
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 249

DECENTRALISED CHAT APPLICATION

Uma Thakur1, Abhishek Chichmalkar2, Aditya Sambhare3, Aman Chaturvedi4, Chinmay

Khuspare5, Nikhil Tembhe6

#Department of Computer Science and Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra,
India

---***---
Abstract - When we wanted to buy a product like a watch
on the internet, then suddenly we see ads related to the
product on Facebook, Instagram, Google, etc this means they
are accessing our every information even the messages we
send to people on the Internet. There is a growing suspicion
that the web is betraying and spying on us. As
communication is an important part of an individual’s
lifestyle, as each person communicates globally with the
means of the internet every day and as in today’s world,
different chat systems are almost working on centralized
systems i.e., all the data is in a centralized server. Therefore,
a major problem is if the central server fails then the whole
network fails, and due to this major drawback is that there
can be a loss of user’s data, information, and resources which
is stored on the centralized server or even there can be a
leak of user’s chat information that is stored on the server.

Decentralized is the way to resolve this problem, it’s an
internet hosted via a peer-to-peer network. The information
will be distributed and stored around the world on multiple
devices like phones, laptops, and even smart appliances. To
achieve this, we are using Gun.js, a decentralized graph
database that is real-time has Low latency, and also has
security, encryption, and authorization for the data.

Key Words: Gun.js, Radisk, webRTC, Svelte, Decentralized
server, User Interface, Peer to peer network.

1. INTRODUCTION

 In today’s world chatting over the messaging platforms are a
part of an individual’s lifestyle. The most of the
communication whether it is a confidential chat or normal
chat are mostly happens over in social media platform. As we
all know that most of the traditional chat application are
working on a centralized server i.e., all the user data is stored
on a central server. So, the major problem of this server is if
the central server fails then the whole data collapses (break
down) or even can leak the user information stored on the
server. This is the major drawback of this system, but in
today’s world privacy makes a very important role in
everyone’s life and specially for those organizations that
works on confidential tasks like for example the military
purpose, they need a very secured privacy to handle their
communication from the one end to the other end. So, to
achieve this system our project had made the use of
decentralized backend server, as the name suggests

decentralized server it does not have any central server. It is
peer to peer network i.e., all the computers are linked
together with equal permissions for processing data. To
achieve this decentralized backend server, we used a library
called as Gun.js, a decentralized graph database. In this, for
front end UI of our chat application, we used Svelte a
JavaScript library. Decentralized application consists of
multiple nodes connected to each other in a mesh type of
topology network. It’s just like a peer-to-peer network that
data is stored in such a way that it is almost impossible to
view by an anonymous user.

2. PROBLEM STATEMENT

A. Data is stored in centralized server.

As to storing the user data, it has been stored in big servers as
it also takes an ample amount of space. It has been said that if
any one of the servers fails, the whole network collapse due
to that loss of data, which is dangerous for the user as if their
data has been lost. Due to that, you cannot retrieve your
information back to overcome this issue.

So here comes our project in the picture, whereas the high-
tech company stores their user in the server. At the same
time, there is no guarantee that your data will be safe. Where
data is stored in a hard disk somewhere in the cloud, which
has been shared across multiple machines, whereas our
project stores a small subset of data on each user based on
the actual data that they consume via a peer-to-peer
connection.

B. Lack of loyalty

As in today's fast-growing world, whenever we search for
some product in a search engine after a while, we see a pop-
up coming out of know ware showing the exact related
product that you searched a while ago. Guess how they came
to know that you were looking for this product. This may lead
someone is monetizing your activity that your data is not
secure, which means your data has been shared with a
different company that you are not aware of, which means
you have no longer control over your data where as in our
project the data is stored in a subset of data based on actual
data. Which is much more secure than the centralized server.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 250

3. COMPONENTS

Fig.1: Diagram of Decentralized web

Gun.js: -
Gun.js decentralized graph database is a centralized
database that which on a server hosted by big tech data in
the gun is distributed across multiple peers or users through
the use of webRTC and end-user like user requires a specific
graphic data to use your app while another user requires an
entirely different one with a few shared data points in
between each peer can store the data it needs in the
browsers local storage then sync changes with other peers in
the network a peer might be one of your end-users or a relay
server that you deploy to make the system more reliable that
means the entire database is the union of all graphs on the
network, and no one machine controls the entire system a
decentralized fire stored where you get real-time updates
offline mode and the illusion of what latency the data itself is
managed through a minimal graph API where each record is
a node that contains a unique ID and any other custom data
for that entity in plain JavaScript any node on the graph can
reference another node allowing you to create an infinite
chain of circular dependencies. an individual node never
contains a duplicate of another node just a reference to it
allowing you to model complex relationships without the
need for a schema.

Radisk: -
The Radisk Storage Engine (RAD) is an in-memory, as well as
on-disk radix tree that saves the GUN database graph for fast
and performant look-ups. Radix trees have a constant
lookup-time.

webRTC: -
webRTC exchange real-time audio video streams with your
friends entirely in the browser to capitalize on the work
from home boom then webRTC is the API because it allows

you to establish a peer-to-peer connection between two or
more browsers where they can exchange audio video media
directly without the need for a third-party server or native
app webRTC will make a series of requests to a stun server.

