
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1363

Finding the Relational Description of Different Objects and Their

Importance in a Scene

Sabyasachi Moitra1, Sambhunath Biswas1,2

1Dept. of Comp. Sc. & Engg., Techno India University, West Bengal, India
2Ex-Indian Statistical Institute, Kolkata, India

---***---
Abstract - A scene is composed of many objects. It is
needless to say, that these objects have some relational
description between them. The relative positions of different
objects in a scene define the relational description between
its near and far objects with respect to an observer. Such a
relational description is not only significant from different
perspectives but also is important in many useful
applications. In this paper, we propose two different
methods to find the relative positions of objects in a scene
and based on this information, a hierarchical description or
a tree structure is generated. This structure has an immense
role in scene estimation and processing of various
applications. One of the methods considers simply the
Euclidean distance between the image baseline and
different objects in the scene. The other method computes
the distance considering the depth map of the objects. To
study the superiority of the methods, we have made a
comparison between them. It is seen that the first method is
simpler and faster compared to the second one. We also
determine the weights of different objects based on their
hierarchical description, which may find an immense role in
determining the importance of various objects present in the
scene.

Key Words: Object detection, Object position, Object
hierarchy, Object weights.

1. INTRODUCTION

Classical computer vision techniques extract features from
an image to identify an object. This finds applications
favouring methods described in Viola-Jones [1], HOG [2].
The features for objects are fed into a pre-trained
classifier, such as SVM, for prediction of the objects'

classes. A sliding window at different positions in images
can be used to extract features. These features may or may
not correspond to an object at a particular position. In
other words, the sliding window locates positions of
different objects. On the other hand, in deep learning-
based techniques, a deep convolutional neural network
[3][4] is used to extract features from an image to classify
and localize an object, such as in R-CNN [5], Faster R-CNN
[6], and YOLO [7]. For classification and localization of
objects in images, these features are fed into a sequence of
fully-connected layers or convolutional layers. A
convolutional neural network is made up of a series of
convolutional and max-pool layers.

To analyze a given scene, the relationships between the
detected objects in the scene must be known. This means
the relative position of each object with respect to an
observer as well as other detected objects are made
known (e.g., the current position of each sprinter in a
sprint). This paper, presents two methods for determining
such relative position of detected objects. This relative
positional structure provides a hierarchical description of
objects.

The hierarchy has a significant impact in different
applications. This is ensured through different weights
attached to different detected objects. The weights are
computed based on their relative positions in the scene.

2. CAMERA-OBJECT DISTANCE

To find the camera-object distance, we assume that a
camera is placed on the z-axis and is horizontal. This is a
usual practice. One can have some idea about the camera
positioning as referred to in [8]. Objects can, initially be
detected using a cutting-edge object detection method. We
have used YOLO [7] in our algorithm. The distance between
the camera and detected objects is, subsequently
computed. This provides the relative position of detected
objects in a scene with respect to an observer. We have
proposed two different methods to compute the camera-
object distance. The first one is simple in nature, while the
second one uses the concept based on depth map described
in [9].

Object detection is a well-known problem in computer
vision community to identify and locate objects in a static
or dynamic scene, such as a video. The technique draws
bounding boxes around detected objects, allowing us to
determine the object location and the object class in a
given scene. The problem has widespread applications;
some of them include self-driving cars, video surveillance,
crowd counting, etc. Object detection methods can be
divided in two categories that use (i) classical computer
vision techniques and the (ii) modern or deep learning-
based techniques.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1364

Method-1:

Method-1 uses an RGB image (scene) as input as shown in
Figure 1 and detects objects as indicated in it. It computes
the camera-object distance using the orthogonal distance
between the image baseline and the detected objects. The
related algorithm is stated below.

Algorithm

STEP-1: Detect objects in a scene, using the YOLO model,

 YOLO() .[

]

/, (1)

where [

]

 is a vector in which (

)

are the th bounding box coordinates, i.e., location ((

)
and (

) are the top-left and bottom-right corners

respectively) and is the class of the th object detected.

STEP-2: For each object in :

STEP-2.1: Draw a perpendicular from the bottom-right
corner of its bounding box (

) to the baseline of .

STEP-2.2: Calculate the length of (
) by computing the

Euclidean distance between (

) and the point
perpendicularly located on 's baseline (

),

 () √∑ ()

 , (2)

where () is the Euclidean distance between two
points and with (

) and (

) (→
bottom-right corner of).

STEP-3: Normalize the perpendicular distances computed
in STEP-2,

 *

∑
 +. (3)

STEP-4: Compute the position of objects based on the
computed in STEP-3 and get

 .

Fig -1: The relative positions of objects in a scene with

respect to the observer using Method-1.

