =  V Σ2 VT  ∵  UT U = I  

 

This is the eigenvalue decomposition of ATA. Thus, matrix 

V contains the eigenvectors of ATA. Similarly, AAT= 
UΣ2UT, thus matrix U contains the eigenvectors of AAT. 
We know that AAT is  a square symmetric matrix hence, 

ATA and AAT  have the  same eigenvalues. Therefore, Σ is 

a  diagonal matrix with its elements as √λi where each λi 
is the eigenvalue of ATA / AAT . 
 
We can formulate the singular value decomposition of a 

matrix A in below manner , 
 

 

We order decomposition in such a way that σ1 ≥ σ2 ≥ …≥  
σk. we can prove that σ1u1v1

T is a rank 1 matrix and 
σ1u1v1

T will be the best rank-1 approximation of the 
original matrix A because σ1 is the largest σ and it 
corresponds to the largest σiuivi

T term. Hence ,best rank-1 
approximation. Similarly, ∑ 

   σiuivi
T is the best rank-k 

approximation of matrix A. 
 

3. IMPLEMENTATION 
 
The way we have defined the SVD of a matrix, we realize 
that the SVD is not defined if the matrix does not contain 
any value. In real world scenarios, the user-item matrix, 
wherein the rows represent the ratings of a user on 
various items and the columns represent the ratings of 
various users on an item, is largely sparse. Hence, we 
cannot perform SVD on the user-item matrix. Hence, we 
change our approach and try to formulate a minimization 
problem and find the optimal solution to it. 
 
3.1 Formulating Optimization Problem 
 

Let Am x n be the user-item rating matrix . We know that 

this matrix can be decomposed into Umxk VTnxk (∵Σ can 

be interpreted as a scalar on the U matrix i.e, UΣ = U) 

where U contains the basis for rows of the user-item 

matrix i.e The users(rows) can be formed by the matrix U 
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and similarly V contains the basis for columns of the user-
item matrix i.e., the items(columns) can be formed by the 

matrix V.  
 

      ∴ A ≈ Umxk VTnxk 

 

Now, each rating rij of matrix A can be computed as, 
   

  rij  ≈  ∑ 
    uik vTjk 

 

 

 
Where K is the dimension of latent factors in which we 
want our decomposition to be represented. 
 
Our objective is to minimize the sum of squared errors 
between known ratings in the matrix and computed 
ratings for these ratings. i.e., 
 

   

 

where rij  is the actual rating of the user i on item j and 

uikvTjk is the computed or predicted rating for the user i on 
item j. In the above equation X, is the set of known ratings. 
This means we only perform the summation over the 
known ratings.We want to find such ui ‘s and vj ‘s that 
minimize the above function. 
 
We have overcome the problem of sparsity with this 
approach as we are iterating only through the known 
ratings of the user-item matrix. Now since we know that 
there would be only a few such cells in the matrix where 
ratings are present, this leads to overfitting, i.e., if we 
optimize for the above equation, we won’t be able to 
generalize the predicted ratings for unknown data. To 
solve this limitation, we introduce regularization. This 
allows us not to make the parameters of the minimization 
equation complex, which leads to overfitting. 

 
The modified optimization equation would be, 
 

 
 
Here,  λ is the regularization strength , which controls the 
trade off between underfitting and overfitting , we can 
estimate this variable using techniques like cross-
validation etc., 

 
Finally, we can also account for global effects. This 
includes the average rating of the entire user-item rating 
matrix, the average deviation of a movie’s rating (movie 

bias) compared to other movies, and the average deviation 
of a user's rating (user bias) compared to other users. This 
part allows us to capture various aspects of the data, 
which improves the performance of our model. 
 
The predicted rating of a user i on movie j can be 
computed as , 
 

           rij  ≈ μ + bi+ cj +  ∑ 
    uik vTjk 

 

where , 

μ = average rating of all users on all items. 

bi = standard deviation of ui 

cj =  standard deviation of vj
T 

 
We can calculate μ directly from the matrix and include  bi 

,cj into the optimization equation and learn from the 
data.The modified equation would be, 
 

      

 
 
This is the final problem formulation. In the next section, 
we’ll see how to solve for the equation parameters. 
 
