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Abstract - A scene is composed of many objects. It is 
needless to say, that these objects have some relational 
description between them. The relative positions of different 
objects in a scene define the relational description between 
its near and far objects with respect to an observer. Such a 
relational description is not only significant from different 
perspectives but also is important in many useful 
applications. In this paper, we propose two different 
methods to find the relative positions of objects in a scene 
and based on this information, a hierarchical description or 
a tree structure is generated. This structure has an immense 
role in scene estimation and processing of various 
applications. One of the methods considers simply the 
Euclidean distance between the image baseline and 
different objects in the scene. The other method computes 
the distance considering the depth map of the objects. To 
study the superiority of the methods, we have made a 
comparison between them. It is seen that the first method is 
simpler and faster compared to the second one. We also 
determine the weights of different objects based on their 
hierarchical description, which may find an immense role in 
determining the importance of various objects present in the 
scene.  

 
Key Words:  Object detection, Object position, Object 
hierarchy, Object weights. 

 

1. INTRODUCTION  
 

Classical computer vision techniques extract features from 
an image to identify an object. This finds applications 
favouring methods described in Viola-Jones [1], HOG [2]. 
The features for objects are fed into a pre-trained 
classifier, such as SVM, for prediction of the objects' 

classes. A sliding window at different positions in images 
can be used to extract features. These features may or may 
not correspond to an object at a particular position. In 
other words, the sliding window locates positions of 
different objects. On the other hand, in deep learning-
based techniques, a deep convolutional neural network 
[3][4] is used to extract features from an image to classify 
and localize an object, such as in R-CNN [5], Faster R-CNN 
[6], and YOLO [7].  For classification and localization of 
objects in images, these features are fed into a sequence of 
fully-connected layers or convolutional layers. A 
convolutional neural network is made up of a series of 
convolutional and max-pool layers. 

To analyze a given scene, the relationships between the 
detected objects in the scene must be known. This means 
the relative position of each object with respect to an 
observer as well as other detected objects are made 
known (e.g., the current position of each sprinter in a 
sprint). This paper, presents two methods for determining 
such relative position of detected objects. This relative 
positional structure provides a hierarchical description of 
objects. 

The hierarchy has a significant impact in different 
applications. This is ensured through different weights 
attached to different detected objects. The weights are 
computed based on their relative positions in the scene. 

 

2. CAMERA-OBJECT DISTANCE 
 
To find the camera-object distance, we assume that a 
camera is placed on the z-axis and is horizontal. This is a 
usual practice. One can have some idea about the camera 
positioning as referred to in [8]. Objects can, initially be 
detected using a cutting-edge object detection method. We 
have used YOLO [7] in our algorithm. The distance between 
the camera and detected objects is, subsequently 
computed. This provides the relative position of detected 
objects in a scene with respect to an observer. We have 
proposed two different methods to compute the camera-
object distance. The first one is simple in nature, while the 
second one uses the concept based on depth map described 
in [9]. 
 

 

Object detection is a well-known problem in computer 
vision community to identify and locate objects in a static 
or dynamic scene, such as a video. The technique draws 
bounding boxes around detected objects, allowing us to 
determine the object location and the object class in a 
given scene. The problem has widespread applications; 
some of them include self-driving cars, video surveillance, 
crowd counting, etc. Object detection methods can be 
divided in two categories that use (i) classical computer 
vision techniques and the (ii) modern or deep learning-
based techniques. 
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Method-1: 

Method-1 uses an RGB image (scene) as input as shown in 
Figure 1 and detects objects as indicated in it. It computes 
the camera-object distance   using the orthogonal distance 
between the image baseline and the detected objects. The 
related algorithm is stated below. 

Algorithm 

STEP-1: Detect objects in a scene,   using the YOLO model, 

      YOLO( )   .[  
    

    
    

    ]
        

 
/, (1) 
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 is a vector in which (  
    

    
    

 ) 

are the  th bounding box coordinates, i.e., location ((  
    

 ) 
and (  

    
 ) are the top-left and bottom-right corners 

respectively) and    is the class of the  th object detected. 

STEP-2: For each object    in     : 

STEP-2.1: Draw a perpendicular    from the bottom-right 
corner of its bounding box (  

    
 ) to the baseline of     . 

STEP-2.2: Calculate the length of   (   
) by computing the 

Euclidean distance between (  
    

 ) and the point 
perpendicularly located on     's baseline (  

    ), 

   
  (   )  √∑ (     )

  
   , (2) 

where  (   ) is the Euclidean distance between two 
points   and   with   (  

    
 ) and   (  

    ) (  → 
bottom-right corner of     ). 