Method-2 (Depth Map-Based):

Depth map-based method has its framework in [10]. It also
inputs the same RGB image (scene) and detects objects as
shown in Figure 2, but it computes the camera-object
distance by computing the average of the depth map
image of the detected object.

Algorithm

STEP-1: Detect objects in using the YOLO model,

 YOLO() .[

]

/, (4)

where [

]

 is a vector in which (

)

are the th bounding box coordinates, i.e., location ((

)
and (

) are the top-left and bottom-right corners

respectively) and is the class of the th object detected.

STEP-2: Resize to ,

 , (5)

where .

STEP-3: For each object in , map (

) on

 using [11],

 (⁄),

 (⁄),
(6)

 .[

]

/,

where * +.

STEP-4: Convert to grayscale () using the
weighted/luminosity method [12],

 () () (), (7)
where , , and are the red, green, and blue values
of each pixel in , respectively.

STEP-5: Compute the albedo (surface reflectivity of an
object) () and illumination direction () from using [13],

√

 (8)

 , -,
where

 (()),

(9)

 (()),

, and

√

((()) → average of the image brightness (pixel

intensity), (()) → average of the image brightness

square, → tilt, → slant, → image's spatial gradient in
 direction, → image's spatial gradient in direction).

STEP-6: Construct the depth map from using [10],

 () ()
 (())

 (())

 ()

, (10)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1365

where

 (())

 () (

√()√(

)
),

(11)

 (())

 ()

()()

√() √(

)

()

√()√(

)
,

 () (),

 () (),

 , and

 .

Initialize () and repeat the step times. To avoid
dividing by 0 a small number is added to the denominator
of (10).

STEP-7: Compute the average depth of objects
 * + from using the bounding box

coordinates obtained in STEP-3,

 (.(

) (

)/), (12)

where (.(

) (

)/) is the average depth of

the th object with box coordinates (

).

STEP-8: Normalize ,

 *

∑
 +. (13)

STEP-9: Compute the position of objects based on the
computed in STEP-8 and get

 .

Fig -2: The relative positions of objects in a scene with

respect to the observer using Method-2.

3. PROPOSED OBJECT HIERARCHY

In this section, we formulate the hierarchy of detected
objects in a scene using objects' relative position computed
in Section 2 with respect to an observer, i.e., the camera-
object distance , considering (

) as the root and

the objects (, , ...,) as the non-root nodes of a tree.

The root node resides at the top of the hierarchy (level),
whereas the non-root nodes are at different lower levels
(, , ...,) based on the camera-object distance
information. Objects within a distance

 from the root

level are in level , while objects within a distance

but greater than
 are in level . Thus, all the objects

with an arbitrary distance satisfying

 are in

level , and so on. Objects in a particular level are
positioned from left to right in increasing order of camera-
object distance. An object at level is a child of a node at

its previous level provided the object has minimum
computed distance with respect to this node. All other
objects at the level are also the children of the said
previous node provided the level has no other nodes.
The same rule holds good for all other nodes.

Algorithm to Create the Hierarchical Tree

STEP-1: Building levels

STEP-1.1: Set the root level at .

STEP-1.2: Find the maximum camera-object distance, .

STEP-1.3: Set the distance between the levels, and find
the number of levels,

 ⁄ . (14)

STEP-1.4: Select the objects at level with distance ,

 (e.g., objects of level satisfies

 ,

 (say)).

STEP-2: Parent-child allocation

For all objects at level , compute their distances with
respect to an object at level and find the object for
minimum computed distance. The object at level is a
child of the object at the level for which the minimum
computed distance is obtained. The process is carried out
for all objects at level . If the level has only one
object, then all the objects at are the children of the
single object at level . No child may have two or more
than two parents even if they have all equal distances. In
this case, the parent will be the first object at level .

Figure 3 shows the hierarchy of detected objects in the
scene as shown in Figure 1.

Fig -3: Hierarchy for the scene as shown in Figure 1.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1366

4. COMPUTATION OF WEIGHTS

Depending on the hierarchy of objects in the scene, we now
provide a scheme that explicitly computes weights of each
object in the hierarchy. The assignment is such that, as the
camera-object distance increases, object weight decreases.
This means weights of the nearby objects are larger than
the far away objects. The algorithm to compute the weights
of different objects at different levels in the scene is
described below.

Let us suppose we have in the hierarchy, levels , , ...,
where is the last level. We further assume that has
 , , ...,

 objects, i.e., objects. Similarly, has

objects, and so on.

We assume the weights of different objects at level are
given by

 ()

(15)

where is the number of objects at level and is the
last level.

Likewise the weights of objects at level are

 ()

(16)

where is the number of objects at level .

