
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3492

Survey on Analysing and Optimizing the LLVM Divergence Analysis

Yashwant Singh1, Gunashekar Reddy K2, Mohammed Tajuddin3

1,2,3Department of Computer Science Dayananda Sagar College of Engineering, Bengaluru, India
--***---
Abstract—In contrast to previous generation designs, which utilized special-purpose hardware units, the present genera-
tion of Graphics Processing Units (GPUs) comprises a large number of general-purpose processors. This fact, together with the
widespread use of multi-core general purpose CPUs in modern machines, argues that performance-critical software like digital
forensics tools should be massively threaded to make the most of all available computational resources. The LLVM Core
libraries offer a modern source and target-independent optimizer, as well as code generation support for a wide range of
CPUs. These libraries are based on the LLVM intermediate representation (LLVM IR), which is built around well-defined code
representation. To make the code execute or compile quicker, an LLVM backend performs ”passes” on the intermediate code
representation (LLVM IR). The LLVM backend introduces a pass called ”Divergence Analysis,” which is a combination of Diver-
gence Analysis and Syncdependence Analysis, to aid the compiler in determining the divergent instruction ahead of time. This
paper conducts a comprehensive review of the literature in order to address new ideas and difficulties in the field of
divergence analysis, as well as the adoption of better methodologies. This was accomplished by evaluating previously
published articles. This review’s findings show a variety of techniques, recent advances, and current approaches for analysing
and optimizing the LLVM Divergence Analysis. Based on the findings, we make conclusions on the efficacy of LLVM Divergence
Analysis from the results discussed in the selected review articles, and the report identifies future research challenges and
demands for optimizing the Divergence Analysis.

Index Terms—CPU, GPU, Compiler, Multi-core machines, SPMD instruction, SIMD instruction, Thread, LLVM, Optimiza-
tion pass, Divergence Analysis

I. INTRODUCTION

For execution on a CUDA core, threads from a block are bundled into fixed-size warps, and threads within a warp must
follow the same execution path. All threads must execute the same instruction at the same time i.e., threads cannot diverge
within a warp. Branching for conditionals in an if- then-else statement is the most typical code construct that can cause
thread divergence. When certain threads in a warp evaluate to ’true’ while others evaluate to ’false,’ the ’true’ and ’false’ threads
branch to distinct instructions. Some threads will want to go to the ’then’ command, while others will want to go to the ’else’
instruction. We can assume that statements in the then and else clauses should be executed in parallel. This, however, is not
possible due to the need that threads in warp cannot diverge. The CUDA platform has workarounds that fix the problem, but
it has a negative impact on performance. Divergence analysis is used by vec- torizing compilers to determine whether
programme points have uniform variables, meaning that all SPMD threads that execute this programme point have the same
value. They use uniformity to keep branching and defer calculations to scalar processor units to avoid branch divergence. Non-
interference and binding time are closely related to divergence, which is a hyper property. There are various divergence,
binding time, and non-interference studies already available, but in order to attain soundness, they either sacrifice precision
or impose considerable limits on the program’s syntactic structure.

The phrase divergence stems from two different lanes on a branch whose predicate is variable, i.e., non-uniform, taking
different objectives. As a result, in the literature, the phrases uniform, variable, and non-divergent, divergent are occasion- ally
used interchangeably. The term uniformity is used in this study to underline that the purpose of the analysis is to find uniform
variables. Non-uniform branch variables are the cause of branch divergence. The most important part of divergence analysis is
selecting the proper collection of control-flow split nodes that influence the uniformity of the abstract transformers for control
flow joins and loop exits. Existing analyses simplify the problem in a variety of ways, for example, by putting severe limits on
the program’s syntactic structure, such as supporting only structured syntax (while loops, if-then-else) or prohibiting
branches with more than two successors. The majority of formal treatments of divergence analysis rely on structured syntax
established inductively.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3493

II. MOTIVATION

The motivation for this literature survey comes from the shortcoming of the current Divergence Analysis pass and see- ing
what all work has been gone into writing the current pass. Before we go into actual shortcoming, let’s first dive into what
divergence is and how it is calculated. Any instruction that evaluates to different values for different threads is considered as
divergent, since in a multi-threaded program all threads execute an instruction in a single lock step whenever a program
counter hits a divergent instruction it needs to be handled carefully. For example if we have a divergent instruction as a if
condition which evaluates to true for some threads and false for other threads in that case the threads are no longer
synchronized and are awaiting to execute different instructions. One way the compiler handles this is by keeping executing
instructions in order and if some threads don’t have to execute certain instructions it switches off those threads and turns them
on their relevant instructions and switches off the other threads, this process is called masking.