Svelte: -
Svelte it's a JavaScript tool for building UI components,
whereas svelte is a compiler it converts the declarative code
that writes as a developer into imperative code that works
with native browser APIs. As a result, to get highly
performant code in a tiny package, but most importantly, it's
the only JavaScript framework that's actually used to create
components in dot spelt files which contain three main parts
a script for your JavaScript code which can also be typescript
a style tag for your CSS which can also use a preprocessor
like as and the main template represented as HTML

4. PROJECT DESCRIPTION

Fig. 2: User Flow Diagram
We made a chat web app where the data and

infrastructure are not controlled by a big tech company
instead it is decentralized across the entire user base
using web technologies. We built this decentralized chat
application using a library called gun.js and for the front-
end UI, we have used Svelte a JavaScript library (an open-
source front-end compiler).

A gun.js is a decentralized graph database, a normal
database that stores all the data in a hard disk somewhere
in the cloud it may be shared across multiple machines,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 251

but for all intents a purpose we can imagine our entire
data set on a single disk whereas gun.js also stores a small
subset of data on each user based on the actual data they
consume in the application.

When a user makes a query for some data it will search
across the network for the other users that have that data
and sync up using webRTC which is a web real-time
communication, so it is like an entire database as the
union of all peers on the network. It’s like a peer-to-peer
network that data is stored in such a way that it is almost
impossible to view as a very secure encryption function is
used, this idea is very similar to a blockchain ledger where
no individual has control of the entire network but it is
not a blockchain technology which tends to be too slow.

For user authentication when we create a new user
account this will generate secure key pair
cryptographically and the key is associated with the public
key so the past message can be found and the password is
proof of work seed to prove and to decrypt access to an
account's private keys.

For the data to be persisted if a user just clears the
browser cache data, in the browser's the local storage is
limited to 5 megabytes and if a user clears out the data in
local storage it could potentially be lost if it's not
somewhere else on the network probably not acceptable
but for this, we deploy a relay server that uses a different
storage mechanism called Radisk that can store a lot more
data on the disk of an actual server and which will make
the network more robust because if a query falls back to a
relay if it's not available from another peer by creating a
node in the database which will be available to the entire
decentralized network.

5. PROJECT IMPLEMENTATION

We have used a Svelte app with two main features email
password user authentication and then a massive group
chat room that anybody can join the only dependency in
this project is gun.js which we installed with npm.

The first thing we will focus on is user authentication and
to do that we created a file called user.js, at the file we
imported gun.js, and below that we imported two
supporting libraries the first one SEA (Security Encryption
and Authorization) which is the module that enables user
authentication and we use AXE (Advanced Exchange
Equation) it is an alternative way to connect peers
together and tends to be more performant for a chat app.

We created a variable called DB to initialize the database
then used it to refer to the currently authenticated user,
we also changed the option of recall to session storage, so
the user stays logged in between browser sessions.

To manage the user in the app, we need to know if the
user is logged in and we also want their username so we
can show it in the UI (User Interface). We get the
username by making a reference to the user then calling
git alias which will be the value of whatever username
users choose and when they sign up, we then going to use
this value frequently throughout the application.

So, for that, we imported writable from the Svelte store to
make it reactive. A store is like an observable value that
will re-render the UI whenever it’s changed and it can be
shared across multiple components so whenever the alias
for the current user updates, we will set the value of the
store to that value but we also want to listen to changes to
the authorization state when the user signs in sign-out.

To handle that we'll listen to the authorization events on
the database and do the same thing where we fetch the
alias and then set that as the value on the store.
In Svelte we have the Header - it's component where it
will show the title of the app when you're not logged in
but if you are logged in it'll show your username as well as
your avatar.

Now to implement sign out we imported the username
store and the gun user object then we created a function
called sign out that calls will leave on the user and set the
username store to an empty string. Then in our HTML file,
we have a button that when clicked we'll call the sign out a
function but we only want to show that button if the user
is signed in and the way we can tell if a user is signed in is
if their username is present in svelte, we do that with a
store in any component by adding an if statement
followed by a '$' dollar sign and then the name of the
store. The dollar sign will subscribe to the store and react
to any changes that happen to it if the username does exist
then we will go ahead and show the username by
subscribing to the store once again, we also did the same
thing to show an avatar with the user’s initials by using
DiceBear API which will make a unique avatar based on
the username as the random seed, then we have a button
that has the sign out function when clicked and we add an
else block to show something else if the user is not logged
in, this is about the header component and we declared it
in the app component also.

Now on to the login component which will allow the user
to sign in or sign up with their username and password,
we will import the user object and then set up the local
state for the username and password.

In svelte we can implement two-way data binding with a
variable by creating a form input and then stating bind
value to that variable which means anytime user types
into the form, the value of the variable will change. We
have created separate form inputs for username and
password, and we will share them for both the login and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 252

signup process which itself just consists of two different
buttons that will either call the login function or the sign-
up function.

