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Abstract - The excessive ease of use and comfort of current 
medical imaging has sparked a strong need for automated 
medical picture segmentation. Current image segmentation 
systems, however, lack the necessary functionality for a basic 
medical image segmentation pipeline architecture. Pipelines 
that have already been enacted are generally independent 
computer programmes that are optimized for a certain 
collection of public data. As a result, this article introduces the 
MIScnn Python module for ASCII text files. 

MIScnn aims to provide an intuitive API that allows for the 
rapid creation of a medical image segmentation pipeline that 
includes data I/O, pre-processing, data augmentation, patch-
wise analysis, metrics, a library of state-of-the-art deep 
learning models, and model usage such as training, prediction, 
and fully automatic evaluation (e.g. cross-validation). 
Similarly, comprehensive pipeline customization is possible 
because to strong configurability and many open interfaces.  

The Kidney Tumour Segmentation Challenge 2019 data set 
(multiclass semantic segmentation with 300 CT images) 
yielded a strong predictor based on the conventional 3D U-Net 
model after cross-validation using MIScnn. 

We were able to demonstrate that the MIScnn framework 
allows researchers to quickly put up a comprehensive medical 
image segmentation pipeline using only a few lines of code in 
this experiment. The MIScnn source code is accessible on 

 Github at https://github.com/frankkramer-lab/MIScnn.  

Key Words: Medical image analysis, Computer-aided 
diagnosis, Biomedical image segmentation, U-Net, Deep 
learning, Open-source framework.  

1. INTRODUCTION  

Because of the widespread use of modern medical imaging in 
technology, there is a greater demand for automatic medical 
picture segmentation. Despite this crucial need, existing 
medical image segmentation technologies lack the capability 
required to create a basic medical picture segmentation 
pipeline. 

MIScnn is an open-source framework with an intuitive API 
that lets you easily build medical image segmentation 
pipelines with Convolutional Neural Networks and Deep 

Learning models in only a few lines of code. The goal of 
MIScnn is to provide a framework API that allows for the 
rapid development of medical image segmentation pipelines, 
including information I/O, preprocessing, data 
augmentation, patch-wise analysis, metrics, a library of 
progressive deep learning models, and model usage such as 
training, prediction, and automatic analysis. 

Convolutional networks are commonly used for 
classification tasks, with the output to an image being a 
single category label. However, in a number of visual 
activities, particularly in the medical specialty picture 
process, the needed output should include localization, i.e., 
every element should be assigned a category name. 
Furthermore, in medical specialty duties, thousands of 
training photographs are often out of reach. As a result, using 
an area region (patch) around each element as input, we 
trained a network in a sliding-window setup to predict the 
class label of each element. This network will first become 
localised. Second, the number of patches in the training data 
is considerably more than the number of Training Images. 
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2. Data Input 

2.1 NifTi data I/O interface 

       For loading magnetic resonance imaging and computed 
axial tomography data into the framework, MIScnn provides 
a data I/O interface for the Neuroimaging Information 
Science Technology Initiative (NifTI) file format. This 
structure was first devised to expedite the event while also 
enhancing the usability of information science technologies 
related to neuroimaging. Still, it's currently unremarkably 
used for sharing public and anonymous magnetic resonance 
imaging and CT knowledge sets, not only for brain imaging, 
but also for any other type of human 3D imaging.The 3D 
image matrix and numerous data, such as the thickness of 
the magnetic resonance imaging slices, are stored in an NIfTI 
file. 

2.2 Custom data I/O interface 

       MIScnn allows the use of bespoke knowledge I/O 
interfaces for various image knowledge formats in addition 
to the mandated NIfTI I/O interface. This open interface 
enables MIScnn to handle certain medical specialty imaging 
choices (for example, MRI slice thickness), without the loss 
of this information due to a format conversion demand. A 
specific I/O interface should be dedicated to the 
preprocessing process, and it should return to the medical 
picture as a second or 3D matrix for integration into the 
process. 