Finally the weights of objects at the last level are given
by,

 ()

 ()

(17)

where is the number of objects at level .

Note that the generalized formula for computing weights of
objects at different levels can be written as,

 ()

 ()

(18)
 ,

If the camera-object distance of two consecutive objects is
same, their weights are also same.

Algorithm for Computation of Weights

Input: Object hierarchy of a scene, * +

({
} {

} {
})

Output: Object weights, * +

Begin

For to Do

For to Do
If Then

 ()

 ()

Else

If camera-object-distance ()

camera-object-distance () Then

Else

 ()

 ()

End If

End If
Add to

End For
End For

End

Figure 4 shows the weights of detected objects in the scene
shown in Figure 1.

Fig -4: Description of weights for different objects as
shown in Figure 1.

5. RESULTS AND DISCUSSION

We have implemented the entire work using Python on a
Windows machine with the PROCESSOR of Intel 8th
Generation, Core i5 having the RAM capacity of 8GB DDR4.
Figure 5 provides the scenes and respectively;
contains three different objects, e.g., DOG, BICYCLE and
TRUCK, while contains three different objects, e.g., DOG,
PERSON and CHAIR. Table 1 depicts the camera-object
distances for different objects in the scene and . These
distances are both for the Method-1 and Method-2. Figure
6 describes the hierarchy for these two scenes using this
camera-object distance information.

Fig -5: The scenes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1367

Table -1: Camera-Object Distance

Scene Position Object units

a

b
 (c = 130)

 1 DOG 0.056027 0.232284
 2 BICYCLE 0.24618 0.23391
 3 TRUCK 0.697793 0.533807
 ETd: ≈0.78s ET: ≈29.07s

 (= 10)
 1 DOG 0.265152 0.316494
 2 PERSON 0.295455 0.335312
 3 CHAIR 0.439394 0.348194
 ET: ≈0.86s ET: ≈2.98s

a = Method-1, b = Method-2,c = No. of iterations,
dET = Execution Time.

Note that
(;) is the object hierarchy

for the th scene of Figure 5, due to the th method.

The camera-object distance determines the position of
objects in the scene. This position of objects in the scene
considers the shortest distance as 0 and increases with the
increase of camera-object distance. This is clearly depicted
in Table 1. However, if two objects have the same camera-
object distance then their positions are also the same (e.g.,
for the first scene in Figure 7). This information determines
the nearest and furthest objects in a scene (thus for in
Figure 5, the DOG is the nearest object and the TRUCK is
the furthest object). This determines the relative positions
of objects in the scene.

The Method-2, on the other hand is not as straightforward
as is the Method-1. It computes the depth map (STEP-6 in
its algorithm (equation (10) and equation (11)))
iteratively. Number of iterations and its execution time are
shown in Table 1. Thus, the process of iteration behaves as
a tuning parameter. Comparison of these two methods
shows that the Method-1 computes the camera-object
distance in a much lesser time than the Method-2. The
fastness is due to mathematical simplicity over the Method-
2.

To construct the object hierarchy we take help of the
camera-object distance. It provides a graphical
representation of the position of objects in the scene. The
tree-like structure with some levels and nodes describes
the relative position of objects in the scene. The root node,

representing the scene, resides at level , while the non-
root nodes, representing objects, resides at non-zero levels
of the structure. The level distance is used to create these
object levels. Roughly nearby objects belong to the same
level. If an object in a level has a minimum distance with
respect to an object in the previous level, then it is
described as a child of that object. For example, in Figure 6,
for the object hierarchy

, two objects, the DOG and

the PERSON, are within 0.4 units of level , forming level
 of the tree, and only one object, a CHAIR, is within 0.2
units of level , forming level of the tree. The CHAIR
object at level has a minimum distance with the DOG
object of level , so it is described as a child of the DOG
object.

Using a level distance of 0.2 units, the object hierarchies

 and
 in Figure 6 for scene in Figure 5 are

fairly reasonable because we can consider and disregard
the DOG and BICYCLE as the nearby objects, i.e., both the
possibilities can be viewed as logical for the scene.
However, the distance between the last and the last but one
levels (and) of

 is 0.2 units, which does not

correspond to the scene; it must be more than 0.2 units.
For the scene , we can only consider the object hierarchy

 to be reasonably good, not
 because the

scene shows that only the DOG and PERSON are almost the
close objects, but not the CHAIR. So, based on our previous
arguments, we can conclude that the Method-1 for
computing camera-object distance is superior to the
Method-2.

Figure 7 depicts the objects' relative position in a scene
relative to an arbitrary observer, using the Method-1 and
its hierarchy based on the computed parameters.

