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Abstract - One of the leading causes of excessive 
energy consumption in cloud data centers is inefficient 
resource use. To address the issue, researchers proposed the 
Dynamic Container consolidation approach, which aims to 
consolidate containers into the fewest number of VMs and 
hosts. In this research, we introduce a novel host selection 
policy for container consolidation called the Energy Efficient 
Particle Swarm Optimization (EE-PSO) Algorithm to reduce 
energy consumption while maintaining the required 
performance levels in a cloud data center. We performed 
experimental evaluations using the ContainerCloudSim 
toolkit to validate the proposed algorithm's effectiveness 
with real-world workloads.  The simulation results show 
that our proposed algorithm outperforms existing works in 
terms of energy consumption, QoS guarantees, number of 
newly created VMs, and number of container migrations. 
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1.INTRODUCTION 

As a result of the rise of web-based applications such as 
micro-services and server-less architectures, containers 
have become more popular for creating an isolated, low 
overhead environment for deploying applications [1]. 
Container is an operating system-level virtualization that 
offers various advantages over virtual machines, including 
lightweight, mobility, low start-up time, and low resource 
usage [2]. Thus, containers might be seen as a new 
revolution in the cloud era and have been adopted from 
many cloud providers. Container as a service (CaaS) is the 
new service model that has been introduced in addition to 
traditional cloud services, including software as a service 
(SaaS), platform as a service (PaaS), and infrastructure as a 
service (IaaS). 

Containers can be deployed either on physical machines 
or on virtual machines. Although deploying containers 
without the overhead of the hypervisor achieves high 
performance levels, there are some limitations for using this 
model such as: the dependency between containers and 
operating system type, suffering from security threats due to 
the fact that containers do not provide the same level of 
isolation as VMs [3]. Consequently, many cloud providers 
use a two-level virtualization architecture as shown in Fig -1. 

Host OS

Hardware

Hypervisor

Container Engine

Guest OS2

VM2

Container Engine

App

C3

Bins/Libs

App

C4

Bins/Libs

Guest OS1

VM1

App

C1

Bins/Libs

App

C2

Bins/Libs

 

Fig -1: Two-level virtualization architecture [4] 

In order to meet the increasing demand for cloud 
services, there has been a significant expansion in building 
data centers around the world, and statistics indicate that 
there are approximately 8.2 million data centers [5]. A 
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recently published study showed that data centers 
consumed about 205 TWh during 2018, which represents 
about 1% of global electricity consumption [6], and 
expectations indicate that this number could reach about 
353 TWh by 2030 [7]. 

Servers are responsible for a large part of the power 
consumed in a cloud data center. Consequently, reducing the 
number of active servers, through dynamic consolidation of 
containers (or virtual machines), can significantly reduce 
power consumption while maintaining quality of service. 
The following issues should be able to be addressed by any 
container consolidation framework: [8]: 

 When the host is detected as being overloaded and 
unable to provide the required resources for 
containers and virtual machines running on this 
host? 

 Which containers should be selected to migrate 
from an overloaded host? 

 When the host is identified as being underloaded? Is 
it possible to migrate all hosted containers and shut 
down this host? 

 How to choose a destination (host/VM) for 
migrated containers? 

According to the above questions, there are four sub-
problems in dynamic container consolidation, in this paper 
we will focus on the sub-problem of destination host 
selection. 

2. Related Work: 

In contrast to the substantial study on energy efficiency 
of computing, for virtualized cloud data centers, only a few 
studies explored the challenge of energy efficient container 
management.  

In [7], the researchers proposed a framework for 
container dynamic consolidation on virtual machines. They 
used static thresholds to determine the status of the hosts, 
Maximum Usage (MU) and Most Correlated (MCor) to select 
containers from overloaded hosts, First Fit (FF), least full 
(LF), and Correlation threshold (CorHs) to select a 
destination host for a migrated container, and finally, they 
used First Fit to place the migrated containers on a VM at the 
selected destination. 

In [9], the researchers evaluated some of the container 
placement algorithms, including First Fit, Least Full, Most 
Full, and Random. These algorithms are used to select a 
running virtual machine on the host to be allocated to the 
container. The results showed that First Fit outperforms all 
the other algorithms in terms of energy consumption and 
number of migrations. 

