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Abstract—In contrast to previous generation designs, which utilized special-purpose hardware units, the present  genera-  
tion of Graphics Processing Units (GPUs) comprises a large number of general-purpose processors. This fact, together with the 
widespread use of multi-core general purpose CPUs in modern machines, argues that performance-critical software like digital 
forensics tools should be  massively  threaded  to  make  the most of all available computational resources. The LLVM Core 
libraries offer a modern source and target-independent optimizer, as well as code generation support for a wide range    of 
CPUs. These libraries are based on the LLVM intermediate representation (LLVM IR), which is built around well-defined code 
representation. To make the code execute or compile quicker, an LLVM backend performs ”passes” on the intermediate code 
representation (LLVM IR). The LLVM backend introduces a pass called ”Divergence Analysis,” which is a combination of Diver- 
gence Analysis and Syncdependence Analysis, to aid the compiler in determining the divergent instruction ahead of time. This 
paper conducts a comprehensive review of the literature in order to address new ideas and difficulties in the field of 
divergence analysis, as well as the adoption of better methodologies. This was accomplished by evaluating previously 
published articles. This review’s findings show a variety of techniques, recent advances, and current approaches for analysing 
and optimizing the LLVM Divergence Analysis. Based on the findings, we make conclusions on the efficacy of LLVM Divergence 
Analysis from the results discussed in the selected review articles, and the report identifies future research challenges and 
demands for optimizing the Divergence Analysis. 
 
Index Terms—CPU, GPU, Compiler, Multi-core machines, SPMD instruction, SIMD instruction, Thread, LLVM, Optimiza- 
tion pass, Divergence Analysis 

I. INTRODUCTION 

For execution on a CUDA core, threads from a block are bundled into fixed-size warps, and threads within a warp must 
follow the same execution path. All  threads  must  execute  the same instruction at the same time i.e., threads cannot diverge 
within a warp. Branching for conditionals in an if- then-else statement is the most typical  code  construct  that can cause 
thread divergence. When certain threads in a warp evaluate to ’true’ while others evaluate to ’false,’ the ’true’ and ’false’ threads 
branch to distinct instructions. Some threads  will want to go to the ’then’ command, while  others  will want to go to the ’else’ 
instruction. We can assume that statements in the then and else clauses should be executed      in parallel. This, however, is not 
possible due to the need that threads in warp cannot diverge.  The  CUDA  platform has workarounds that fix the problem, but 
it has a negative impact on performance. Divergence analysis is used by vec- torizing compilers to determine whether 
programme points have uniform variables, meaning that all SPMD threads that execute this programme point have the same 
value. They use uniformity to keep branching and defer calculations to scalar processor units to avoid branch divergence. Non-
interference and binding time are closely related to divergence, which is    a hyper property. There are various divergence, 
binding time, and non-interference studies already available, but in order    to attain soundness, they either sacrifice precision 
or impose considerable limits on the program’s syntactic structure. 

The phrase divergence stems from two different lanes on a branch whose predicate is variable, i.e., non-uniform, taking 
different objectives. As a result, in the literature, the phrases uniform, variable, and non-divergent, divergent are occasion- ally 
used interchangeably. The term uniformity is used in this study to underline that the purpose of the analysis is to find uniform 
variables. Non-uniform branch variables are the cause of branch divergence. The most important part of divergence analysis is 
selecting the proper collection of control-flow split nodes that influence the uniformity of the abstract transformers for control 
flow joins and loop exits. Existing analyses simplify the problem in a variety of ways, for example, by putting severe limits on 
the program’s syntactic structure, such as supporting only structured syntax (while loops, if-then-else)  or prohibiting 
branches with more than two successors. The majority of formal treatments of divergence analysis rely on structured syntax 
established inductively. 
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II. MOTIVATION 

The motivation for this literature survey comes from the shortcoming of the current Divergence Analysis pass and see- ing 
what all work has been gone into writing the current pass. Before we go into actual shortcoming, let’s first dive into what 
divergence is and how it is calculated. Any instruction that  evaluates to different values for different threads is considered as 
divergent, since in a multi-threaded program all threads execute an instruction in a single lock step whenever a program 
counter hits a divergent instruction it needs to be handled carefully. For example if we have a divergent instruction as a if 
condition which evaluates to true for some threads and false for other threads in that case the threads are no longer  
synchronized and are awaiting to execute different instructions. One way the compiler handles this is by keeping executing  
instructions in order and if some threads don’t have to execute certain instructions it switches off those threads and turns them 
on their relevant instructions and switches off the other threads, this process is called masking. 

For masking to work, the compiler needs to know be- forehand which all instructions will be divergent for optimal handling 
of thread divergence. This is where the Divergence Analysis pass comes in. The Divergence analysis pass is target independent 
analysis pass i.e  does  not  make  any  changes  to instructions or the control flow graph of the  program  unlike transformation 
passes and marks all the appropriate instructions divergent. 