For masking to work, the compiler needs to know be- forehand which all instructions will be divergent for optimal handling
of thread divergence. This is where the Divergence Analysis pass comes in. The Divergence analysis pass is target independent
analysis pass i.e does not make any changes to instructions or the control flow graph of the program unlike transformation
passes and marks all the appropriate instructions divergent.

The current algorithm for marking an instruction divergent was introduced in the paper [7]Improving Performance of
OpenCL on CPUs by Ralf Karrenberg and Sebastian Hack. The paper introduces three scenarios when an instruction can be
marked divergent. If an instruction i1 is marked diver- gent(for example some instructions as inherently divergent such as an
instruction is directly dependent on the thread id which evaluates to different values for different threads) then another
instruction i2 can be marked divergent if one of the below 3 conditions are satisfied.

• Instruction i2 is directly dependent on instruction i1 for example consider the below code snippet

%i1 = call i32 @llvm.amdgcn.workitem.id()

%i2 = icmp eq i32 %0, %i1

if i1 is divergent and i2 is direct successor of it hence will also be marked divergent.

• i1 is a terminating condition in a block and there exist at least 2 disjoint paths starting from i1 and ending at i2, we call it
as sync dependent divergence.

For example consider Fig.1, The branch condition in block A is divergent since both the value it depends on is divergent (%p),
hence there are 2 different routes a thread can take to reach :join block i.e via block B and block C and in both the cases the
variable %x will be assigned different value depending on the path thread took. Hence it will be marked divergent.

• i1 is involved in the exit condition of a loop and causing threads to exit the loop at different blocks, if you roll the loop out
this looks similar to sync dependent divergence. For example consider Fig.2, If the loop exit condition in block C is
divergent then the thread can take any combination of paths given in the right figure hence it will cause divergence in block
D, since it is reached by different threads at different times.

III. CONTRIBUTION

The current divergence analysis pass is not iterative, what we mean by that is once the pass gives the result of running the
Divergence Analysis pass on the instruction set any changes made to the current instruction set no matter how small by

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3494

Fig. 1. Code Snippet

Fig. 2. Control Flow Structure

Either the compiler while doing other optimization or by the user will cause the current results to be nullified and hence we
need to compute the pass result again. We aim to propose a solution to this problem by analysing the working of the current
Divergence analysis pass and proposing a new way to compute the analysis more efficiently to accommodate changes being
made to the control flow graph on the go. We here present our all related findings that are previously done on the Divergence
and Divergence analysis pass which will be essential in proposing a new efficient solution.

IV. RELATED WORK

1. The methods given allow parallel loops and serial sections to be executed repeatedly without any blocking or explicit
serialisation. It is possible to combine computations involving sections that are mutually independent. Processes are
synchronised in such a way that they just wait for work in a specific section to end, not for every process running
theprogram to arrive at the synchronisation point, hence we don’t have process joins except at barrier points. A delayed
process will not prevent other processes from executing the program. When a program is assigned many processes and
run on a multiprocessor machine, the job execution time can be sped up.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3495

Authors Technique/problem
targeted

Performance gains/result

F.Darema,

D.A.George, V.A.Norton and
G.F.Pfister [1]

SPMD model for Fortran

Parallelization of programs and with keeping
check on perfor- mance issues

Chris

Lattner, Vikram Adve [2]
Original proposal for LLVM com- piler Description and design of LLVM compiler

tackling lot of previous compiler problems

Jaewook Shin [3]