In [10], the authors showed the relationship between 
container and host selection policy. ACO, Least Full, Most 
Full, Most Correlated, Least Correlated, Max Variance, and 

Min Variance were considered for host selection, while for 
container selection, they considered max-correlated, max-
variance, max-usage, and min-variance. They achieve a 
superior result using the maximum-variance host selection 
strategy and the greatest utilization container selection 
policy. 

In [11], the researchers proposed MESF, or most efficient 
server first, which is a greedy container placement technique 
that assigns containers to the most energy efficient 
computers first. The suggested MESF method may greatly 
improve energy usage when compared to the Least Allocated 
Server First (LASF) and random scheduling schemes, 
according to simulation findings utilizing an actual set of 
Google cluster data as task input and machine set. 

In [12], the researchers designed a fitness function to 
evaluate the resource wastage of VMs and Hosts, then they 
used Best Fit algorithm to create VMs in the hosts, and ACO 
to place containers on these VMs. 

3. Background: 

3.1 Data Center Power Model: 

The power consumption of a data center at time t 

( ) can be calculated as the sum of power consumption 

of its servers at time t ( ) as shown in equation 1.  

             (1) 

where  is the number of servers. According to [13] 

there is a linear relationship between  the CPU utilization 
and power consumption of the server. This relation can be 
formulated as follows: 

            (2) 

where is the CPU utilization of server i at time t,  

and  represent the consumed power when the server is 

idle, or fully utilized respectively. 

3.2 SLAV Metric: 

Meeting QoS requirements is a very critical issue in cloud 
computing environment. These requirements can be 
formulated using several metrics such as: minimum 
throughput or maximum response time, but due to the fact 
that we do not have any prior knowledge about the behavior 
of the application running inside the container, it is 
important to identify a metric which does not depend on the 
workload. Researchers in [14] showed that the SLA can be 
violated if the virtual machine cannot get the required CPU 
which has been requested. Equation 3 shows how to 
calculate the SLAV metric: 

       (3) 
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where ,  are the number of VMs, the number of SLA 

Violations respectively, and  , 

 are CPU amount requested and allocated 

by VM j on server i at the time  at which the violation p 

happened. 

3.3 System Model: 

In order to consolidate containers on the minimum 
number of virtual machines and hosts, we will use a similar 
model to the proposed model in [8], which consists of two 
modules: Host Status Module and Consolidation Module. 

The Host Status Module exists in each active host, and it 
has three main components: 

 Host Over-load/ Under-Load Detector: This 
component is responsible of deciding if the host is 
detected as being either over-loaded or under-loaded. 
In this research, the resource utilization is checked 
every 5 minutes using static thresholds to identify the 
status of the host. 

 Container Selector: This component determines which 
containers should be selected to migrate from an 
overloaded host. 

 Container Migration List: This list stores all containers 
selected by the Container Selector component. 

The Consolidation Module runs on a separate host. This 
module is responsible for choosing a destination (host/VM) 
for migrated containers, and consists of the following 
components: 

 Over-loaded Host List 

 Over-loaded Destination Selector: This component 
uses a host selection policy to select a destination for a 
migrated container from an over-loaded host, and a 
container placement policy to choose one of the 
running VMs on that host to be allocated to the 
container. If there is no running vm to host a migrated 
container, the Vm Creator component is called. 

 VM Creator: this component creates the largest 
possible vm on the host and assign the container to it. 

 Destination List: This component stores the migration 
map decided by the over-loaded Destination Selector. 

 Under-loaded Host List: This list contains all hosts that 
are identified as under-loaded after finding a 
destination for all migrated containers from over-
loaded hosts. 

 Under-loaded Destination Selector: This component 
tries to find appropriate destinations for all hosted 
containers by an under-loaded host. If this mission 
could be achieved, it sends the host ID to under-loaded 
host deactivator component.  

 VM-Host Migration Manager: This component triggers 
the migration process after selecting all destinations. 

 Under-loaded Host Deactivator: after migrating all 
containers of an under-loaded host, this component 
turns it off. 

