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Grey wolf optimizer trained ANN technique for development of 

explainable model of commercial ethylene oxide reactor and multi-

objective optimization to maximize profit 

Abstract - The current research focuses on the use of a grey wolf optimizer trained ANN for the building of an industrial reactor 
model, as well as its optimization for profit maximisation. As a case study, an ethylene oxide (EO) reactor was used. The EO reactor 
is a multiphase catalytic reactor with a complex nature that makes developing a reliable first principle-based model challenging, 
while data-driven models lack explanability. As a result, a general methodology has been devised in this study, in which a data-
driven technique such as grey wolf optimizer trained ANN was utilised as a modelling tool, and the model was then post-processed 
to improve the model's explanability. The performance of the model in capturing the system's inherent physics was used to make 
the decision. Following the creation of an appropriate model, it was subjected to optimization. Maximization of catalyst selectivity 
and minimization of reactor temperature were examined here, both of which have a significant impact on the plant's profitability. 
Because the two aims are incompatible, a pareto solution was found by using a multi-objective evolutionary algorithm on the 
generated model. 
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1.INTRODUCTION  

Due to intense global competition, the business environment has changed dramatically since last decade. Chemical process 
industries are seeing their profit margins dwindle as a result of increased cutthroat competition in a volatile market, thanks to 
globalization. Furthermore, the developing environmental concern of global warming has prompted government authorities in 
several countries to establish rigorous environmental regulations, which add to the expense of doing business. The only way to 
successfully minimize these difficulties is through technological innovation to improve process and energy efficiency, yield 
maximization, and environmental impact reduction. Chemical firms all around the world are looking for new and imaginative 
methods to save costs and increase profits. One of the most appealing creative strategies to explore is the use of artificial 
intelligence-based techniques to extract value from massive amounts of plant operating data through data mining and 
knowledge discovery. 

Chemical reactors are attracting the attention of researchers and plant managers who are looking for new ways to create more 
profit. The reactor is the only significant piece of equipment that adds real value to raw materials by converting them into 
finished products. Reactor optimization has a huge potential impact on total plant profitability in this regard [1]. Modeling 
complicated systems of industrial chemical processes is essential as a first step in optimizing the commercial reactor. Complex 
reaction kinetics and thermodynamics were involved in industrial chemical reactions. Building a reliable phenomenological 
model for commercial reactors is a time-consuming and challenging task that necessitates a thorough understanding of 
industrial heterogeneous catalytic behavior such as mass diffusion, catalyst deactivation, and so on. Furthermore, several 
parameters such as agitation speed, catalyst interfacial area, negative influence of poisons present in incoming gas, diffusional 
coefficients, and others affect reaction rate, yield, and selectivity in commercial plants, the mechanisms of which are poorly 
understood. As a result, a lack of understanding of chemical reaction kinetics obstructs the reactor's optimization. The reactors 
in most chemical plants remain a black box, and operation engineers do not tamper with them in a live plant for safety and 
reliability reasons. This leads to non-optimal operating of industrial reactors, which has a significant impact on the plant's 
profitability. As a result, reactors are regarded as uncharted area in the chemical industry. In large-scale operations, however, a 
slight increase in catalyst selectivity and reaction yield has a significant impact on raw material consumption and plant 
profitability [1]. 

Typically, laboratory scale kinetic analysis is performed in a very ideal and controlled setting to derive the kinetic equation of a 
particular commercial reaction. Because of the vast scale of industrial reactors, the existence of poisons and inert in input gases, 
and the varied heat and mass transfer environment, the use of such a method for kinetic modelling of industrial reactors is 
debatable. Furthermore, due to the limited market window for chemical goods, plant owners are hesitant to devote sufficient 
time and effort to a thorough examination of these complex reaction mechanisms. As a result, an alternative simple way is to 
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use a data-driven effective computational strategy to construct approximated reactor models for these complex reactions 
systems which can be subsequently used to optimize the reactor and increase profit. 

Because most chemical plants gather and store massive amounts of reactor intake and exit historic plant operational data every 
minute, the true challenge is figuring out how to use this wealth of data to earn more money. Data is the new oil, and data-
driven modelling approaches like artificial neural networks (ANN) and support vector machines (SVM) are unquestionably the 
new IC engines of our time. ANN and SVR have been highly prominent black box modelling approaches in the recent decade, 
with a number of applications developed for commercial reactors. Plant engineers, on the other hand, dislike ANN and SVM 
models because of their lack of explainability and the model's black box nature. ANN model does not provide any insights of 
underlying physics of chemical reactors. 

Because ANN modelling gives a black box type equation consisting of a complex sigmoidal function with multiple tuning factors 
known as weights and biases, the model suffers from explainability limitations, despite its great prediction capacity. Process 
engineers typically desire comprehensible equations in differential/ algebraic form that relate output variables to input 
process parameters so they can gain more insight and benefit. It is preferable that the generated model include a closed form 
equation that can describe the effect of key process parameters on the output variable. SVM has the same problem as ANN in 
that none of them provides closed form explainable equations that are portable and easy to implement in a plant DCS system. 
For plant engineers, gaining insights and obtaining a closed form explainable model equation is critical to their acceptance of 
using the model in the plant. 