More efficient
SIMD code

generation in a vectorizing
compiler

Speedup factor of 1.99 over previ- ous
technique

Torben Amtoft[4] Slicing Irrelevant loop elimination

Ralf Karren- berg, Sebas-
tian Hack [5]

Whole function
vectorization

on SSA code emitted by LLVM

Average speedup factor of 3.9 on different
OpenCL kernels

Ralf Karren- berg, Sebas-
tian Hack [6]

OpenCL/CUDA performance on CPU Speedup factor of 1.21 against

naive vectorization, 1.15–2.09 against suited
kernels and 2.5 speedup factor against intel
driver

Aniruddha

S. Vaidya, Anahita
Shayesteh, Dong Hyuk Woo,
 Roy Saharoy, Mani
Azimi [7]

Optimising SIMD
vectorization

Reduction in execution cycles in divergent
applications by upto 42% and on subset of
divergent work- loads 7% reduction on
today’s gpu and 18% on future gpus

Jianzhou

Zhao, Santosh Nagarakatte,
Milo M.K. Martin, Steve
Zdancewic [8]

LLVM optimiza- tions

The SSA based extraction gener- ates code
which is on par with LLVM’s unverified
implementation

Diogo Sam-

paio,Rafael Martins de
Souza,Caroline Col-
lange,Fernando Magno
Quintão Pereira [9]

Divergence anal- ysis on SIMD ex-
ecution model

Divergence aware spiller produced 26.51%
faster GPU code

Ralf Karren- berg [10] SIMD Vectoriza-

tion of SSA bases CFGs
Consistent improved performance of the
generated vectorized code

Anirban

Ghose, Soumyajit Dey,
Pabitra Mitra, Mainak
Chaudhuri [11]

OpenCL workloads partitioning

Improved partition results over pre- vious ML
based static partitioning

Charitha

Saumya, Kirshanthan
Sundarara- jah, and Milind
Kulkarni [12]

SIMT thread di- vergence reduc- tion

A new analysis/transformation tool(DRAM)
that reduces performance decline caused
by CFG divergence

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3496

2. Working prototype of the low-level virtual machine (LLVM) compiler, on which we are now working on one of the
optimization passes (Divergence Analysis). LLVM is a compiler system that provides high-level information to compiler
transformations at compile-time, link-time, run-time, and idle time between runs, allowing for transparent, lifetime
program analysis and transformation for arbitrary programs. LLVM defines a simple, language-independent type system
that exposes the primitives commonly used to implement high-level language features; an instruction for typed
address arithmetic; and a simple mechanism that can be used to uniformly and efficiently implement the exception
handling features of high-level languages (and setjmp/longjmp in C). The LLVM compiler framework and code
representation work together to provide a set of key features for practical, long- term program analysis and
transformation. To our knowledge, no other compilation method offers all of these features. We describe the design of the
LLVM representation and compiler framework, and evaluate the design in three ways: (a) the size and effectiveness of
the representation, including the type information it provides; (b) compiler performance for several intraprocedural
problems; and (c) illustrative examples of the benefits LLVM provides for several challenging compiler problems.

3. ”Branches-on-superword-condition-code” (BOSCC) is introduced, which is closely related to divergence analysis. This
method reintroduces control flow into vectorized code in order to take advantage of instances where the predicates for
particular parts of the code are totally true or false at run- time. While this avoids superfluous code execution, it has
some overhead for the dynamic test and does not eliminate the problem of increased register pressure because the
code must still care for cases where the predicate isn’t totally true or false.

4. A program transformation technique i.e., Slicing was proposed. Slicing allows the user to concentrate on the sections of a
program that are relevant to the task at hand. Compiler optimizations, debugging, model checking, and protocol un-
derstanding are all examples of when program slicing has been used. The underlying Control Flow Graph must have a
single end node for slicing to work. This constraint makes it difficult to handle control structures with several exit points.

5. A single piece of code run in parallel on distinct components of an array of data does not indicate that each
instance of that code performs the exact same instructions. The programmer or compiler must substitute control flow
with data flow in order to employ SIMD instructions in the context of diverging control flow. The proposed approach
provides efficient blending code for architectures without hardware support for predicted execution and can deal with
irreducible control-flow without duplication. It is based on control to data flow conversion and can deal with irreducible
control-flow without duplication.