3.4 Standard Particle Swarm Optimization 

PSO is a meta-heuristic algorithm that was introduced by 
Eberhart and Kennedy in 1995[15]. It mimics the social 
behavior of a flock of birds searching for food. Each bird 
inside the algorithm is called a particle, and each particle has 
a position vector that represents one of the possible 
solutions to the problem, as well as a velocity vector that 
describes its movement within the solution space. First, the 
position vectors are generated randomly. Second, at each 
iteration of the algorithm, each particle moves to a new 
position which depends on the values of the following: the 
particle's velocity in the previous iteration, the best position 
found by the particle (pbest); and the best position found in 
the entire swarm (gbest).  The positions are evaluated using 
a fitness function. The following equations are used to 
calculate the new position and velocity vectors. [16]: 

    

     (5) 

where: 

: velocity vector of particle i at iteration t 

 : velocity vector of particle i at iteration t+1  

: current position of particle at iteration t 

: new position of particle i at iteration t+1 

 : personal best position of particle i 

 : global best position 

w: inertia weight 

c1,c2: cognitive and social learning parameters 
respectively 

rand1,rand2 : random values between 0 and 1 

Fig-2 shows the flowchart of the algorithm. 

(4) 
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Fig-2: Flowchart of PSO [17] 

4. Proposed Method: 

4.1 Initialize Particles: 

In the standard PSO, initial particles are generated 
randomly. However, this randomness reduces the 
algorithm’s likelihood of converging to the optimal solution. 
As a result, effective initialization solutions can vastly 
increase its performance [18]. In our proposed method, we 
choose a random container from the migrated container list 
and assign it to an available host using the algorithm 
described in Fig-3. This approach ensures that the initialized 
solutions are good and feasible. The proposed host selection 
method is considered a modified version of the well-known 
bin-packing algorithm, First Fit. The hosts are arranged in 
descending order according to their power efficiencies and 
CPU utilization, respectively. The power efficiency of a host 
is a ratio between its CPU capacity and its maximum 
consumed power [19]. The algorithm examines hosts and 
their running VMs one by one. If there is a suitable vm and 

the host would not become overloaded after the allocation of 
the container, the selected host along with the selected vm 
are returned as the destination of the migrated container. If 
there is no running vm, the algorithm tries to create the 
largest possible VM on that host and assigns the container to 
it. It is important to note that creating VMs is only done in 
the process of finding destinations for migrated containers 
from overloaded hosts. The other difference between finding 
destinations for migrated containers from overloaded and 
underloaded hosts is the excluded hosts list, which includes 
the overloaded hosts in the first phase, and overloaded, 
switched off, and hosts which have been selected as 
destinations in the second phase. 

 
Algorithm1: Destination Selection Process 

Input: hostList,excludedHosts,container 

Output: Destination(allocatedHost, allocatedVM) 

1: allocatedHost        NULL;  

2: allocatedVM         NULL;     

3: hostList          sort(hostList,PE,U,’Des’); 
4: foreach host in hostList do 

5:  if excludedHosts.contains(host) then 

6:  continue; 

7:  end if 

8:  vmList        host.getVmList(); 

9:  foreach vm in vmList do 

10:  if (vm.isSuitable(container) and 
host.isNotOverLoadedAfterAllocation(vm,contain
er)) then 

11:   allocatedHost          host; 

12:   allocatedVM           vm; 

13:   break; 

14:  end if 

15:  end foreach 

16:  if (allocatedVM == NULL) then 

17:  newVM = host.createLargestPossibleVM(); 

18:  if (newVM != NULL) then 

19:  if (newVM.isSuitable(container) and 
host.isNotOverLoadedAfterAllocation(newV
M, container)) then 

20:        allocatedHost          host; 

21:        allocatedVM          vm; 

22:         break; 

23:  end if 

24:  end if 

25:  end if 

26: end foreach 

27:    return Destination;                  

Fig-3: Destination Selection Process 
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4.2 Fitness Function: 

To formulate the fitness function of our proposed 
algorithm, we use a multi-criteria algorithm called TOPSIS 
[20]. According to this method, the best solution is the one 
which has the greatest distance from the negative-ideal 
solution and the smallest distance from the positive-ideal 
solution. There are four criteria depicted in table 1 used to 
rank the particles. 

Table-1: Considered Criteria in Fitness Function 

No criteria Description Cost/benefit 

1 
Energy 

Consumption 

The new power 

consumption of the 

data center after 

container 

migrations 

Cost 

2 

Number of 

Successfully 

migrated 

containers 

The higher this 

number, the higher 

the probability that 

the overloaded 

host will return to 

normal state, and 

the under-loaded 

host will be shut 

down 

Benefit 

3 

The Sum of 

Energy 

Efficiency 

Factors of 

Selected Hosts 

Selecting the most 

energy-efficient 

hosts has a great 

impact on energy 

consumption and 

performance 

Benefit 

4 

Number Of 

Newley Created 

VMs 

The lower this 

number, the lower 

overhead of 

launching a new 

operating system 

Cost 

First, we calculate the value of each parameter for every 
particle in the swarm. Then, these values are normalized by 
dividing them by the maximum value of each parameter 
found in the swarm using the equation: 

 

                           (6) 

In the next step, the  and  are 

determined according to the following equations: 

 

  

Then, the Euclidean distances from the positive ideal 

solution  and the negative ideal solution   

are calculated for each particle using the equation 9 and 
equation 10, respectively. 