The current algorithm for marking an instruction divergent was introduced in the paper [7]Improving Performance of 
OpenCL on CPUs by Ralf Karrenberg and Sebastian Hack. The paper introduces three scenarios when an instruction can be 
marked divergent. If an instruction i1 is marked diver- gent(for example some instructions as inherently divergent such as an 
instruction is directly dependent on the thread id which evaluates to different values for different threads) then another 
instruction i2 can be marked divergent if one of the below 3 conditions are satisfied. 

• Instruction i2 is directly dependent on instruction i1 for example consider the below code snippet 

%i1 = call i32 @llvm.amdgcn.workitem.id() 

%i2 = icmp eq i32 %0, %i1 

if i1 is divergent and i2 is direct successor of it hence will also be marked divergent. 

• i1 is a terminating condition in a block and there exist at least 2 disjoint paths starting from i1 and ending at i2, we call it 
as sync dependent divergence. 

For example consider Fig.1, The branch condition in block A is divergent since both the value it depends on is divergent (%p), 
hence there are 2 different routes a thread can take to reach :join block i.e via block B and block     C and in both the cases the 
variable %x will be assigned different value depending on the path thread took. Hence it will be marked divergent. 

• i1 is involved in the exit condition of a loop and causing threads to exit the loop at different blocks, if you roll the loop out 
this looks similar to sync dependent divergence. For example consider Fig.2, If the loop exit condition    in block C is 
divergent then the thread can take any combination of paths given in the right figure hence it will cause divergence in block 
D, since it is reached by different threads at different times. 

III. CONTRIBUTION 

The current divergence analysis pass is not iterative, what we mean by that is once the pass gives the result of running the 
Divergence Analysis pass on the instruction set any changes made to the current instruction set no matter how small by 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

      Volume: 09 Issue: 04 | Apr 2022              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3494 
 

 

 

Fig.  1.   Code Snippet 

 
Fig. 2. Control Flow Structure 

Either the compiler while doing other optimization or by the user will cause the current results to be nullified and hence  we 
need to compute the pass result again. We aim to propose  a solution to this problem by analysing the working of the current 
Divergence analysis pass and proposing a new way to compute the analysis more efficiently to accommodate changes being 
made to the control flow graph on the go. We here present our all related findings that are previously done on   the Divergence 
and Divergence analysis pass which will be essential in proposing a new efficient solution. 

IV. RELATED WORK 

1. The methods given allow parallel loops and serial sections to be executed repeatedly without any blocking or explicit 
serialisation. It is possible to combine computations involving sections that are mutually independent. Processes are 
synchronised in such a way that they  just wait  for work  in a specific section to end, not for every process running 
theprogram to arrive at the synchronisation point, hence we don’t have process joins except at barrier points. A delayed 
process will not prevent other processes from executing the program. When a program is assigned many processes and 
run on a multiprocessor machine, the job execution time can be sped up. 
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Authors Technique/problem 
targeted 

Performance gains/result 

F.Darema, 

D.A.George, V.A.Norton and 
G.F.Pfister [1] 

 

SPMD model for Fortran 

 

Parallelization of programs and with keeping 
check on perfor- mance issues 

Chris 

Lattner, Vikram Adve [2] 
Original proposal for LLVM com- piler Description and design of LLVM compiler 

tackling lot of previous compiler problems 

 

Jaewook Shin [3] 

More      efficient 
SIMD code 

generation       in a vectorizing 
compiler 

 

Speedup factor of 1.99 over previ- ous 
technique 

Torben Amtoft[4] Slicing Irrelevant loop elimination 

Ralf Karren- berg, Sebas- 
tian Hack [5] 

Whole function 
vectorization 

on SSA code emitted by LLVM 

 

Average speedup factor of 3.9 on different 
OpenCL kernels 

Ralf Karren- berg, Sebas- 
tian Hack [6] 

OpenCL/CUDA performance on CPU Speedup factor of 1.21 against 

naive vectorization, 1.15–2.09 against suited 
kernels and 2.5 speedup factor against intel 
driver 

Aniruddha 

S. Vaidya, Anahita 
Shayesteh, Dong Hyuk Woo,
  Roy Saharoy, Mani 
Azimi [7] 

 

 

Optimising SIMD 
vectorization 

 

Reduction in execution cycles in divergent 
applications by upto 42% and on subset of 
divergent work- loads 7% reduction on 
today’s gpu and 18% on future gpus 

Jianzhou 

Zhao, Santosh Nagarakatte, 
Milo M.K. Martin, Steve 
Zdancewic [8] 

 

 

 

LLVM optimiza- tions 

 

 

The SSA based extraction gener- ates code 
which is on par with LLVM’s unverified 
implementation 