Despite the ANN approach's impressive prediction capabilities, applications of this technology to chemical reaction engineering 
jobs in commercial reactors are conspicuously lacking. In this study, an attempt was made to apply ANN modelling to a 
commercial chemical ethylene oxide (EO) reactor. One of the key goals of this research is to turn the ANN model into an 
explainable closed form equation, which will reveal important information about the phenomenology of the reactor. 

The second goal of this work is to use recently discovered nature-inspired grey wolf optimization approaches to train the ANN 
model. Learning is an important component of every neural network, and it is attracting the attention of many academics. The 
traditional [7] or enhanced [8– 10] Back-Propagation (BP) algorithm has been used to train feedforward neural networks 
(FNNs) in most applications. The BP method is a gradient-based algorithm with some flaws, including delayed convergence 
[11] and a possibility to get stuck in local minima [12]. During the learning process of FNNs, the goal is to identify the best 
combination of connection weights and biases to achieve the least amount of error. FNNs, on the other hand, frequently 
converge on points that are the best answer locally but not globally. In other words, rather than the global minimum, learning 
methods lead FNNs to local minima. According to [11], the BP algorithm's convergence is strongly dependent on the weights, 
biases, and parameters' initial values. Using unique heuristic optimization methods or evolutionary algorithms to improve the 
problems of BP-based learning algorithms is a common option in the literature. 

Simulated Annealing (SA) [13,14], Genetic Algorithms (GAs) [15], Particle Swarm Optimization (PSO) algorithms [16–20], 
Magnetic Optimization Algorithm (MOA) [21], and Differential Evolution (DE) [22] are some of the heuristic optimization 
methods that have been utilized to train FNNs. According to [11], some algorithms, such as SA and GA, can lessen the likelihood 
of local minima trapping, although they still have poor convergence rates. 

Despite the fact that numerous meta-heuristics have been used widely in ANN learning, none of them has performed well in all 
applications. Furthermore, existing metaheuristics have a number of drawbacks [23-27], including slow convergence speed, 
trapping in local minima, long computational time, tuning many parameters, and a difficult encoding scheme. As a result, it 
appears that improving the performance of prior meta-heuristics or proposing new ones is required to improve the efficiency 
of ANN learning in various domains. GWO is a recent innovative stochastic and metaheuristic optimization approach, which is 
introduced by [18]. In this paper, the efficiencies of GWO technique are investigated for training FNNs. 

The current study opted to model a commercial EO reactor because of its significant financial significance in worldwide 
petrochemical markets. Because it is used to make polyester (which is used to make textile) and PET bottles, the ethylene glycol 
industry is regarded the second most significant petrochemical product in terms of volume, profit margins, and global market 
demands. Recently, the glycol sector has seen intense competition in the global market, with players vying for higher reactor 
yield and selectivity, which has a significant impact on production costs. 

The next goal of this study is to use the developed model to raise the profit of the ethylene oxide plant while reducing its 
environmental impact. This is accomplished by using a model-based, nature-inspired metaheuristic optimization method to 
optimize the input process parameters in order to improve selectivity (i.e., reactor performance) while lowering reactor 
temperature (which maximize catalyst longevity). The two main operational objectives in commercial EO reactors, namely, 
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maximize selectivity (i.e., maximize profit) and minimize reactor temperature (corresponds to greater catalyst longevity), are 
mutually exclusive and conflicting, and one cannot achieve the highest selectivity without sacrificing temperature, and vice 
versa. The multi objective genetic algorithm (GA) is used to improve the input space of the EO reactor ANN model in order to 
provide pareto optimal solutions that meet both objectives in the most efficient way feasible. 

2. Case study of ethylene oxide reactor 

2.1 Background 

Because of the lack of understanding and complexity of multiphase catalytic processes in commercial ethylene oxide reactors, 
trustworthy first principle-based models are hard to come by. Data driven modelling is a feasible alternative strategy due to the 
vast amount of reactor operating parameter data available from commercial reactors. The current project aims to make use of a 
huge amount of process data to create a framework for converting the data's information to knowledge and subsequently into 
profit. 

2.2 Reactions: 

The manufacture of ethylene oxide (EO) is the first step in the ethylene glycol manufacturing process. Ethylene oxide is produced 
in commercial glycol plants by reacting ethylene with oxygen (Equation 1) at 230–270°C and 20 bar pressures. In addition to 
ethylene oxide, an unfavorable side reaction (Equation 2) produces carbon di-oxide, which is released into the atmosphere and 
has a severe negative influence on the environment. Catalyst selectivity is computed using equation 3 and measures the extent of 
the first reaction (desired) relative to the second reaction (undesired). Selectivity maximization is a key production goal for 
increasing profits while minimizing environmental damage.    
 

