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Abstract - FPGA with customized IP helps to lower the 
power consumption to accelerate computation intensive 
segment for the application and optimize the performance. To 
transfer raw data from source server to data ware house ETL 
procedure is used in big data field. FPGA has been noticed in 
the industry because of its performance- re-programmable 
flexibility, per-power efficiency, and wide range of 
applicableness. In this paper we will discuss how 
programmable gate arrays help a Spark ETL workload to 
reduce high CPU utilization issue. It should release more CPU 
power to run some compute intensive jobs. Also we will discuss 
about benefits of FPGA in deep learning applications for AI. 
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1. INTRODUCTION  

“Big Data” is a broad term for datasets that are so large or 
complex. Workflows are the task oriented and often require 
more specific data than process. The Process is designed on a 
higher level scenarios that helps for decision making in 
organizational level. Big Data workflow is best illustrated in 
comparing traditional IT workloads with Big Data workloads. 
It may require many servers to run one application whereas 
traditional IT workloads requires one server to run many 
application. Big Data workloads run to the completion and 
traditional IT workloads run forever. The scale of big data 
will be representing the volume, velocity and variety of data. 
Volume indicate how much amount of data is generated. 
Velocity is used to indicate the speed of generating data and 
data generated in real time. Variety indicates the wide range 
in which the data can be encode. 

To increasing the processing capacity has been a main 
area of prior research. Examples include CPU optimizations 
and the use of dedicated hardware accelerators such as GPUs. 
Another accelerator is the field programmable gate array or 
FPGA. These FPGAs consist of a re-configurable fabric that 
can be programmed to implement custom integrated circuit 
(IC) designs. This work investigates how these FPGA 
accelerators can be efficiently deployed to increase 
processing capacity in a big data context. 

Nowadays in every field of industry we are using some 
form of data analytics. The impact and possibilities of 
transparent and efficient  integration of FPGAs in big data 

frameworks are therefore limitless. The three areas of 
applications that could benefit from FPGA accelerated big 
data frameworks; applications with long-running queries, 
latency sensitive applications, and applications that aim to 
achieve a high energy efficiency. 

Challenges: There are two main challenges in integrating 
FPGA accelerators with big data frameworks are 
transparency and efficiency. The user should not be aware of 
the FPGA acceleration and does not have to tune certain 
parameters in the framework. It is important because 
transparent integration lowers the barrier to adopt these 
technologies. The system should autonomously identify 
where and when certain parts of the computation can be 
accelerated to achieve transparency. There are two factors 
that play a role in the context of FPGA accelerators. First, the 
initial cost of developing an FPGA. It is generally more time 
consuming than software development for CPUs and GPUs, 
and requires in-depth knowledge about circuit design. Lastly, 
these FPGA accelerators are expensive. The industry standard 
is to run big data applications in a cloud environment so 
there is no need for end-users to buy any specialized 
hardware. 

FPGA is an IC form that have internal logic design which we 
can configure after manufacturing helps programmer to 
implement different IC without having to go through the 
manufacturing process, which is time consuming and 
expensive. This reconfiguration of the FPGA is done using 
description language. Data is processed in a dataflow 
manner. FPGAs implementing dataflow-oriented 
architectures with high levels of (pipeline) parallelism can 
provide high application throughput, often providing high 
energy efficiency. Latency-sensitive applications can 
leverage FPGA accelerators by directly connecting to the 
physical layer of a network, and perform data 
transformations without going through the software stacks 
of the host system. While these advantages of FPGA 
accelerators hold promise, difficulties associated with 
programming and integration limit their use.  