STEP-3: Normalize the perpendicular distances computed 
in STEP-2, 

  *    
   

∑     
      +. (3) 

STEP-4: Compute the position of objects based on the 
computed   in STEP-3 and get     

   . 

 
Fig -1: The relative positions of objects in a scene with 

respect to the observer using Method-1. 

Method-2 (Depth Map-Based): 

Depth map-based method has its framework in [10]. It also 
inputs the same RGB image (scene) and detects objects as 
shown in Figure 2, but it computes the camera-object 
distance   by computing the average of the depth map 
image of the detected object. 

Algorithm 

STEP-1: Detect objects in   using the YOLO model, 

      YOLO( )   .[  
    

    
    

    ]
        

 
/, (4) 

where [  
    

    
    

    ]
 

 is a vector in which (  
    

    
    

 ) 

are the  th bounding box coordinates, i.e., location ((  
    

 ) 
and (  

    
 ) are the top-left and bottom-right corners 

respectively) and    is the class of the  th object detected. 

STEP-2: Resize   to    , 

        
   , (5) 

where        . 

STEP-3: For each object    in     , map (  
    

    
    

 ) on 

  using [11], 
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(6) 
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where   *   +. 

STEP-4: Convert    to grayscale ( ) using the 
weighted/luminosity method [12], 

  (         )  (         )  (         ), (7) 
where    ,    , and     are the red, green, and blue values 
of each pixel in   , respectively. 

STEP-5: Compute the albedo (surface reflectivity of an 
object) ( ) and illumination direction ( ) from   using [13], 

  
√          

 

 
  (8) 

  ,                      -, 
where 

    ( (   )), 

(9) 

    (  (   )), 

         

  
, and 
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( ( (   )) → average of the image brightness (pixel 

intensity),  (  (   )) → average of the image brightness 

square,   → tilt,   → slant,    → image's spatial gradient in 
  direction,    → image's spatial gradient in   direction). 

STEP-6: Construct the depth map   from   using [10], 

 (   )   (   )  
 ( (   ))

  ( (   ))

  (   )
  

, (10) 
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where 
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Initialize  (   )    and repeat the step   times. To avoid 
dividing by 0 a small number   is added to the denominator 
of (10). 

STEP-7: Compute the average depth of objects 
     *          + from   using the bounding box 

coordinates obtained in STEP-3, 

    ( .(   
     

 ) (   
     

 )/), (12) 

where  ( .(   
     

 ) (   
     

 )/) is the average depth of 

the  th object with box coordinates (   
     

     
     

 ). 

STEP-8: Normalize     , 

  *    
  

∑    
      +. (13) 

STEP-9: Compute the position of objects based on the 
computed   in STEP-8 and get     

   . 

 
Fig -2: The relative positions of objects in a scene with 

respect to the observer using Method-2. 
 

3. PROPOSED OBJECT HIERARCHY 
 
In this section, we formulate the hierarchy of detected 
objects in a scene using objects' relative position computed 
in Section 2 with respect to an observer, i.e., the camera-
object distance  , considering  (     

   ) as the root and 

the objects (  ,   , ...,   ) as the non-root nodes of a tree. 

The root node resides at the top of the hierarchy (level   ), 
whereas the non-root nodes are at different lower levels 
(  ,   , ...,   ) based on the camera-object distance 
information. Objects within a distance    

  from the root 

level    are in level   , while objects within a distance    
   

but greater than    
 are in level   . Thus, all the objects 

with an arbitrary distance   satisfying    
       

  are in 

level   , and so on. Objects in a particular level are 
positioned from left to right in increasing order of camera-
object distance. An object    at level    is a child of a node at 

its previous level      provided the object has minimum 
computed distance with respect to this node. All other 
objects at the level    are also the children of the said 
previous node provided the level      has no other nodes. 
The same rule holds good for all other nodes. 

Algorithm to Create the Hierarchical Tree 

STEP-1: Building levels 

STEP-1.1: Set the root level at    . 

STEP-1.2: Find the maximum camera-object distance,     . 

STEP-1.3: Set the distance between the levels,     and find 
the number of levels, 

          ⁄ . (14) 

STEP-1.4: Select the objects at level    with distance  , 
     

       
   (e.g., objects of level    satisfies    

   , 

   
       (say)). 