Figure 7: The relative position of objects in a scene with

respect to an observer and the corresponding hierarchy of
objects.

Object weights play a significant role in analyzing and
evaluating a scene. Figure 8 depicts the analysis and
evaluation of a scene both without and with using object
weights computed from object hierarchy, and Table 2
shows the significance of object weights in a comparative
analysis for evaluations.

Fig -6: Description of object hierarchies.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1368

Fig -8: Evaluation of a scene both without (top) and with
(bottom) object weights.

Table -2: Comparative Analysis

Problem Chances of first, second and third place
holders in a sprint as shown in Figure 8.

Solution Without Using
Object Weights

Using Object
Weights

 Interpretation Interpretation
 Both PERSON1 and

PERSON2 have a
chance of winning the
first place, PERSON3,
PERSON4, PERSON5
the second, and
PERSON7 and
PERSON6 the third.

PERSON1 has a
higher chance of
winning the first
place than PERSON2.
If PERSON1 wins the
first place, PERSON2
has a better chance of
finishing second than
PERSON3, PERSON4,
and PERSON5. If
PERSON2 takes
second place, both
PERSON3 and
PERSON4 have a
higher and equal
probability of taking
third place than
PERSON5, PERSON6,
and PERSON7.

 Inference Inference
 Impossibility for

inferencing/decision
making for winners.

Ability for
inferencing/decision
making for winners.

6. CONCLUSIONS

In this paper, we find objects' successive positions in a
scene, by measuring the distance between an object and
an observer (the camera). We have proposed two different
methods, in which the first method computes the camera-
object distance using the Euclidean distance between the
image baseline and the detected objects, and the second
method computes the same using the depth map of object.
We have also created a hierarchical description of objects
in a scene based on this information. This hierarchy is
helpful to find the objects relative position in the scene
and may find an immense role in analysis as well as in data
structure of scenes. The data structure might be helpful in
faster processing of scenes. The comparison between the
methods shows that Method-1 is superior to Method-2
that uses the depth map of object. We have also computed
the object weights from its hierarchical description in the
scene. This plays an important role in analysis and
evaluation of a scene. Our main objective is to make the
whole system more robust and informative, and we shall
describe the concerned method in a forthcoming paper.

ACKNOWLEDGEMENT

The authors would like to acknowledge Techno India
University, West Bengal for its support to this work.

REFERENCES

[1] Viola P, Jones M. Rapid object detection using a

boosted cascade of simple features. In: Proceedings of
the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001.
vol. 1; 2001. p. I–I.

[2] Dalal N, Triggs B. Histograms of oriented gradients for
human detection. In: 2005 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition (CVPR’05). vol. 1; 2005. p. 886–893.

[3] Krizhevsky A, Sutskever I, Hinton GE. ImageNet
Classification with Deep Convolutional Neural
Networks. In: Advances in Neural Information
Processing Systems 25. Curran Associates, Inc.; 2012.
p. 1097–1105.

[4] Simonyan K, Zisserman A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR.
2015;abs/1409.1556.

[5] Girshick R, Donahue J, Darrell T, Malik J. Rich Feature
Hierarchies for Accurate Object Detection and
Semantic Segmentation. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR);
2014.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1369

[6] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal
Networks. In: Advances in Neural Information
Processing Systems 28. Curran Associates, Inc.; 2015.
p. 91–99.

[7] Redmon J, Divvala S, Girshick R, Farhadi A. You Only
Look Once: Unified, Real-Time Object Detection. In:
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2016.

[8] Singh A, Singh S, Tiwari DS. Comparison of face
Recognition Algorithms on Dummy Faces.
International Journal of Multimedia & Its Applications.
2012 09;4.

[9] Zhang R, Tsai PS, Cryer JE, Shah M. Shape-from-
shading: a survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 1999;21(8):690–
706. https://doi.org/10.1109/34.784284.

[10] Ping-Sing T, Shah M. Shape from shading using linear
approximation. Image and Vision Computing.
1994;12(8):487–498. https://doi.org/10.1016/0262-
8856(94)90002-7.

[11] Cogneethi.: C 7.5 | ROI Projection | Subsampling ratio |
SPPNet | Fast RCNN | CNN | Machine learning |
EvODN. Available from:
https://www.youtube.com/watch?v=wGa6ddEXg7w&
list=PL1GQaVhO4f jLxOokW7CS5kY J1t1T17S.

[12] Dynamsoft.: Image Processing 101 Chapter 1.3: Color
Space Conversion. Available from:
https://www.dynamsoft.com/blog/insights/image-
processing/image-processing-101-color-space-
conversion/.

[13] S. Y. Elhabian, “Hands on shape from shading,” 05
2008.