Diogo Sam- 

paio,Rafael Martins de 
Souza,Caroline Col- 
lange,Fernando Magno 
Quintão  Pereira [9] 

 

Divergence anal- ysis on SIMD ex- 
ecution model 

 

 

Divergence aware spiller produced 26.51% 
faster GPU code 

Ralf Karren- berg [10] SIMD Vectoriza- 

tion of SSA bases CFGs 
Consistent improved performance of the 
generated vectorized code 

Anirban 

Ghose, Soumyajit Dey, 
Pabitra Mitra, Mainak 
Chaudhuri [11] 

 

 

OpenCL workloads partitioning 

Improved partition results over pre- vious ML 
based static partitioning 

Charitha 

Saumya, Kirshanthan 
Sundarara- jah, and Milind 
Kulkarni [12] 

 

 

SIMT thread di- vergence reduc- tion 

A new analysis/transformation tool(DRAM) 
that reduces performance     decline     caused 
by CFG divergence 
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2.  Working prototype of the low-level virtual machine (LLVM) compiler, on which  we  are  now  working  on  one of the 
optimization passes (Divergence Analysis). LLVM is a compiler system that provides high-level information to compiler 
transformations at compile-time, link-time, run-time, and idle time between runs, allowing for transparent, lifetime 
program analysis and transformation for arbitrary programs. LLVM defines a simple, language-independent type system 
that  exposes  the  primitives  commonly  used  to  implement high-level language features; an instruction for typed 
address arithmetic; and a simple mechanism that can be used to uniformly and efficiently implement the exception 
handling features of high-level languages (and setjmp/longjmp in C). The LLVM compiler framework and code 
representation work together to provide a set of key features for practical, long-  term program analysis and 
transformation. To our knowledge, no other compilation method offers all of these features. We describe the design of the 
LLVM representation and compiler framework, and evaluate the design in three  ways:  (a)  the size and effectiveness of 
the representation, including the type information it provides; (b) compiler performance for several intraprocedural 
problems; and (c) illustrative  examples  of the benefits LLVM provides for several challenging compiler problems. 

3. ”Branches-on-superword-condition-code” (BOSCC) is introduced, which is closely related to divergence analysis. This 
method reintroduces control flow into vectorized code in order to take advantage of instances where the predicates for 
particular parts of the code are totally true or false at run- time. While this avoids superfluous code execution, it has 
some overhead for the dynamic test and does not eliminate the problem of increased register pressure because the 
code must still care for cases where the predicate isn’t totally true or false. 

4. A program transformation technique i.e., Slicing was proposed. Slicing allows the user to concentrate on the sections of a 
program that are relevant to the task at hand. Compiler optimizations, debugging, model checking, and protocol un- 
derstanding are all examples of when program slicing has been used. The underlying Control Flow Graph must have a 
single end node for slicing to work. This constraint makes it difficult to handle control structures with several exit points. 

5. A  single  piece  of  code  run  in  parallel  on  distinct components of an array of data does not indicate that each 
instance of that code performs the exact same instructions. The programmer or compiler must substitute control flow 
with data flow in order to employ SIMD instructions in the context of diverging control flow. The proposed approach 
provides efficient blending code for architectures without hardware support for predicted execution and can deal with 
irreducible control-flow without duplication. It is based on control to data flow conversion and can deal with irreducible 
control-flow  without duplication. 

6. SIMD utility units on GPUs are increasingly being employed in standard purpose applications for high perfor-  mance and 
accelerated power savings. However, the impacts of SIMD flow control fragmentation can result in a decrease in the 
efficiency of GPGPU programs, which are considered independent applications. Improving SIMD efficiency has the 
potential to assist a wide range of similar data applications    by providing considerable performance and power gains. 
The subject of SIMD fragmentation has recently gotten increasing attention, and different micro-architectural techniques 
to solve various elements of the problem have been presented. How- ever, because these procedures are frequently 
sophisticated, they are unlikely to be implemented in practise. We propose a two-dimensional configuration for GPGPU 
architecture in this research, which leverages basic compression cycle techniques in the instruction stream where 
specific closed line groups are present. Basic cycling pressure (BCC) and swizzled pressure (SCC) are the terms used to 
describe these settings. Additional requirements for implementing this option in the context of GPGPU-trained 
architecture are given in this work. Their analysis of loads of different SIMD functions from OpenCL (GPGPU) and 
OpenGL applications (images) shows that BCC and SCC reduced execution cycles in different systems by approximately 
42% (20% on average). In a subset of various operating loads, performance time is reduced by 7% in today’s GPUs or by 
18% in future GPUs with better memory providing better performance. Their work makes a significant contribu- tion by 
simplifying micro-architecture in order to promote diversity while giving a variety of benefits to complicated systems. 

