
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2981

Memory Management in Trading Platforms

Pratik Joshi

---***---

Abstract – With the increasing volatility in the market we
have seen a sharp rise in number of trades occurring in the
market. These platforms are designed to handle huge volume
of trades thanks to the underlying technology. The memory
management forms a base of these highly efficient algorithms.
The technique in which OS loads programs into memory so
that it can execute several such processes in parallel is a key
functionality of the CPU. This paper will talk about common
techniques used by trading platforms for managing memory of
their applications. With high volume there is always a risk of
crashing the application in the middle of a trading day. An
immediate concern in most cases of a memory leak is
unwanted behavior by the application that causes unexpected
crashes, which could lead to damaged relationships with end
users or clients who use the application. Worse yet, if an
attacker were to figure out a way to trigger a memory leak, it
could allow them to perform a denial-of-service attack. As
such, memory leaks represent a combination of performance
and security concerns. It is therefore recommended to keep
memory management in mind while designing trading systems
where computation is of essence. Memory leaks can be difficult
to avoid, but there are plenty of tools out there that can help.
It’s recommended that you utilize them regardless of which
programming language you prefer. A compromised memory
could lead to denial-of-service or corrupt the data of your
application. Some common techniques will be covered in this
paper using which the application designer can make a better
system.

Key Words: Fragmentation, paging, buffer overflow, memory
allocation, high frequency trading, in-memory computing.

1. INTRODUCTION

Financial industry heavily uses high-frequency trading in
which the securities are traded on the financial markets
using high-speed rules-based strategies, and numerous
simultaneous trades – with all the decisions driven by
computerized, quantitative models. The computer program
analyzes the market data and trend and computes a buy or
sell trade or perform other financial services. They compute
the data points to predict the market movement and act.
These trades are 10 times faster than time taken by a trader
doing this manually. These techniques prove to be handy
during market instability, market volatility or financial crisis.
Because of the time constraint the systems act much quickly
thereby optimizing the use of technology on trading
platforms.

Memory management represents a vital part of secure
application development. Proper memory management is

like good personal hygiene. We are physically healthier
when we practice proper hygiene. Similarly, applications
perform better when memory use is properly allocated. This
paper demonstrates the risks of poor memory hygiene,
including buffer overflow, memory leaks, memory allocation,
and nulling out pointers. By the end of this paper, you will
have a better understanding of why these processes could
create security risks and how to avoid them.

Memory is a collection of data like instructions for processor
or large array of data. During execution of programs CPU
uses memory to hold data, fetches instructions from
memory. To optimize this flow and make the process
efficient in multi programming environment we need to
ensure efficient utilization of memory. In case of high
frequency trading platform where there is huge volume
every millisecond of reading data from memory matters.

1. Overview of Compilers

Compilers for C and C++ parse source code and emit
instructions for the CPU they are targeting. These instructions
are commonly called assembly instructions. Since these
instructions are for the CPU itself, with no intermediate layer,
they are described as low‑level instructions. Other
programming languages, like C# or Java, have an entire
middle layer between the compiler‑generated instructions
and what is sent to the CPU, which helps prevent mistakes.
These two languages are thought of as higher‑level
programming languages because they do more behind the
scenes to add safety and security to an application.
Conversely, the safety of an application built with C/C++ is
left in the developer’s hands with very few safeguards in
place to prevent potential bad code from executing on the
CPU.

Static and Dynamic Loading:

A loader is used to load a process into the main memory. A
static loader would generally load the entire routine into a
fixed address. Dynamic loader loads a routine only after it has
been called.

Swapping:

When a process executes it must have resided in memory.
Swapping is a process responsible for swapping routines into
main memory from secondary memory. Swapping allows
high number of processes to be run by efficiently using
algorithm and fitting into memory.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2982

Memory allocation:

Memory allocation is the process of setting aside sections
called partitions of memory in a program to be used to store
data for a process. It has two techniques, namely static and
dynamic allocation.

Fragmentation:

When the process is loaded and removed after execution it
leaves behind the memory blocks which cannot be allocated
to the processes due to their small size and the blocks remain
unused.

Paging:

Processes are divided into pages. One page of the process
is to be stored in one of the frames in the memory. Paging
technique is used to avoid using the contiguous allocation of
physical memory.

2. Buffer Overflow

A buffer overflow is simply allocating an array of memory
onto the call stack—the data structure where methods and
functions are stored—and then overfilling it with more data
than it was supposed to handle. The extra bytes written to
memory spill over and overwrite adjacent memory, usually
corrupting other stack‑based variables.

Let’s take an example for demonstrating buffer overflow
with a username of 8 bytes and overflow of 2 bytes in severe
cases, a buffer overflow will corrupt the call stack leading to
a massive crash. Even worse, if an attacker has access to the
source code, they could deduce a way to corrupt the call
stack just enough to change the value of a variable that
normal code could not reach, such as changing the privileges
of a user to that of an admin.

Per the Open Web Application Security Project (OWASP),
buffer overflow vulnerabilities typically occur in code that:

 Relies on external data to control its behavior

 Depends upon properties of the data that are
enforced outside of the immediate scope of the code
Is so complex that a programmer cannot accurately
predict its behavior

Example:

The following code gathers input from the user and writes
the input characters to a stack‑based array. This stack‑based
array is a fixed length buffer and contains a password. When
overfilled, it will corrupt another variable that determines if
the user has admin privileges. Let’s demonstrate how serious
this can be:

Run the application and enter a word with 8 or more letters.