6. SIMD utility units on GPUs are increasingly being employed in standard purpose applications for high perfor- mance and
accelerated power savings. However, the impacts of SIMD flow control fragmentation can result in a decrease in the
efficiency of GPGPU programs, which are considered independent applications. Improving SIMD efficiency has the
potential to assist a wide range of similar data applications by providing considerable performance and power gains.
The subject of SIMD fragmentation has recently gotten increasing attention, and different micro-architectural techniques
to solve various elements of the problem have been presented. How- ever, because these procedures are frequently
sophisticated, they are unlikely to be implemented in practise. We propose a two-dimensional configuration for GPGPU
architecture in this research, which leverages basic compression cycle techniques in the instruction stream where
specific closed line groups are present. Basic cycling pressure (BCC) and swizzled pressure (SCC) are the terms used to
describe these settings. Additional requirements for implementing this option in the context of GPGPU-trained
architecture are given in this work. Their analysis of loads of different SIMD functions from OpenCL (GPGPU) and
OpenGL applications (images) shows that BCC and SCC reduced execution cycles in different systems by approximately
42% (20% on average). In a subset of various operating loads, performance time is reduced by 7% in today’s GPUs or by
18% in future GPUs with better memory providing better performance. Their work makes a significant contribu- tion by
simplifying micro-architecture in order to promote diversity while giving a variety of benefits to complicated systems.

7. The phi representation mentioned in the third condition of the motivation section is a result of the Static Single
Assignment instruction representation format (SSA). Modern moderators, including as LLVM and GCC, use Static Single
Assignment (SSA) intermediate representation (IR) to simplify and enable more complex setups, as described in this
work. However, claiming the correctness of SSA-based development is difficult because the properties of SSA are
dependent on the full work flow graph. This study addresses this issue by presenting proven techniques for
demonstrating the consis- tency and efficiency of SSA-based systems. In Coq’s proof-of- concept, we’re employing this

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3497

method to extract mechanical evidence of a few ”small” alterations that serve as building blocks for the formation of
massive SSAs. We officially verify the mem2reg LLVM variation in Vellvm, Coq-based formal semantics for LLVM IR, to
show how this approach might be used. The resulting launches produce code and performance that are comparable to
untested LLVM usage.

8. The Single Instruction Multiple Data (SIMD) signature paradigm has resurfaced as a result of the growing interest in
image processing units. App developers now have more integration options thanks to SIMD technology, but self-
organization remains a difficulty. Developers must cope with memory fragmentation and control flow in particular.
These occurrences are caused by a phenomenon known as data fragmentation, which occurs when two processing
elements (PEs) detect the same variable word with different values. Breakdown analysis, a statistical analysis that
detects data fragmentation, is discussed in this article. This research, which is presently being invested in a high-quality
compiler, is beneficial in a number of ways: it enhances the translation of SIMD code into non-SIMD CPUs, it assists
developers in improving their SIMD applications, and it drives SIMD ap- plication automation. They demonstrate this last
argument by presenting the concept of the division register’s disintegration. This spiller leverages data from their
analytics to restructure or distribute data among PEs. They tested it on a set of 395 CUDA kernels from well-known
benchmarks as confirmation of its effectiveness. The divergence-aware spiller generates GPU code 26.21% faster than
the code-generated code used in the basic moderator.

9. A static analysis was presented that identified specific limitations on variable values in distinct concurrent instances.
This Vectorization Analysis classifies memory access patterns and determines which values are the same for all parallel
instances, which values require sequential execution, which programme points are always executed by all instances,
which loops may have instances exiting in different iterations or over different exits, and which loops may have
instances exiting in different iterations or over different exits. To detect reductions, existing vectorizing compilers rely on
a set of hard- coded patterns. These loop vectorization implementations are intended for loops where the reduction
operations are critical to the loop’s overall performance. Finally, WFV was utilised in a compiler to construct a loop
vectorization transformation that allows users to designate which optimization stages should be conducted on specific
code areas.