                                                                                                              (1) 

      (3) 

 

2.3 Process flow diagram 

Figure 1 [17] shows a simplified process flow diagram for the synthesis of EO. The EO reactor is a shell and tube reactor in which 
the catalyst is put in the tube side as packed bed and the reactions described in Equations 1 and 2 occur in this part. Water is 
cycled through the shell side to recover heat because the reactions are exothermic. Because the conversion of EO from ethylene 
and oxygen is very low par pass, the unreacted reactants are recycled back through the cycle gas compressor to boost the 
conversion. In industrial, unreacted ethylene, unreacted oxygen, carbon dioxide, methane, EO, nitrogen, (usually called cycle gas) 
are combined with fresh ethylene and oxygen streams. The reactor output gas was routed through EO absorbers and CO2 
absorbers, as shown in Figure 1. The EO is selectively absorbed by water in an EO absorber, whilst the CO2 is absorbed by a 
carbonate solution in a CO2 absorber. Plant's overall profitability is determined by the catalyst's selectivity, and plant aims to 
decreases the second undesired reaction while maximizing the first favorable reaction. 

 

               (2) 
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FIGURE 1:  Process flow diagram of EO production process 

2.4 Production Objectives:  

The catalyst selectivity declines gradually with the age of the catalyst due to catalyst poisoning and sintering effects, and the 
catalyst selectivity maintains about 90% at the start of operation (SOR) and drops to 80% at the end of operation (EOR) (usually 
after 2-4 years). The average catalytic life of today's catalysts is between 24 and 48 months. The temperature of the reactor is 
gradually increased over the life of the catalyst [say from 225 ̊ C (SOR) to 275˚C (EOR)] to enhance the reaction rate and keep the 
plant production on target while selectivity is dropping. The selectivity of the catalyst impacts the plant's profitability, as better 
selectivity means less consumption of expensive ethylene and oxygen to produce same amount of EO i.e., less production cost. 
Reactor temperature, on the other hand, determines catalyst longevity. A faster rise in reactor temperature causes a loss of 
catalyst age and a higher fixed cost of catalyst replacement, which necessitates a plant downtime. Optimizing reactor operating 
parameters in such a way that selectivity maximization and reactor temperature minimization (i.e., maximization of catalyst 
longevity) are achieved simultaneously while maintaining plant production targets are two primary production objectives in 
commercial plants. 

3. Hybrid FNN- GWO methodology 

This section explains the basic background materials needed for a thorough comprehension of the suggested method. The Multi-
layer perceptron (MLP) as a Feed-forward neural network (FNN) is first presented, followed by the GWO methods, which are 
then compared to the suggested technique for MLP learning in industrial reactors modelling. A quick explanation of the hybrid 
ANN and GWO training process follows MLP network.  

Because of its capability to map any function to an indefinite degree of precision, the feed-forward neural network (FNN) is one 
of the most prevalent ANNs used to solve real life problems and attracts a lot of academic attention. The multi-layer perceptron 
has been extensively used in finance, medicine, engineering, geology, physics, and biology, among other fields. It has been widely 
used in the chemical industry for nonlinear process modelling, fault diagnostics, and process control. 

MLP has one input layer that receives external inputs, one or more hidden layers, and one output layer that displays the output, 
as shown in Figure 2. Except for the input layer, all levels are built up of processing nodes and activation functions. Data is 
supplied at the input layer, and network nodes perform calculations in successive layers until each output node obtains an 
output value. 

3.1 Training of ANN by GWO 

In general, there are three ways to train FNNs with a heuristic algorithm. First, heuristic techniques are used to discover the best 
combination of weights and biases for a FNN with the least amount of error. Second, heuristic algorithms are used to determine 
the best structure for a FNN in each problem. The final way is to tune the parameters of a gradient-based learning system, such 
as the learning rate and momentum, using an evolutionary algorithm. 
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Before training FNNs, the structure is fixed in the first scenario. A training algorithm's job is to discover a good value for all 
connection weights and biases in order to reduce the overall error of the FNNs. FNN structures differ in the second scenario. To 
discover the appropriate structure for a given problem, a training procedure is applied to an FNN. Manipulate the connections 
between neurons, the number of hidden layers, and the number of hidden nodes in each layer of the FNN to change the structure. 

GWO is applied to a FNN using the first technique in this paper; these processes are referred to as hybrid FNN-GWO. This means 
that the FNN's structure is fixed, and the GWO algorithm finds a set of weights and biases that yields the least amount of error for 
the FNN. The following essential elements must be defined in order to design FNN-GWO. To evaluate fitness in FNN-GWO, first 
develop a fitness function based on the FNN's error. Second, for the agents of FNN-GWO, an encoding approach should be 
established to encode the FNN's weights and biases. These components are detailed in further detail below. 