7. The phi representation mentioned in the third condition of the motivation section is a result of the Static Single 
Assignment instruction representation format (SSA). Modern moderators, including as LLVM and GCC, use Static Single 
Assignment (SSA) intermediate representation (IR) to simplify and enable more complex setups, as described in this 
work. However, claiming the correctness of SSA-based development is difficult because the properties of SSA are 
dependent on   the full work flow graph. This study addresses this issue by presenting proven techniques for 
demonstrating the consis- tency and efficiency of SSA-based systems. In Coq’s proof-of- concept, we’re employing this 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

      Volume: 09 Issue: 04 | Apr 2022              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3497 
 

 

method to extract mechanical evidence of a few ”small” alterations that serve as building  blocks for the formation of 
massive SSAs. We officially verify the mem2reg LLVM variation in Vellvm, Coq-based formal semantics for LLVM IR, to 
show how this approach might be used. The resulting launches produce code and performance that are comparable to 
untested LLVM usage. 

8. The Single Instruction Multiple Data (SIMD) signature paradigm has resurfaced as a result of the growing interest    in 
image processing units. App developers now have more integration options thanks to SIMD technology, but self- 
organization remains a difficulty. Developers must cope with memory fragmentation and control flow in particular. 
These occurrences are caused by a phenomenon known as data fragmentation, which occurs when two processing 
elements (PEs) detect the same variable word with different values. Breakdown analysis, a statistical analysis that 
detects data fragmentation, is discussed in this article. This research, which is presently being invested in a high-quality 
compiler, is beneficial in a number of ways: it enhances the translation    of SIMD code into non-SIMD CPUs, it assists 
developers in improving their SIMD applications, and it drives SIMD ap- plication automation. They demonstrate this last 
argument by presenting the concept of the division register’s disintegration. This spiller leverages data from their 
analytics to restructure or distribute data among PEs. They tested it on a set of 395 CUDA kernels from well-known 
benchmarks as confirmation of its effectiveness. The divergence-aware spiller generates GPU code 26.21% faster than 
the code-generated code used  in the basic moderator. 

9. A static analysis was presented that identified specific limitations on variable values in distinct concurrent instances. 
This Vectorization Analysis classifies memory access patterns and determines which values are the same for all parallel 
instances, which values require sequential execution, which programme points are always executed by all instances, 
which loops may have instances exiting in different iterations  or over different exits, and which loops may have 
instances exiting in different iterations or over different exits. To detect reductions, existing vectorizing compilers rely on 
a set of hard- coded patterns. These loop vectorization implementations are intended for loops where the reduction 
operations are critical to the loop’s overall performance. Finally, WFV was utilised in a compiler to construct a loop 
vectorization transformation that allows users to designate which optimization stages should be conducted on specific 
code areas. 

10. Multi-partitioning is a crucial step in mapping and integrating compatible data applications on computer networks with 
both CPUs and GPUs. A number of automatic cate- gorization approaches, both vertical and dynamic, have been proposed 
for this purpose in recent years. The current study looks at regulatory unpredictability and how it affects the quality of 
those system variables. They recognise the number of variations in the system as a critical performance factor and train 
Machine Learning (ML)-based separators to  calculate the OpenCL load split of several platforms with one CPU   and one 
GPU statistically. When compared to previous ML- based classification algorithms for the same data load, their 
performance reports improved classification results in terms  of time performance. 

11. DARM is a framework for analysing and transforming compilers that can combine divergent control-flow topologies with 
comparable instruction sequences. DARM has been found to mitigate the performance deterioration caused by control- 
flow divergence. Divergence-Aware-Region-Melder (DARM) is a control-flow melding implementation that uses a hierar- 
chical sequence alignment technique to identify advantageous melding opportunities in divergent if-then-else portions 
of the control flow and then melds these regions to decrease control- flow divergence. According to the requirements, 
the method takes an SPMD function F and iterates over all basic blocks in F to see if the basic block is an entry to a 
meldable divergent region (R). Then, inside R, use Simplify to convert all sub- regions to simple regions. 

V. CONCLUSION 

The focus of this study was to carry out a systematic analy- sis of current research work on the LLVM Divergence analysis. The 
current Divergence Analysis pass returns the analysis of IR instruction set in linear  time.  However,  any  change  in  the IR (by 
any optimization pass) nullifies the results of the previous analysis pass. Hence the entire computation needs to be redone no 
matter the extent of changes in the IR. Hence      a new Divergence analysis pass which can smartly determine the changes and 
only recomputes the required information will result in noticeable performance enhancement. This divergent pass depends on 
SyncDependnece Analysis to determine the join blocks for a divergent terminator block. The current SDA algorithm is static 
(need to be recomputed for any change to IR) and runs in time complexity O(E + V), where E is the set of edges in the control 
flow graph and V depicts the set of vertices in the CFG. 
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