     (9) 

          (10) 

Finally, the score of the particle i is calculated using 
Equation 11:  

            (11) 

This score is regarded as the fitness function value that 
the algorithm seeks to maximize. 

4.3 PSO Parameters: 

The value of inertia weight w and its changes during the 
iterations of the algorithm are very critical to performance. 
In our proposed algorithm, we will use the approach 
introduced in [21], which leads to good results., as it depends 
on a linear reduction of w value for 70% of the iterations, 
and in the last stages, it gives w a random value within the 
range (0.4,0.7), which means greater values of w to allow the 
algorithm to jump outside the local optimal solution. The 
equation for calculating w is given as follows: 

 

 

 

Where t is the current iteration, T is the total number of 
iterations. 

When a particle updates its position, the proposed 
algorithm checks the feasibility of the new solution. For 
simplicity, it examines the status of the selected host for each 
migrated container one by one, and if there is no suitable vm 
(running or newly created), the value of the corresponded 
element of the unallocated container at the position vector is 
set to null.   

 The rest of the algorithm parameters are shown in the 
Table -2. 

(7) 

 

 

 

 

 

(8) 

 

 

 

 

 

 

 

(12) 
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Table-2: PSO Parameters 

100 Number of particles 

1.4 Initial inertia weight w 

0.4 Minimum Value of w 

2 Learning factors c1,c2 

100 Number of iterations 

5. Performance Evaluation: 

5.1   Simulation Setup: 

To evaluate the performance of our proposed policy, we 
will use the ContainerCloudSim toolkit [22]. In our 
experiments, the cloud datacenter consists of 100 PMs, 200 
VMs, and more than 1000 containers. The characteristics of 
their configurations are shown in Table-3. PMs, VMs, and 
containers each have 1 TB, 2.5 GB, and 0.1 GB of disk storage. 
The network bandwidth of PMs, VMs, and containers is 
1GB/s, 10MB/s, and 250KB/s, respectively. Because the 
startup delay of each container and VM creation directly 
affects the SLA measurements, these startup delays are 
significant and are set to 0.4 seconds for containers [8] and 
100 seconds for VMs [23]. 

The CPU utilization of each container is assigned to one of 
PlanetLab workload traces [19]. These traces consist of 10 
days of workload gathered every 5 minutes between March 
and April 2011 [9] as shown in Table-4. 

We use the First Fit algorithm as a container placement 
policy, and the Maximum Usage (MU) algorithm as a 
container selection policy. 

The performance of our proposed algorithm (EE-PSO) is 
compared with the following algorithms: Correlation 
Threshold Host Selection (CorHS), First Fit Host Selection 

(FFHS), Least Full Host Selection (LFHS), and Most Full Host 
Selection (MFHS). This comparison will be done in terms of 
energy consumption, SLAV, total number of migrations, and 
number of newly created VMs. 

Table-4: PlanetLab Workload Traces 

Date 
Number of 

Containers 
Mean(%) St.dev(%) 

2011/03/03 1052 12.31% 17.09% 

2011/03/06 898 11.44% 16.83% 

2011/03/09 1061 10.70% 15.57% 

2011/03/22 1516 9.26% 12.78% 

2011/03/25 1078 10.56% 14.14% 

2011/04/03 1463 12.39% 16.55% 

2011/04/09 1358 11.12% 15.09% 

2011/04/11 1233 11.56% 15.07% 

2011/04/12 1054 11.54% 15.15% 

2011/04/20 1033 10.43% 15.21% 

 

5.2 Experiment Results: 

5.2.1 Scenario 1: 

In this set of experiments, the upper and lower 
thresholds are set at 80% ,70%, respectively. Because there 
are 10 days' workload data, each performance metric might 

Table-3: Configuration of PMs, VMs, and containers 

PM Configurations and power models 

PM type # CPU [3GHz] (mapped on 37274 MIPS Per core) 
Memory 

(GB) 
Pidle(Watt) Pmax(Watt) 