3.2 Solving Optimization Problem 
 
To solve the optimization problem in the above section, 
we can choose any variant of gradient descent algorithms. 
In our case, we are going to implement the Stochastic 
Gradient Descent version as it performs better and is also 
time-efficient. I am going to demonstrate implementation 
in python. 
 
The algorithm for SGD is given as : 
 

 
 

Fig -3: SGD Algorithm 
 
The dataset is being collected  here . It contains a large 
number of data points of 26 million users and ratings (on a 
scale of 5) of each user on movies. Only 100K data points 
are being considered for demonstration purposes. Here is 
a sample of the dataset. 

 

https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset?resource=download&select=ratings.csv
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Fig -4: Sample Data 
 
We would split the complete dataset into train and test 
sets so as to measure the goodness of our 
recommendation system. 
 
The first step is to initialize the parameters of the 
minimization equation and decide on the dimension of 
latent factors. 
 

 
 

Fig -5: Code for initializing parameters 
 
In the above piece of code, train_adjacency_matrix is the 
user-movie matrix formed from the train data set. 
 
Next, we will calculate the derivative of the minimization 
equation w.r.t u_bias (user bias), m_bias (movie bias), ui 
(user i’s row in matrix U) and vj (movie j’s row in matrix 
VT). 
 

 
 

Fig -5: Derivative of mininization eqn w.r.t user bias 
 

 
 

Fig -6: Derivative of mininization eqn w.r.t movie bias 

 
 

Fig -7:  Derivative of mininization eqn w.r.t user vector 
 

 
 

Fig -8:  Derivative of mininization eqn w.r.t movie vector 
 
Following that, we define values for alpha (learning rate), 
reg_strength (regularization strength), and the number of 
epochs for converging the minimization equation, and we 
run stochastic gradient descent training on our train 
dataset, calculating the test and train MSE (mean squared 
error), which is the evaluation criterion for goodness of fit. 
 
After iterating for all the epochs, we get the final best 
parameters of the equation, which are b, c, U, and V. 
 

 

Fig -9: Training SGD on our data 
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4. RESULT ANALYSIS 
 
 Results for each epoch are : 
 

 
 
Fig -10: Results on each epoch 
 

Observe that the MSE for the last epoch is 0.74, which 
means, on an average, we are mistaken by 0.74 in 
predicting ratings for unknown user-item pairs.  
 
We were still able to achieve a good MSE for random 
selections of various parameters. We can use more 
techniques like cross validation to select the best learning 
rate, regularization parameter, and also the number of 
latent factors. There are also many advanced convergence 
algorithms like AdaGrad, Adam Optimizer, etc. Since we 
have initialized all the parameters of the equation with 
zeros, we could be more mindful and use better 
initialization strategies. 
 
Given below is the graph which depicts the change in MSE 
with an increase in the number of epochs. This gives us an 
idea of whether our model is overfitting or underfitting. If 
the train error is decreasing while the test error is 
increasing with an increase in the number of epochs, then 
the model is said to be overfitted. If both the train and test 
errors increase with an increase in the number of epochs, 
then the model is said to be underfitted. In our case, both 
the above scenarios do not seem to occur, so our model is 
able to generalize the predictions made on ratings. 
 

 

Fig -11: Train and Test Error VS Number of epochs 

 
5. CONCLUSION 
 
In this paper , we have discussed the theory of latent 
factor models which uses matrix factorization techniques 
and also practically implemented the truncated svd 
method for matrix factorization. We have also briefly 
discussed various types of recommender systems present 
and  the limitations faced by them. Latent factor model is 
matrix factorization technique in which the model finds 
the relationships between the user and an item by 
representing the user and item vectors in latent 
dimensions. This technique employed recommendation 
system overcomes many limitations such as sparsity, 
scalability, computation time , memory etc,.  
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