STEP-2: Parent-child allocation 

For all objects at level     , compute their distances with 
respect to an object at level    and find the object for 
minimum computed distance. The object at level    is a 
child of the object at the level      for which the minimum 
computed distance is obtained. The process is carried out 
for all objects at level   . If the level      has only one 
object, then all the objects at    are the children of the 
single object at level     . No child may have two or more 
than two parents even if they have all equal distances. In 
this case, the parent will be the first object at level     . 

Figure 3 shows the hierarchy of detected objects in the 
scene as shown in Figure 1. 

 

 
Fig -3: Hierarchy for the scene as shown in Figure 1. 
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4. COMPUTATION OF WEIGHTS 
 
Depending on the hierarchy of objects in the scene, we now 
provide a scheme that explicitly computes weights of each 
object in the hierarchy. The assignment is such that, as the 
camera-object distance increases, object weight decreases. 
This means weights of the nearby objects are larger than 
the far away objects. The algorithm to compute the weights 
of different objects at different levels in the scene is 
described below. 

Let us suppose we have in the hierarchy, levels   ,   , ...,    
where    is the last level. We further assume that    has 
  ,   , ...,    

 objects, i.e.,    objects. Similarly,    has    

objects, and so on. 

We assume the weights of different objects at level    are 
given by 

      
   (   )

  

 
   

   
 

(15) 
           

where    is the number of objects at level    and   is the 
last level. 

Likewise the weights of objects at level    are 

      
   (   )

    

 
   

   
 

(16) 
           

where    is the number of objects at level   . 

Finally the weights of objects at the last level    are given 
by, 

      
   (   )

       

 
  (   )

   
 

(17) 
           

where    is the number of objects at level   . 

Note that the generalized formula for computing weights of 
objects at different levels can be written as, 

      
   (   )

       

 
  (   )

   
 

(18) 
         ,            

If the camera-object distance of two consecutive objects is 
same, their weights are also same. 

Algorithm for Computation of Weights 

Input: Object hierarchy of a scene,    *               +  

(   {        
}    {        

}      {          
})  

Output: Object weights,   *            + 

Begin 
    
For     to   Do 

For     to    Do 
If     Then 

      

   
   (    )

          

 
  (   )

   
 

          
Else   

If camera-object-distance (  )   

camera-object-distance (    ) Then 

          

Else 

   
   (    )

          

 
  (   )

   
 

        
End If 

End If 
Add    to   

End For 
End For 

End 

Figure 4 shows the weights of detected objects in the scene 
shown in Figure 1. 

 

Fig -4: Description of weights for different objects as 
shown in Figure 1. 

 

5. RESULTS AND DISCUSSION 
 
We have implemented the entire work using Python on a 
Windows machine with the PROCESSOR of Intel 8th 
Generation, Core i5 having the RAM capacity of 8GB DDR4. 
Figure 5 provides the scenes    and    respectively;    
contains three different objects, e.g., DOG, BICYCLE and 
TRUCK, while    contains three different objects, e.g., DOG, 
PERSON and CHAIR. Table 1 depicts the camera-object 
distances for different objects in the scene    and   . These 
distances are both for the Method-1 and Method-2. Figure 
6 describes the hierarchy for these two scenes using this 
camera-object distance information. 

 
Fig -5: The scenes. 
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Table -1: Camera-Object Distance 
 
Scene Position Object   units 

     
a   

b 
      ( c = 130) 

 1 DOG 0.056027 0.232284 
 2 BICYCLE 0.24618 0.23391 
 3 TRUCK 0.697793 0.533807 
   ETd: ≈0.78s ET: ≈29.07s 

      (  = 10) 
 1 DOG 0.265152 0.316494 
 2 PERSON 0.295455 0.335312 
 3 CHAIR 0.439394 0.348194 
   ET: ≈0.86s ET: ≈2.98s 

a   = Method-1, b   = Method-2,c  = No. of iterations, 
dET = Execution Time. 
 

 

Note that       
(     ;      ) is the object hierarchy 

for the  th scene of Figure 5, due to the  th method. 

The camera-object distance determines the position of 
objects in the scene. This position of objects in the scene 
considers the shortest distance as 0 and increases with the 
increase of camera-object distance. This is clearly depicted 
in Table 1. However, if two objects have the same camera-
object distance then their positions are also the same (e.g., 
for the first scene in Figure 7). This information determines 
the nearest and furthest objects in a scene (thus for    in 
Figure 5, the DOG is the nearest object and the TRUCK is 
the furthest object). This determines the relative positions 
of objects in the scene. 