# 1 4 cores 64 86 117 

# 2 8 cores 128 93 135 

# 3 16 cores 256 66 247 

Container and VM Types 

Container 
type # 

CPU MIPS (1 core) Memory (MB) VM type # 
CPU [1.5 GHz] 

(mapped on 18636 
MIPS Per core) 

Memory 
(GB) 

# 1 4658 128 # 1 1 core 1 

# 2 9320 256 # 2 2 cores 2 

# 3 18636 512 
# 3 4 cores 4 

# 4 8 cores 8 
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yield ten results. The average of these results is used as the 
final result of the algorithm on the metric. The results 
(Charts [1-4]) show that our proposed method outperforms 
all the other algorithms for all metrics because our algorithm 
aims to minimize the power consumption in its fitness 
function. EE-PSO also maximizes the number of successfully 
migrated containers, which means a lower number of 
overloaded hosts and SLA violations, and a higher number of 
underloaded hosts that will be shut down. On the other hand, 
selecting the most energy efficient hosts means not only 
minimizing the energy but also means higher capacities so 
the container will get its required resources and the number 
of migrations and created VMs will decrease. 

 

Chart -1: Energy consumption in scenario 1 

 

 

Chart -2: Total number of container migrations in 
scenario 1 

 

 

Chart -3: SLAV in scenario 1 

 

 

Chart -4: Total number of newly created VMs in 
scenario 1 

5.2.2 Scenario 2: 

In this set of experiments, we will study the effect of 
varying the upper-threshold value while keeping the lower 
threshold fixed at 70%. The number of containers and their 
workload traces are set according to day 1 of Table-4. The 
results (Charts [5-8]) show that increasing the upper-
threshold value increases the power consumption metric for 
all algorithms because of the linear relationship between 
CPU utilization and energy consumed by the server. Also, 
when the upper-threshold is increased, the probability that a 
host would be identified as overloaded is decreased, which 
in turn decreases the number of containers selected to 
migrate, which results in a lower number of VM creations. 
On the other hand, the higher the upper-threshold, the more 
likely the host will not have adequate resources to adapt to 
fluctuations in container resource requirements, resulting in 
more SLA violations. At all upper-threshold values, our 
proposed algorithm performs better than all other 
algorithms. 
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Chart -5: Energy consumption in scenario 2 

 

 

Chart -6: Total number of container migrations in 
scenario 2 

 

 

Chart -7: SLAV in scenario 2 

 

 

Chart -8: Total number of newly created VMs in 
scenario 2 

5.2.3 Scenario 3: 

In this set of experiments, the upper threshold is set at 
80%, and the lower threshold will be varied. Also, the 
number of containers and their workload traces are set 
according to day 1 of Table-4. As shown in Charts [9-12], 
decreasing the lower-threshold increases the energy 
consumption metric since more hosts will be active, and the 
number of migrations will decrease because fewer hosts will 
be identified as underloaded. A lower container migration 
rate results in fewer VMs being created. Although the smaller 
number of created VMs when we decrease the lower-
threshold, the size of these VMs will be bigger since we have 
more resources to allocate and the possibility that these VMs 
will not get their required resources in the future is high, 
which results in high SLA violations. The findings reveal that 
the performance of our proposed method outperforms that 
of competing algorithms across all metrics and lower-
threshold values. 

 

 

Chart -9: Energy consumption in scenario 3 
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Chart -10: Total number of container migrations in 
scenario 3 

 

 

Chart -11: SLAV in scenario 3 

 

 

Chart -12: Total number of newly created VMs in 
scenario 3 

 

6. CONCLUSION AND FUTURE WORK 

Despite the growing popularity of Container as a Service 
(CaaS), the energy efficiency of resource management 
algorithms in this service paradigm has received little 
attention. 

In this paper, we introduced A novel host selection 
algorithm for container consolidation by taking advantage of 
particle swarm optimization and energy efficiency of hosts. 
Three sets of simulation tests were performed to compare 
the performance of our approach with existing algorithms. 
Results show that our proposed method outperforms all 
competitive algorithms regarding energy consumption, total 
number of migrations, SLAV, and number of created VMs. 

As for future work, we will improve our algorithm to 
make it aware of operating system type as a new constraint 
for the problem, and will extend our work to solve other 
container consolidation sub-problems.  
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