3.2 Fitness function 

The following is the formula for the fitness function used in this article [10]: 

The number of input nodes is equal to n, the number of hidden nodes is equal to h, and the number of output nodes is equal to m 
in Figure 2, which has two levels (one input, one hidden, and one output layer). Each hidden node's output is calculated as 
follows at the end of each learning epoch: 

                     , j = 1, 2, …, h             (4) 

In , n is the number of the input nodes, wij is the connection weight from the ith node in the input layer to the 
jth node in the hidden layer, Ɵj is the bias (threshold) of the jth hidden node, and xi is the ith input. 

After calculating outputs of the hidden nodes, the final output can be defined as follows: 

, k = 1,2, …, m,                                         (5) 

 

where wkj is the connection weight from the jth hidden node to the kth output node and Ɵk is the bias (threshold) of the kth output 
node. 

Finally, the learning error E (fitness function) is calculated as follows: 

                                                              (6) 

                                                                               (7) 

    

where q is the number of training samples,  is the desired output of the ith input unit when the kth training sample is used, and 

 is the actual output of the ith input unit when the kth training sample is used. Therefore, the fitness function of the ith training 
sample can be defined as follows: 

Fitness (Xi) = E(Xi) 
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FIGURE 2: FNN with a 2-3-1 structure 

3.3 Encoding strategy 

Following the specification of the fitness function for FNN-GWO, the next step is to choose an encoding strategy for each agent in 
FNN-GWO to encode the FNN's weights and biases. In matrix encoding strategy, each agent is encoded as a matrix. An example of 
this encoding strategy for the FNN of Figure 2 is provided as follows: 

,                                                                                    (8) 

,  ,  , ,     (9) 

where W1 is the hidden layer weight matrix, B1 is the hidden layer bias matrix, W2 is the output layer weight matrix,  is the 
transpose of W2, and B2 is the hidden layer bias matrix. 

3.4 Grey Wolf Optimization (GWO): at a glance 

Mirjalili et. Al. [28] introduced GWO, a new stochastic and metaheuristic optimization algorithm. Two important characteristics 
of meta heuristic optimization are exploration and exploitation. Exploration means how quickly an optimization algorithm able 
to identify the potential area where the global minima may exist from all feasible large search area. Once this potential area is 
found, exploitation means how quickly and accurately detect the exact point where the global minima exist by detail search. In 
literature, it is found that GWO algorithm able to make a delicate balance between exploration and exploitation by emulating the 
cooperative hunting behavior of grey wolves in nature. This bionic optimization method promotes the grey wolf pack's 
hierarchical system and predation behavior, in which the wolves take prey by surrounding, haunting, and attacking it under the 
command of the head grey wolf [31]. In this large-scale search methodology, all wolves form a rigid hierarchical pyramid as 
depicted in Figure 3.  but decision is based on the top three grey wolves siting at the top of pyramid. 
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FIGURE 3: Hierarchy of grey wolf (dominance decreases from top down) 

The average group size is 5-12 wolves. The top layer (α layer), which consists of a male and female leader, is the team's most 
powerful and capable member for making decisions concerning predation and other activities. The second and third layers in the 
hierarchy, β and δ layer respectively, are responsible for assisting in the behavior of group organizations. Most of the overall 
populace resides in the bottom of the pyramid, which is referred to as ω layer. They are primarily in charge of satisfying the 
entire pack by balancing the population's internal relationships, caring for the young, and sustaining the dominance hierarchy 
[28].  

3.5. Mathematical modelling of GWO: 

The main key point of the GWO model is the social hierarchy, encircling, hunting, attacking and searching prey.  

A) Social hierarchy 

In the model of GWO, α is considered as fittest solution. β and δ are considered as second and third best solution, respectively. 
The rest of the solutions are assumed to be ω.  

B) Encircling  

At first, the location of the prey is determined and during the hunting process grey wolves encircled the prey. The following 
equations are proposed for mathematically modelling [28]. 

                   (10) 

                   (11) 

Where  is the number of current iterations,  is the position vector of one grey wolf,  is the next position vector it 

arrives,  is the position vector of the prey,  and  are coefficient vectors which are evaluated as follows: 

                                (12) 
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                     (13) 

and  are random vectors in [0,1], a   is decreasing value during the iteration in [0,2], typically  (I    is the 
maximum number of iterations). 

In this concept, grey wolves move around the best solution in hyper-cubes within an n dimensional space and able to detect the 
position of the prey and encircle it.  

C) Hunting 

After encircling the prey, grey wolves have the ability to hunt the prey with the guidance of alpha. The beta and delta also take 
part occasionally in hunting process. In the mathematical stimulation of hunting behaviour, the first three best solutions update 
the position of other search agents (including the omegas). The following equations are proposed in this regard. 

              (14) 

             (15) 

                    (16) 

D) Attacking prey (exploitation) 

Grey wolves complete the hunting phase and ready to capture the prey. For the purpose of mathematically modelling, the value 

of  gradually decrease. Therefore, the fluctuation rate of  is also decreased by .   where a is decremented from 2 

to 0 over the course of iterations. When the random values of  , the next position of search agent can be in any position 

between its current position and the position of the prey. When , the grey wolves would diverge from the prey to achieve 

global search and when , the grey wolves would converge towards the prey and complete it. 