10. Multi-partitioning is a crucial step in mapping and integrating compatible data applications on computer networks with
both CPUs and GPUs. A number of automatic cate- gorization approaches, both vertical and dynamic, have been proposed
for this purpose in recent years. The current study looks at regulatory unpredictability and how it affects the quality of
those system variables. They recognise the number of variations in the system as a critical performance factor and train
Machine Learning (ML)-based separators to calculate the OpenCL load split of several platforms with one CPU and one
GPU statistically. When compared to previous ML- based classification algorithms for the same data load, their
performance reports improved classification results in terms of time performance.

11. DARM is a framework for analysing and transforming compilers that can combine divergent control-flow topologies with
comparable instruction sequences. DARM has been found to mitigate the performance deterioration caused by control-
flow divergence. Divergence-Aware-Region-Melder (DARM) is a control-flow melding implementation that uses a hierar-
chical sequence alignment technique to identify advantageous melding opportunities in divergent if-then-else portions
of the control flow and then melds these regions to decrease control- flow divergence. According to the requirements,
the method takes an SPMD function F and iterates over all basic blocks in F to see if the basic block is an entry to a
meldable divergent region (R). Then, inside R, use Simplify to convert all sub- regions to simple regions.

V. CONCLUSION

The focus of this study was to carry out a systematic analy- sis of current research work on the LLVM Divergence analysis. The
current Divergence Analysis pass returns the analysis of IR instruction set in linear time. However, any change in the IR (by
any optimization pass) nullifies the results of the previous analysis pass. Hence the entire computation needs to be redone no
matter the extent of changes in the IR. Hence a new Divergence analysis pass which can smartly determine the changes and
only recomputes the required information will result in noticeable performance enhancement. This divergent pass depends on
SyncDependnece Analysis to determine the join blocks for a divergent terminator block. The current SDA algorithm is static
(need to be recomputed for any change to IR) and runs in time complexity O(E + V), where E is the set of edges in the control
flow graph and V depicts the set of vertices in the CFG.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3498

REFERENCES

[1]F. DAREMA, D.A. GEORGE, V.A. NORTON and G.F. PFISTER: A single-program-multiple-data computational model for
EPEX/FORTRAN, Computer Sciences Department, IBM T.L Watson Research Centre, Yorktown Heights, NY 10598, U.S.A.
https://doi.org/10.1016/0167-8191(88)90094-4 - 1988

[2] LLVM: A Compilation Framework for Lifelong Program Analysis Transformation. Chris Lattner Vikram Adve(2004)

[3] Shin, J.: Introducing Control Flow into Vectorized Code. In: PACT. pp. 280–291. IEEE Computer Society (2007)

[4] Torben Amtoft. 2008. Slicing for modern program structures: a theory for eliminating irrelevant loops.

[5] Ralf Karrenberg, Sebastian Hack: Whole-function vectorization, 2011, IEEE
https://doi.org/10.1109/CGO.2011.5764682

[6] Karrenberg R., Hack S. (2012) Improving Performance of OpenCL on CPUs. In: O’Boyle M. (eds) Compiler Construction.
CC 2012. Lecture Notes in Computer Science, vol 7210. Springer, Berlin, Heidelberg.

[7] Aniruddha S. Vaidya, Anahita Shayesteh, Dong Hyuk Woo, Roy Sa- haroy, Mani Azimi (2013). SIMD divergence
optimization through intra- warp compaction.

[8] Formal verification of SSA-based optimizations for LLVM Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, Steve
Zdancewic(2013)

[9] Divergence analysis. Diogo Sampaio,Rafael Martins de Souza,Caroline Collange,Fernando Magno Quintão Pereira(2014)

[10] Ralf Karrenberg. 2015. Automatic SIMD Vectorization of SSA-based Control Flow Graphs. Springer.

[11] Divergence Aware Automated Partitioning of OpenCL Workloads. Anir- ban Ghose, Soumyajit Dey, Pabitra Mitra, Mainak
Chaudhuri(2016)

[12] Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni. DARM: Control-Flow Melding for SIMT Thread
Divergence Reduction.