The Method-2, on the other hand is not as straightforward 
as is the Method-1. It computes the depth map (STEP-6 in 
its algorithm (equation (10) and equation (11))) 
iteratively. Number of iterations and its execution time are 
shown in Table 1. Thus, the process of iteration behaves as 
a tuning parameter. Comparison of these two methods 
shows that the Method-1 computes the camera-object 
distance in a much lesser time than the Method-2. The 
fastness is due to mathematical simplicity over the Method-
2. 

To construct the object hierarchy we take help of the 
camera-object distance. It provides a graphical 
representation of the position of objects in the scene. The 
tree-like structure with some levels and nodes describes 
the relative position of objects in the scene. The root node, 

representing the scene, resides at level   , while the non-
root nodes, representing objects, resides at non-zero levels 
of the structure. The level distance is used to create these 
object levels. Roughly nearby objects belong to the same 
level. If an object in a level has a minimum distance with 
respect to an object in the previous level, then it is 
described as a child of that object. For example, in Figure 6, 
for the object hierarchy       

, two objects, the DOG and 

the PERSON, are within 0.4 units of level   , forming level 
   of the tree, and only one object, a CHAIR, is within 0.2 
units of level   , forming level    of the tree. The CHAIR 
object at level    has a minimum distance with the DOG 
object of level   , so it is described as a child of the DOG 
object. 

Using a level distance of 0.2 units, the object hierarchies 
      

 and       
 in Figure 6 for scene    in Figure 5 are 

fairly reasonable because we can consider and disregard 
the DOG and BICYCLE as the nearby objects, i.e., both the 
possibilities can be viewed as logical for the scene. 
However, the distance between the last and the last but one 
levels (   and   ) of       

 is 0.2 units, which does not 

correspond to the scene; it must be more than 0.2 units. 
For the scene   , we can only consider the object hierarchy 
      

 to be reasonably good, not       
 because the 

scene shows that only the DOG and PERSON are almost the 
close objects, but not the CHAIR. So, based on our previous 
arguments, we can conclude that the Method-1 for 
computing camera-object distance is superior to the 
Method-2. 

Figure 7 depicts the objects' relative position in a scene 
relative to an arbitrary observer, using the Method-1 and 
its hierarchy based on the computed parameters. 

 
Figure 7: The relative position of objects in a scene with 

respect to an observer and the corresponding hierarchy of 
objects. 

 
Object weights play a significant role in analyzing and 
evaluating a scene. Figure 8 depicts the analysis and 
evaluation of a scene both without and with using object 
weights computed from object hierarchy, and Table 2 
shows the significance of object weights in a comparative 
analysis for evaluations. 

 
Fig -6: Description of object hierarchies. 
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Fig -8: Evaluation of a scene both without (top) and with 
(bottom) object weights. 

 
Table -2: Comparative Analysis 

Problem Chances of first, second and third place 
holders in a sprint as shown in Figure 8. 

Solution Without Using 
Object Weights 

Using Object 
Weights 

 Interpretation Interpretation 
 Both PERSON1 and 

PERSON2 have a 
chance of winning the 
first place, PERSON3, 
PERSON4, PERSON5 
the second, and 
PERSON7 and 
PERSON6 the third. 

PERSON1 has a 
higher chance of 
winning the first 
place than PERSON2. 
If PERSON1 wins the 
first place, PERSON2 
has a better chance of 
finishing second than 
PERSON3, PERSON4, 
and PERSON5. If 
PERSON2 takes 
second place, both 
PERSON3 and 
PERSON4 have a 
higher and equal 
probability of taking 
third place than 
PERSON5, PERSON6, 
and PERSON7. 

 Inference Inference 
 Impossibility for 

inferencing/decision 
making for winners. 

Ability for 
inferencing/decision 
making for winners. 

 
 
 

6. CONCLUSIONS 

 
In this paper, we find objects' successive positions in a 
scene, by measuring the distance between an object and 
an observer (the camera). We have proposed two different 
methods, in which the first method computes the camera-
object distance using the Euclidean distance between the 
image baseline and the detected objects, and the second 
method computes the same using the depth map of object. 
We have also created a hierarchical description of objects 
in a scene based on this information. This hierarchy is 
helpful to find the objects relative position in the scene 
and may find an immense role in analysis as well as in data 
structure of scenes. The data structure might be helpful in 
faster processing of scenes. The comparison between the 
methods shows that Method-1 is superior to Method-2 
that uses the depth map of object. We have also computed 
the object weights from its hierarchical description in the 
scene. This plays an important role in analysis and 
evaluation of a scene. Our main objective is to make the 
whole system more robust and informative, and we shall 
describe the concerned method in a forthcoming paper. 
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