E) Searching prey (exploration)  

GWO algorithm uses an efficient exploration methodology by allowing its search agents to update their position on the basis of 
alpha, beta, delta and attacks towards the prey. This mechanism creates a good diversity in the problem search space. Grey 

wolves are stay away from each other for global search of prey and close to each other for attacking the prey. For  , values 

between 1 and -1 are taken.  vector is also favoured the exploration technique and random values  are used. After 
generating the random population, alpha, beta and delta determined the position of the best prey. For selection of exploration 

and exploitation, the value of  is decreased from 2 to 0 respectively. 

The GWO algorithm terminates when the criterion is satisfied. This metaheuristic approach is applied in various real-world 
problems because of its efficient and simple performance ability by tuning the fewest operators [28-32]. 
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FIGURE 4: Pseudo code of Grey Wolf Optimisation 

3.6. Hybrid learning FNN network by GWO 

Essentially the training algorithm of FNN is an optimization problem where optimized set of weigths and biases are to be 
determined which minimizes the error (MSE) beween actual output and predicted output. The optimization capability of GWO is 
utilised for FNN learning in this part. To improve the accuracy of the network, a hybrid learning of GWO and FNN networks 
(GWO-FNN) is used. By training the network, the algorithm will concurrently determine the set of weights and their 
corresponding accuracy. The network weights and biases of the FNN network can be represented as a D-dimensional vector. 
Equation 17 defines the vector for FNN (4). The dimension of each particle is treated as the vector D as given below: 

D = (Input × Hidden) + (Hidden × Output) +Hidden bias + Output bias,                       (17)  

 where Input, Hidden and Output are referred the number of input, hidden and output neurons of FNN network respectively.  
The number of biases in the hidden and output layers is also known as Hidden bias and Output bias. Figure 5 depicts the 
flowchart of GWO and FNN hybrid leaning ( GWO-FNN). A dataset is collected, normalised, and read to begin the GWO-FNN. 
Following that, the appropriate number of input, output, and hidden neurons are specified to establish the particle dimension as 
Equation (7). The population is initialised, and the training error is determined as a fitness function given in equation 17 
following FNN training. Every particle (wolf) modifies its velocity and position based on training error. The new places represent 
the FNN network's new weights, which are supposed to minimise the fitness function. The fitness function is computed based on 
test set error. These steps will go on until meeting stop conditions.   
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FIGURE 5: Flowchart of Hybrid FNN-GWO methodology 
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4. Mathematical modelling and optimization of EO reaction process 

4.1 Selection of input and output variables for modelling 

Because selectivity and reactor temperature have such a significant impact on plant profitability, they are preserved as output 
variables. Selectivity was chosen because it directly depicts plant production costs and has a significant impact on plant 
profitability. Reactor temperature, on the other hand, impacts catalyst longevity and thus adds a fixed cost to plant production. 
Faster temperature rises imply a shorter catalyst life and a higher catalyst cost. As a "wish list" of input variables, all reactor 
operational parameters that potentially effect selectivity and reactor temperature are kept. For the first three years, all EO 
reactor operational data (daily average) was gathered. Then, after consulting with a plant expert, all of the input variables that 
could affect the output variables were recorded. Following that, a cross-correlation study was performed. The correlation 
coefficients of each of the input variables with each of the output variables, as well as the inter input cross-correlation 
coefficients, were determined using this procedure. 

The input variables are shortlisted using the criteria below. 

(i) There should be a strong cross-correlation coefficient between input and output variables for a given input variable. 

(ii) The values of inter input variable cross-correlation coefficients should be low. 

(iii) To keep the model as simple as feasible, the input set of variables was kept to a minimum. 

Eight input variables are finally shortlisted and tabulated in Table 1 based on the aforesaid criteria. 

TABLE 1 Input Output variables for model building and their range 

Variables used in modeling Data Range 

Input Variables  

Oxygen inlet concentration, mole% (x1) 4.38 - 7.75 

C2H4 inlet concentration, mole% (x2) 17.69 - 34.97 

CO2 inlet concentration, mole% (x3) 0.21 - 0.45 

CG Pressure, bar (x4) 21.84 – 22.64 

CG Flow (MT/h) (x5) 687.78 – 803.39 

Work Rate (Kg/hr. /m3) (x6) 104.38 – 202.47 

Cumulative EOE (MT/m3) (x7) 275.28 – 4469.32 

Total chloride concentration, PPM (x8) 2.51 – 5.86 

Output Variables  

Catalyst selectivity, % (Y1) 81.00 – 89.44 

Reactor Temperature, °C, (Y2) 225.83 – 250.75 

 

4.2. Data collection, Data cleaning and removal of outliers 

Data historian software is used in commercial facilities to gather and store every operating parameter at every minute. We 
acquired EO reactor operating data (daily average) for all parameters listed in Table 1 from a commercial plant that had been 
operational for nearly three years. Following that, the raw data is subjected to data cleaning and outlier removal tools. 