    

 

 

 

3. Data Preprocessing 

3.1 Pixel intensity normalization 

      Inconsistent signal intensity ranges in photos will have a 
significant impact on segmentation methods' performance. 
Due to completely distinct picture formats, variable 
hardware/instruments (e.g. completely separate scanners), 
technical inconsistencies, and easily a biological variance, the 
signal ranges of medical specialist imaging knowledge are 
very varied amongst knowledge sets. Moreover, picture 
segmentation techniques that use machine learning often 
perform better on alternatives that follow a standard 
distribution. Scaling and standardizing imaging information 
is advised to achieve dynamic signal intensity variation 
uniformity. 

3.2 Clipping 

       Similar to component intensity standardization, it's 
conjointly common to clip component intensities to an 
explicit vary. Outside of this range, intensity costs will be 
reduced to the lowest or most variable value. Even in many 
scanners, component intensity levels for similar organs or 
tissue types are assumed to be equal, especially in computer 
imaging images. Organ-specific component intensity clipping 
might be used to take advantage of this. 

 

 

       

      

FIG 1 . Flowchart of MIScnn Pipeline 
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3.3 Resampling 

      To change the width and/or height of images, the 
resampling technique is used. This ends up in a brand-new 
image with a changing range of pixels. resonance or laptop 
pictorial representation scans will have different slice 
thicknesses. However, in order to train neural network 
models, the pictures must have the same slice thickness or 
voxel spacing, this could be accomplished through 
resampling. To begin with, downsampling images limits the 
amount of GPU memory available for training and prediction. 

3.4 One hot encoding 

       MIScnn can handle both binary (background/cancer) and 
multi-class (background/kidney/liver/lungs) segmentation 
problems. Using a variable with two states, zero and one, the 
depiction of a binary segmentation may be readily 
generated. Except in machine learning techniques, such as 
deep learning models, where many category segmentation 
labels are used, it is necessary to translate the categories into 
an extra mathematical picture. Using the One Hot coding 
style, this might be accomplished by creating a single binary 
variable for each segmentation category. One Hot 
mechanically encodes segmentation labels with more than 
two categories using MIScnn. 

3.5 Patch‑wise and full image analysis 

       In 3D segmentation analysis, the available GPU hardware 
plays an outsized role depending on the resolution of 
medical images. Due to the large GPU memory requirements, 
it is currently unable to fully integrate high-resolution MRIs 
with an associated example size of 400 512 512 into 
progressive convolutional neural network models. As a 
result, 3D medical imaging data is either split into smaller 
cuboid patches or processed slice by slice, similar to a series 
of second photographs [10, 11, 23]. MIScnn cuts 3D medical 
photos into patches with a customizable size (e.g. 128 128 
128) by default to fully use the data from all three 
dimensions. These patches will function in GPUs with RAM 
capacities of 4–24 GB, which are commonly used in the 
analysis, according to the model design. The slice-by-slice 
second analysis is supported and may be used in MIScnn, 
however, the 3D patch analysis is not. It's also possible to 
combine the use of complete 3D images in the event that 
you're studying unusually small medical images or have a 
large GPU cluster. Second medical images are automatically 
incorporated into convolutional neural networks and deep 
learning models. Still, for images with high resolution, a 
second patch-wise strategy is used.    

4. Sampling and Batch Generation 

4.1 Skipping blank patches 

      The well-known problem in medical images is large 
unbalances between significant segments and the backdrop 
results in a large number of parts that are strictly classified 

as background and have no learning information. There's no 
use in multiplying these blank elements or patches, 
especially when it comes to knowledge augmentation. As a 
result, any patches that are completely classified as 
background are omitted from the patch-wise model training 
to minimize unnecessary fitting delays. 

4.2 Batch Management 

        Sets of entire photos or patches are packaged into 
batches after the data preparation and hence the optional 
data augmentation for training. One batch comprises a large 
number of ready images that are processed by the model and 
GPU in a single phase. The neural network adjusts its 
internal weights in accordance with the specified learning 
rate for each batch or process step. The number of images 
that may be stored in a single batch is highly dependent on 
the amount of GPU memory available, and therefore must be 
appropriately planned in MIScnn. Each batch is stored in 
memory so that it may be accessed at any time during the 
training process. Due to the avoidance of reserve continuous 
batch preprocessing, this strategy dramatically decreases 
computation time. MIScnn also permits "on-the-fly" 
construction of the following batch in memory during the 
runtime to overcome this limitation. 