It can be integrated into big data systems, can discriminate 
into three configuration of the FPGA in the system. The 
accelerator can either be placed in the data path between 
network or storage and the CPU. It can be made between an 
IO-attached accelerator, where the FPGA has its own 

memory space, and a co-processor, in which the FPGA and  
the CPU communicate through shared memory. 
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Fig 1: Data Path 

 

Fig 2: IO attached  Fig 3: Co-processor 

SQL workloads: It is target to leverage FPGA highly parallel 

computing capability to accelerate Spark SQL Query and for 
FPGA’s higher power efficiency than CPU we can lower the 
power consumption at the same time. The Architecture 
consists of SQL query decomposition algorithms, fine-
grained FPGA based Engine Units which perform basic 
computation of sub string, arithmetic and logic operations. 
Using SQL query decomposition algorithm, we are able to 
decompose a complex SQL query into basic operations and 
according to their patterns each is fed into an Engine Unit. 
SQL Engine Units are highly configurable and can be chained 
together to perform complex Spark SQL queries, finally one 
SQL query is transformed into a Hardware Pipeline. 

2. Speedup Methods 

 

Fig 4: Classification tree for speedup methods 

CPU optimization: It depends on available CPU. Modern 
CPUs offer vectorized operations. It perform a single 
instruction on a vector which contain multiple values. Size 
depend on underlying support hardware. Parallelization can 
be establish in the form of multithreading. It can be executed 
on multiple cores, increasing the effective throughput. It is 
important to select the correct granularity when 
implementing a multithreading solution, as an overhead is 

associated with the creation and the management of multiple 
threads. 

FPGA accelerators: The inherent highly flexible fine-
grained parallelism of FPGA accelerators offers data, task, 
and pipeline parallelism, resulting in faster data process 
execution. FPGA accelerators have already set to expand 
beyond the data centers. FPGAs in tha data path are placed 
between network or storage and the CPU. These FPGAs can 
perform preprocessing operations, such as parquet 
decompression, which effectively increases the bandwidth 
between network or storage and the CPU. FPGA accelerator 
acts as another processor in parallel with the CPU. The FPGA 
has it’s own memory space, requiring data to be copied 
between the CPU and the accelerator. Another drawback of 
such a system, apart from the required data copies, is the 
limited capacity of local memory that is available on the 
FPGA. Because of this limitation, applications that run on 
FPGA accelerators can potentially only access a fraction of 
the entire dataset at the same time. 

3. Proposed solutions 

Big data framework utilizes vectorization in combination 
with GPU and FPGA acceleration that is perfectly viable 
solution. The scope of this project is to the implementation of 
FPGA accelerators, but it is good to know what the strengths 
of other speedup methods are. F or implementation the 
processor class solution is chosen , due to it’s slightly higher 
availability. In addition, it’s strengths best fit the acceleration 
needs of SQL operators. This class is further subdivided into 
FPGA processors that act as a co-processor or IO-attached 
processor. The availability of running as a co-processor is 
heavily dependent on the support of the underlying system 
such as OpenCAPI. Three different solutions are proposed. 
All of the proposed solutions make use of FPGA accelerators 
configured as an IO-attached processor, since the 

FPGA kernel as deployed on Amazon Web Services (AWS) 
does not support the co-processor configuration at the time 
of writing. 

All data structures  are stored using the Apache 
Arrow in-memory format. An implementation that utilizes 
both CPU optimization methods as well as FPGA accelerators 

Storage FPGA CPU 

GPU accelerators: GPUs have proven to be very efficient for 
training and running deep learning models.in fact, has even 
pivoted from a pure GPU and gaming company to a provider 
of cloud GPU services and a competent AI research lab. GPUS 
that are configured as an IO-attached processor operate in 
their own memory space, separated from the memory space 
of the CPU. Sharing data between the host and the GPU 
accelerator requires the data to be copied between the two 
memory spaces. GPUs that are configured as a co-processor 
share their memory space with the CPU. The accelerator can 
therefore access data in the main memory without the need 
to copy this data. 
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is a good demonstration of multiple big data speedup 
methods working together. Another it is chosen as the 
second framework for acceleration with FPGA accelerators 
configured as processors. These  are identified as the most 
promising candidates for integration based on the required 
development effort, expected performance, and potential 
impact. Finally, Dask distributed is selected for the third 
integration. It is specifically designed to run in a cluster 
setting and is therefore the perfect candidate to investigate a 
cluster deployment with an acceleration aware worker node. 