Because industry data contains noise, spikes, outliers, and error as a result of malfunctioning sensors, transmitters, analyzers, 
control systems, and data historian software, data cleansing is one of the most important tasks in industrial process modelling. It 
is commonly established that the quality of data utilized to construct a data-driven model determines the model's quality. Data 
quality is an important issue to consider when using data driven modelling because noisy and faulty data can have a significant 
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impact on model performance. Due to the large volume of process data, this study created an automatic effective data cleaning 
technique to prevent manual cleaning. From the plant operating dataset, an automated MATLAB-based algorithm was 
constructed to generate a multivariate statistical vector called t-squared. The corresponding rows in the t-squared vector with 
values over the 95th percentile was therefore considered outliers and were eliminated from the dataset. 

4.3. Modelling through FNN-GWO algorithm 

The cleansed data was used to create an ANN-based model. The dataset, which included eight input variables and two output 
variables (Table 1), was randomly partitioned into a training set (80% of the total data) and a test set (20% of the total data). The 
training data set was used to compute the model by maximizing the fitness value, while the test data set was utilized to cross-
validate the produced expression. The basic goal of cross-validation is to improve the model's generalizability. 

The FNN-GWO-based model was created using code written in MATLAB 2019a. The fitness function used in this work was the 
mean-squared error (MSE) between actual and predicted outputs, and the program was run in such a way that the MSE value of 
test set data was minimized. The software was run 100 times to construct the model due to the stochastic nature of the ANN. 

4.4. Optimization through Multi objective grey wolf optimization (MOGWO)Algorithm 

The model is then used to optimize the reactor process parameter once a reliable and accurate EO reactor model has been built. 
The goal is to establish the ideal process condition that maximizes the profitability of the EO plant, and to do so, the following 
conflicting criteria must be met: 

(i) The selectivity of the catalyst must be maximized. 

(ii) The reactor temperature must be kept as low as possible.  

In the present work, multi-objective grey wolf optimization (MOGWO) algorithm is used to strike a balance between two 
conflicting objectives. MOGWO has proven itself to be an excellent multi objective optimization tool and has been used 
extensively in diverse field of engineering and medicine.  

As there are two conflicting objectives in this particular case study, MOGWO is used to generate pareto optimal solutions. For 
implementation of MOGWO algorithm, two objective functions were developed which are as follows (Equation 18 and 19): 

F1(x) = 1/(1+Y1(x))          (18) 

F2(x) = Y2(x)           (19) 

Where Y1(x) and Y2(x) are functions of the models corresponding to catalyst selectivity and reactor temperature respectively. 
Therefore, in MOGWO both F1(x) and F2(x) have to be minimized in order to minimize reactor temperature and maximize catalyst 
selectivity.  

5. Results and discussions 

5.1. Performance of FNN-GWO model 

The main goal of this research is to develop a closed model equation for an EO reactor that is accurate, simple, portable, and easy 
to understand. 

The three-year daily average dataset was cleaned, and 1220 data sets were qualified for model construction after outliers were 
removed. A trial-and-error approach and a literature study were used to determine the values of ANN parameters required for 
modelling. The number of nodes in the hidden layer in the current study varies systematically from 5 to 25, and the FNN GWO 
method is employed each time to discover the best weights and bias that generate the lowest MSE between actual and predicted 
output. These procedures give 21 [each model for each number of nodes] different ANN model with varying accuracy. 

Shortlisting the models: The following criteria were used to pick a viable model from a pool of probable candidates or 
representative model equations with varied degrees of complexity and accuracy: 

(i)  Simplicity: The model should have as little complexity as feasible. The number of nodes in the hidden layer was used to 
determine model complexity. 
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(ii)  Accuracy of prediction: The difference between expected and actual selectivity. 

(iii) The model equation should capture the process's underlying physics. In other words, model equations should contain 
physical understanding of the system under study, not just a predictive association. This is a crucial factor to 
consider while creating realistic reactor models. Their plant operating knowledge, experience and observations of 
reactor behavior are summarized in Table 2. 

TABLE 2 Rules to select best model from real Plant operation observations. 

Sl. no  Parameters changed keeping all other 
parameters constant 

What happen to 
selectivity? 

What happen to 
temperature? 

1 If oxygen inlet concentration increase Increase Decrease 

2 If ethylene inlet concentration increase Increase Decrease 

3 If CO2 inlet concentration increase Decrease Increase 

4 If CG Pressure increase Increase Decrease 

5 If CG flow increase Increase Decrease 

6 If Work rate increase Decrease Increase 

7 If Cum EOE/m3 of catalyst increase Decrease Increase 

 

 

FIGURE 6:  Actual vs. predicted plots of (a) catalyst selectivity with training data (b) catalyst selectivity with testing data (c) 
reactor temperature with training data (d) reactor temperature with testing data 
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All 21 models acquired using ANN are subjected to the aforementioned inspection to determine whether the created model is in 
agreement with plant data. All of the produced models have been thoroughly tested. Assume a ten-test data set was constructed 
with all variables set to their 50th percentile value, with the exception of oxygen inlet concentration, which was altered in 10-
point intervals from its minimum to maximum value. The charts of oxygen inlet concentration vs. selectivity and oxygen inlet 
concentration vs. temperature were created after that. Table 2 observation number 1 was confirmed using these charts. Models 
that do not match the findings in Table 2 are discarded because they do not represent the basic physics of the EO reactor and do 
not correlate with plant observations. They are essentially representations of a complicated data fitting model that makes no 
sense. 