To user log in, we used the user auth method which
consists of three arguments, takes the username and
password as first and second arguments and in the third
argument, we defined a callback, in this case the callback
is the value of the store that we set up earlier which will
update automatically.
Now to sign up a new user is very similar to the previous
but instead of calling auth we call that create method on
the user and if the user creation is successful then we will
log that user in automatically.
Now at this point, we have a working user authentication
system.

For the main chat component which is where we query
items from the database and which also gives the user the
ability to send a message.

The chat component has two pieces of state, a string for a
new message that the user will type into form input and
an array of messages which will contain the message text
along with the user who sent it and a timestamp.
To query messages, we set up the onMount lifecycle hook
that will run whenever the component is first initialized,
inside it, we used the database to make a reference to the
chat node as for creating super chat we just give it a name
of chat.
Then we just call map to loop over every single message in
the chat and then call once to only read each message
once, in this case each message is immutable so we don't
need to listen to changes in real-time, then we defined a
call-back that will be called on each new message that will
give us access to the data and the id of that node.

Now if the data is defined, we format a message more
suitable for the User Interface with the properties of who,
what, and when.

1. Who - It is the user that sent the message and we
can figure out who sent it by taking that data of the
raw message and using it to get the alias,
2. What - It is the actual text of the user’s message,
3. When - It is the property to get an accurate
timestamp across all of our users, we're using Gun
state as the final source of truth with the raw data,
this gives us all the data we need for the User
Interface.

Then we take each message and add it to an array that we
can then loop over it in the UI (User Interface) with Svelte.
We loop overran array of items in svelte with each this will
render the chat message component for each message in the
array and by adding parentheses with message-When, which

will provide svelte with a unique key to sort all the messages
efficiently by which we read messages in the chat.

We made a form to submit them in the UI (User Interface), in
the form on the submit event will call the send message
function. Inside that function, we use SEA to encrypt the
actual message text and the key is the same as the one we
used earlier to decrypt the messages. Now we can associate
the message to the current user using the encrypted message
as the value then we created a date to serve as the index for
the message so it can be sorted properly at which point, we
can reference the chat collection create a new node based on
that index and store the message value.

6. ADVANTAGES

1. For Government/Military officials: - It will be very
useful for government security officials when they
need to send their confidential messages or
information regarding any work or to send their
data to their intenders for some official reasons
without any third-party involvement. As they don’t
need to trust any other application.

2. Users don’t have to put trust in any Central
authority.

a. You don’t need to trust any other chat
application that is working on a centralized
server or followed by the third parties that
use or sell your data, information, photos
to any adman who follows you around the
internet. As this decentralized chat
application will be useful for securing your
data you should be able to reduce or
eliminate the trust that you’re required to
put into third parties.

7. CONCLUSION

Decentralized applications tend to form the interaction
between two people more efficient and simpler. The chatting
process nowadays features a mediating node, while our
software doesn't have any mediating device/node i.e. Every
person is connected by a peer-to-peer network. A
Decentralized network can be a key technology that can
solve privacy and confidentiality-related issues that exist in
the Traditional or existing messaging system.

8. REFERENCES

[1] Sourabh, Deepanker Rawat,Karan Kapkoti,Sourabh

Aggarwal,Anshul Khanna, "bChat: A Decentralized Chat
Application",Inderprastha Engineering College, Uttar
Pradesh, India,(IRJET).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 253

[2] Peter Menegay, Jason Salyers,Griffin College,"Secure
Communications Using Blockchain Technology",Milcom
2018 Track 3 - Cyber Security and Trusted Computing.

[3] Suman Kumar Das, Zenlabs, Zensar Technologies, Pune,

India,"Secure Messaging Platform Using Blockchain
Technology”, (IJRES), ISSN (Online): 2320-9364, ISSN
(Print): 2320-9356.

[4] Abhishek P. Takale,Chaitanya V. Vaidya,Suresh S.

Kolekar,"Decentralized Chat Application using
Blockchain Technology",Rajendra Mane College Of
Engineering And Technology, Ambav, India.(IJREAM).

[5] Muhammed Kuliya, Hassan Abubakar,"Secured Chatting

System Using Cryptography", Lovely Professional
University, Punjab India,(IJCRT).

[6] “A WebRTC Video Chat Implementation Within the

Yioop Search Engine”(2019). By Ho, Yangcha, Master’s
projects. 726. DOI:https://doi.org/10.31979/etd.dtz2-
hstt .

[7] “A secure Chat Application Based on Peer-to-Peer

Architecture”, Mohamad Afendee Mohamed, Abdullah
Muhammed, and Mustafa Man on 28-05-2015 in
Journal of Computer Science.

[8] Secure Peer-to-Peer communication based on

Blockchain Kahina Khacef, Guy Pujolle.

[9] https://gun.eco/docs/Radisk

[10] https://gun.eco/docs/API

[11] https://webrtc.org/getting-started/peer-connections

[12] https://svelte.dev/docs

[13] https://relay.dev/docs/