4.Implementation  

Sabot planner is based on the open-source Apache Calcite 
SQL optimizer.An FPGA kernel that can perform regular 
expression matching is selected for integration.It is extended 
in two places : planner &  operator package. Sabot planner 
has number of planning phases.Each phase transpose the 
coming execution tree by use of a number of optimization 
rules.The validation phase validates the query based on the 
schema of the dataset. In the next phase, the SQL query is 
parsed and converted to an expression tree of logical 
operations. This tree is then optimized in a number of logical 

planning phases. 

 

Fig 5: Sabot planner phases including the new FPGA 
acceleration planning phase. 

Developing an efficient FPGA implementation of a SQL 
operator is labor intensive.FPGA acceleration planning phase 
such that they can match the optimization rules in cases 
where they normally would not. The FPGA acceleration 
planning phase transforms the physical execution plan by 
substituting the filter operator with the accelerated 
version.The accelerated operator can either offload the 
evaluation of the filter to the RE2 library or to an FPGA 
accelerator through the Tidre package.The the results of 
accelerating Dremio with the RE2 library, which implements 
a regular expression engine optimized for the CPU. 

 

Fig 6: Execution plan transformation for the regular 
expression use case. 

Dask distributed is a different version of Dask which can be 
run on a cluster. It  provides the potential for added compute 
power and parallelization, but at the same time it also adds 
additional complexity. The client node is controlled by the 

end-user. It is used for all interactions within cluster. The 
scheduler node is used by the client to communicate, which 
keeps records of all worker nodes in the cluster. These 
worker nodes are held in an abstraction known as the 
worker pool. The accelerated version is deployed as an 
acceleration aware worker setup for this framework. 

The accelerated worker implementation is the only 
new contribution required to accelerate Dask distributed. 
The FPGA acceleration planning stage and the accelerated 
operator implementations can be imported from the 
accelerated version. 

 

Fig 6: System architecture of Dask distributed including 
the accelerated worker node 

 Data set can be submit by client node to the cluster., 
it is scattered over the worker pool. To submit queries we 
are using this connection. The scheduler plan these queries 
and sends the resulting  task graph to the worker nodes in 
the worker pool. It will not send as a whole, so individual 
task are submitted to the workers. It will execute these tasks. 
The worker node send data between each other in order to 
satisfy the missing dependencies of these tasks. The 
accelerated worker node implementation performs the FPGA 
acceleration stage on all incoming subgraphs of the task 
graph. Therefore, only accelerated worker nodes require an 
FPGA accelerator to be installed, as the vanilla worker 
implementations execute the original task subgraphs 
without any accelerated operators. 

5. CONCLUSIONS 

In this paper we  identified that FPGA accelerators can either 
be placed in the data path or attached as a processor. , FPGA 
accelerators attached as a processor, is best suited for the 
acceleration of individual SQL operators in an existing big 
data framework. A distinction is made between FPGA 
accelerators configured as an IO-attached processor and 
FPGA accelerators configured as a co-processor. From these 
two configurations, FPGA accelerators configured as a co-
processor are preferable, but this configuration is only 
available if the underlying compute system supports this. 
This work integrates FPGA accelerators configured as an IO-
attached processor into three batch-processing big data 
frameworks. Additionally, it is found that reading data from 
disk takes up a significant portion of the runtime of a SQL 
workload. In this case, FPGA accelerators can be placed in 
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between storage and the CPU. These accelerators could 
perform algorithms such as parquet decompression, 
projection, or filtering to reduce the runtime of these 
operations.  Two absolute requirements for the efficient 
integration of FPGA accelerator in big data frameworks are 
the presence of a flexible API for the manipulation of 
execution plans and the use of a hardware-friendly and 
language-independent in-memory data format such as 
Apache Arrow. 
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