Only one model for catalyst selectivity and one model for reactor temperature were chosen from the shortlisted models because 
they are exceedingly precise, obey the Table 2 observations, and capture the internal physics of the reactor, such two models are 
considered the representative model equations for selectivity and temperature. 

The corresponding Coefficient of Determination (R2) and Average Percentage Error (APE) of the above models for training and 
test data have been mentioned in Table 3. 

TABLE 3. Performance of ANN model 

 Training  Testing   

Model R2 APE  R2 APE   

Catalyst selectivity model 0.99 0.56 0.99 0.56  

Reactor temperature model 0.99 0.24 0.99 0.23  

 

With high R2 and low APE for both the catalyst selectivity and reactor temperature models (Table 3), it can be concluded that the 
predicted output values are comparable to the actual output values and that the models developed are reliable, fairly accurate, 
and capture the inherent physics of the EO reactor. The model's generalizability and accurate learning on nonlinear input and 
output relationships are further indicated by the strong R2 value on unseen test data and low APE. 

Figure 6 depicts the models' prediction performance on training and testing data. The fact that the real and forecast curves 
almost coincide implies that the model has strong prediction accuracy. 

From Table 3 and Figure 6 it is concluded that developed model is highly accurate and reliable as it also performs well with 
unseen test data. 

Generation of explainable model equations: Though ANN generates a closed form of equation which has very high predictive 
capability, the developed equation is large and complex and sometimes difficult to directly interpret. In present study, a 
methodology is developed to enhance the interpretability of the developed equations. Figure 7 and Figure 8 summarize the 
developed methodology. Those figures are generated by changing one variable at a time from its minimum to maximum value 
(10 steps) while keeping all other 7 input variables at their 50-percentile value. Selectivity equations developed by ANN is used 
to predict the selectivity value in each case of these simulated test data. After plotting was done, a trendline was drawn through 
each data whose equation and R2 value is shown in figure. Based on visual inspection and R2 value trend line curve was selected 
(like straight line, or polynomial with degree 2 or 3 or more) so that generated trendline almost matches with the data. As seen 
from the figure 10, the developed trend lines are very decisive and monotonically increasing and decreasing. As mentioned 
earlier, they all match the plant actual observations and obey the Table 2. In short, developed models captures the nonlinear 
relationship between selectivity and reactor operating parameters. These trend lines can be used by plant operating engineers to 
get the insights how a particular input parameter affects the catalyst selectivity. For example, from figure 7, it is quantitively 
clear that increasing inlet oxygen and ethylene concentration, actually enhance the catalyst selectivity whereas increasing CO2 
reduces the selectivity.  

The selectivity increases linearly with oxygen concentration with positive slope of 0.6772, whereas the relation of selectivity 
with ethylene and CO2 are nonlinear and represented by second order polynomial. Now these trend line equations are used to 
develop the following explainable equation (Equation 20 and 21).  
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                                                     (20) 

 

 
            (21) 

Where x1, x2, ……x8 are the actual value of the 8 input variables and x1, avg, x2, avg, ……x8, avg are the average (50 percentile) value of 
input variables, respectively. 

Each term in the equation 20 represents the change in selectivity if a particular parameter deviates from its average value. For 

example, the term,  represents the deviation ox inlet oxygen concentration from its average value and when it 
multiplied by co-efficient 0.6772, represents the selectivity gain (or penalty) due to oxygen. In this way, all 8 parameters 
contribution is calculated in equation 8 and it is added with 84.86% (average selectivity) to get the actual selectivity. 

Main advantage of this equation (equation 20 and 21) over ANN model is that this equation is interpretable and easily 
explainable to plant engineer. Equation is simple and contains terms or parametric co-efficient which throw lights relative 
importance of each parameter on the overall selectivity if they deviate from this base value. Also, it indicates whether the effect 
of each parameter is linear or non-linear.  

Equation 20 is then used to predict selectivity of three-year actual data and predicted, and actual selectivity is compared. 
Prediction error is 0.8% and R2 is 0.97. This low value of prediction error and high value of R2 signifies that developed equation 
(equation 20) is highly accurate and reliable.  