For instance, enter in 8 characters of just the character '1',
that is '11111111'.

When done typing, hit Enter to complete the input and finish.
Note that the character for the Enter key is also returned in
the string (which is '/n').

When the application starts, the memory layout of the stack
variables may look like this (your compiler may be different):

The left column is the memory address, and the right column
is the data in the memory address in hexadecimal notation. In
this situation, you can see how the memory address
increments as it goes down. When the compiler creates or
lays out the call stack, it puts the first variables declared at
the bottom with higher memory addresses, and the last
variables declared at the top with lower memory addresses.
Incrementing a pointer moves it from top to bottom (as our
code above does).

When a buffer overflows, data is written from areas starting
in lower memory addresses, spilling over to areas of higher
memory addresses. Notice how in the table there is a two-
byte gap (in a 32‑bit application) between the declaration of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2983

the variables. This will vary depending on your compiler.
When the do/while loop writes its first character: *iter = c,
the memory looks like this:

When the do/while has iterated 5 times, it looks like this:

As you can see, if it continues unchecked, it will overwrite the
variables higher up in memory:

By the eighth iteration of the loop, the value of is_admin has
been changed, and program flow will be altered. The program
output looks like this:

This example shows how to corrupt a variable on the stack,
but this same type of problem can occur for memory
allocated on the heap as well. Though it may be harder to get
variables so close to each other when allocated on the heap,
the app may crash much later than a stack-based overflow,
making it much harder to debug.

The simplest way to avoid buffer overflow issues is to use a
modern programming language. Avoid C unless you have
experience doing so. Even then, you should strongly consider
switching to C++, which heavily minimizes dependence on C-
based, stack-based buffers. In general, the more modern the
language, the safer it is. Meaning, it might not expose such
low-level memory management to the programmer.

Memory Leaks

A memory leak occurs when a developer fails to free an
allocated block of memory when no longer needed. An
application littered with memory leaks will eventually
request a memory chunk and fail, because the address space
is fragmented into tiny pieces.

A memory allocation in C++ looks like this:

The leak happens when nothing more is done after the
memory allocation. Pretty hard to spot, isn’t it? Especially
when the programmer forgets about it.

The simple solution looks like this:

When memory is allocated, it looks for a contiguous block of
memory of a certain size. Any leaked memory that is not
freed is unavailable for other memory and is blocked from
being reallocated again. One memory leak may not be
consequential, but if this happens enough, the application
could crash.

Memory Leak Example

Here is a basic memory leak in C

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2984

In this example, there are 10 allocations of size MAXSIZE.
Every allocation, except for the last, is lost. If no pointer is
pointed to the allocated block, it is unrecoverable during
program execution. A simple fix to this trivial example is to
place the free() call inside of the “for” loop.

3. CONCLUSIONS

In conclusion therefore, it is evident that memory
management is one of the critical responsibilities of the
operating system. Typically, primary memory is volatile as it
holds the data and programs needed for processes to execute
in the CPU while secondary memory provides long term data
and program storage. The operating system assigns the
responsibility of managing memory to the memory
management unit (MMU). The OS ensures that programs and
data are assigned and moved out of memory during program
execution through the MMU which resides in the OS’s kernel.
When programs want to run in the CPU, processes must be
swapped in and out of main memory. The swapping process
creates holes that have the possibility of impairing the
system’s throughput. That is because swapping may cause
internal or external fragmentation of the main memory. To
improve throughput and minimize the effects of
fragmentation, several memory placement techniques are
used. These include the first fit policy and best fit policy. In
first fit policy, the OS allocates a process to a hole that is first
available so long as it can accommodate the process.
Therefore, the allocation mechanism uses a process’s index
to allocate the process a position in the queue. However, the
best fit policy can easily lead to the creation of many holes,
impairing the efficiency of the OS.

The policy is since main memory is first scanned of all the
holes that have been created and the hole that can fit the
process’s memory requirements is assigned. One of the
algorithms that is used to assign processes memory holes is
the round robin algorithm. These two allocation methods
have been identified to be very efficient. However, for the OS
to efficiently work it should allocate memory chunks to
running programs. On the other hand, memory management

cannot be complete if virtual memory is not considered.
Virtual memory supports multiprogramming by allowing
several resident programs to run at the same time. Allocating
memory on the stack is easy to clean up afterwards, since the
compiler does it for you. As the stack unwinds, the memory
is automatically freed. Memory allocated on the heap is
different; it is not automatically freed, and you must do it
manually.

REFERENCES

[1] Breecher, J. Operating systems memory management.
2011. Web.

[2] A GridGain Systems In-Memory Computing White Paper

[3] Loepere, K. Mach 3 Kernel Principles. Open Software
Foundation and Carnegie Mellon University, 1992.
Web.RFC4120: The Kerberos Network Authentication
Service (V5) [Applied Cryptography] Second Edition,
Bruce Schneider

[4] Tanenbaum, Andrew, s. and Albert s. Woodhull.
Operating systems design and Implementation. 2006,
Prentice Hall. Web.

BIOGRAPHIES

I have been in Finance and Technology for
over 9 years. At MarketAxess, I design
solutions for our leading electronic
trading platform for fixed-income
securities. My team and I manage the
market data and post-trade services for
the global fixed-income markets. We are
responsible to report trades to clearing
houses in timely manner. I work on
making the trading platform that sees on
an average $300 billion monthly volume
efficient and optimized.