 

FIGURE 7: Influence of each variable on selectivity 
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FIGURE 8: Influence of each variable on reactor temperature 

5.2. Optimization 

5.2.1. Optimization through MOGWO 

Once the reliable models were successfully developed, the models were subjected to optimization. Purpose of optimization is to 
find the optimum value of rector operating parameters to achieve maximum selectivity and minimum temperature 
simultaneously. One of the critical tasks for optimization of any process is fixing of search space at which the optimal process 
conditions are to be found out. Therefore, before running the optimization a lower bound and upper bound of the process 
variables were fixed in consultation with plant engineers. As plant conditions are dynamic in nature, the total one operational 
year was divided into three periods (SOR, MOR and EOR) and at each running period, optimizations were performed. The lower 
bounds (LB) and upper bounds (UB) considered in these three cases have been depicted in Table 4. 

Table 4. Lower bounds and upper bounds for optimization 

 x1 x2 x3 x4 x5 x6 x7 x8  

Case 1 : SOR 

LB 3377 6.37 27.41 1.32 0.15 18.94 5.13 3455.62  

UB 3387 9.00 35.12 2.50 0.24 19.95 9.22 4585.31  

Case 2: MOR 

LB 5377 6.37 27.41 1.52 0.15 18.94 6.13 3455.62  

UB 5387 9.00 35.12 2.50 0.24 19.95 9.22 4585.31  

Case 3: EOR 

LB 8377 6.37 27.41 1.82 0.15 18.94 7.63 3455.62  

UB 8387 9.00 35.12 2.50 0.24 19.95 9.22 4585.31  
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With the help of MOGWO code in MATLAB, a pareto diagram was developed for case 2 (MOR) (Fig. 8). All the points in the pareto 
curve in Figure. 9 represents the pareto non-dominated optimal solution in catalyst selectivity and reactor temperature space 
and all Pareto optimal solutions on the curve are considered equally good. As seen from the curve, if someone try to increase 
selectivity, he must sacrifice reactor temperature. Reverse is also true, i.e., lower temperature can be achieved at the cost of 
lower selectivity. Other than these solutions, there is no process condition which can increase selectivity without sacrificing 
temperature and vice versa. Some of the pareto optimal solutions have been also tabulated in Table 5 for reference. From the 
output of MOGWO the optimum values of input parameters can be obtained which will maximize the selectivity and minimize the 
temperature. Four solutions in table 5 are plotted as four small black circles on Figure 9 and represents trade-off between two 
conflicting objectives. All the four solutions are equally good, and it is up to the plant operation engineer which criteria among 
selectivity or temperature they will give priority. Based on that, they can choose the optimum input parameters from the Pareto 
optimal solution. For example, if selectivity has more priority than reactor temperature for a particular plant, then operators 
should choose solution number 4 in Table 5 which will help to achieve 86.1% selectivity by sacrificing the temperature (241.53 
°C). On the other hand, if the temperature has more priority than selectivity then solution number 1 in Table 4 should be chosen 
which will give a lower temperature by sacrificing selectivity. If temperature and selectivity have equal priority, then solution 
number 2 of Table 5 should be chosen.  

The main advantage of such a study is that it gives the operation engineer/ DCS panel operators a strategy to run the reactor in 
optimum condition in real-time. In a running plant, since operators have no idea about Pareto optimal solution, operators try to 
optimize the plant heuristically based on their experience and knowledge. One such real-life operating point is plotted and 
named as ‘A’ in Figure. 9. As the operating point, A is not on the Pareto curve, it is not the optimum point and improvement scope 
exists both in selectivity and temperature. From this plot in Figure. 9, it can be concluded that the operator can improve the plant 
operating conditions in two ways: selectivity can be improved keeping the temperature same as before, or reactor temperature 
can be decreased keeping the catalyst selectivity as it is as shown by two arrows on Figure 9. The only action operator must do is 
to run the MOGWO with proper bound in real-time, and MOGWO will provide a set of optimum operating conditions that the 
operator needs to set in the plant. This is the potential improvement area suggested by the Pareto optimal solution. 

 

FIGURE 9. Pareto diagram of catalyst selectivity vs. reactor temperature 

Table 5. Pareto optimal solution 

x1 x2 x3 x4 x5 x6 x7 x8 Selectivity Temperature 

7.75 18.25 0.31 22.64 782.15 161.09 2572.84 2.59 85.40 239.37 

7.75 28.09 0.31 22.54 785.62 161.08 2572.84 2.52 85.71 240.01 

7.74 28.18 0.31 22.17 785.93 161.09 2572.84 2.52 85.92 240.82 

7.74 28.71 0.31 21.86 785.96 161.07 2572.84 2.53 86.10 241.53 

 

A 
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6. Conclusion 

From the existing plant operating data, this study uses Artificial Neural Networking to construct an accurate model of a 
commercial ethylene oxide reactor. An ANN creates a closed model equation that is portable and may be used in a plant control 
system. The true value of this research is that it has produced an explainable model equation that is very accurate and provides 
insights into the process. The produced model equations are based on the underlying physics of the process and are in line with 
the observations and experiences of the plant engineer. After that, the developed model equations are used to construct multi-
objective pareto optimum solutions that optimize selectivity while lowering reactor temperature and thus ensure profit 
maximization. 
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