4.3 Batch Shuffling 

       At the end of each epoch, the order of batches, that is, the 
area unit intended to be fitted and processed is shuffled. This 
strategy lessens the risk of overfitting by reducing the 
variance of the neural network during fitting over a period of 
time. It should be emphasized, however, that just the batch 
process sequence is shuffled, and the knowledge itself is not 
sorted into a new batch order. 

4.4 Multi-CPU and -GPU Support 

      In addition to GPU computing, MIScnn offers the use of 
several GPUs and simultaneous central processor batch 
loading. The storing of already prepared batches on memory, 
for example, allows for a fast and parallelizable process with 
central processors and GPU clusters by removing the risk of 
batch preparation bottlenecks. 

5. Deep Learning Model Creation 

5.1 Model Architecture 

       The most important stage in a medical picture 
segmentation pipeline is choosing a deep learning or 
convolutional neural network model. There are many 
distinct model architectures, each with its own set of 
strengths and limitations. The MIScnn options provide an 
open model interface that allows you to load and switch 
between the several progressive convolutional neural 
network models available, such as the widely used U-Net 
model. Keras, an ASCII text file neural network framework 
that provides a straightforward API for commonly used 
neural network building blocks on top of TensorFlow, is 
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used to define models. The already established models, like 
the Optimized High-Resolution Dense-U-Net model, are 
significantly flexible by a determinable range of neurons, 
custom input sizes, ex gratia dropout, and batch 
normalization layers, or enhanced design versions. MIScnn 
additionally provides 3D architectures, as well as 2D 
architectures for medical image segmentation. The open 
model interface enables for bespoke deep learning model 
implementations and simple integration of these custom 
models into the MIScnn pipeline, in addition to the freedom 
in changing between previously imposed models. 

5.2 Metrics 

       MIScnn has a large number of different metrics that may 
be utilized for loss performance training, figure analysis, and 
manual performance analysis. One of the most often used 
metrics for medical picture segmentation is the Dice 
constant, also known as the Dice similarity index. It 
calculates the degree of similarity between the expected 
segmentation and the ground truth. False positives, on the 
other hand, are penalized. There's a simple and class-wise 
Dice constant implementation to enjoy the precision metric 
reckoning on the segmentation categories (binary or multi-
class). Unlike the simple approach, which merely counts the 
number of right and erroneous predictions, the category-
wise method accounts for prediction performance for each 
segmentation class, which is strongly recommended for 
typically class-unbalanced medical images. The Jaccard Index 
is another widely accepted statistic. Even though it's similar 
to the Dice constant, it doesn't focus entirely on exact 
segmentation. It does, however, punish over-segmentation of 
understanding. MIScnn, on the other hand, employs the 
Tversky loss for training. The Tversky loss performance 
solves knowledge imbalance and is admired by the Dice 
constant. Even so, it achieves a far better balance of precision 
and recall. As a result, Tversky loss performance provides 
smart binary as well as multi-class segmentation 
performance. In addition, many common metrics used in 
Keras, such as accuracy and cross-entropy, are used in 
MIScnn. MIScnn allows you to blend additional metrics for 
training and analysis in addition to the already imposed 
metrics or loss functions. As described in Keras, a custom 
metric is enforced and readily supplied to the deep learning 
model. 

5.3 Model Utilization 

       The model will now be utilized for training on the 
information to suit model weights or for prediction by 
leveraging an already fitted model with the initialized deep 
learning model and hence the totally preprocessed 
information. Instead, the model will do AN analysis by using 
cross-validation with numerous training and prediction calls, 
as an example. The model API allows you to save and load 
models so that you may reprocess previously fitted models 
for prediction or share pre-trained models. 

 

5.4 Training 

       Various parameters should be established while training 
a convolutional neural network or deep learning model. The 
information augmentation options of the data set, which 
have a significant impact on medical picture segmentation 
training, should already be described in the pipeline. 
Following that, the batch management configuration listed 
the batch size settings as well as the batch shuffling at the 
end of each epoch. As a result, simply the learning rate and 
hence the number of epochs must be altered before the 
training technique can be used. The training rate of a neural 
network model is determined by the amount to which the 
neural network model's prior weights are modified in each 
iteration or epoch. The number of epochs, on the other hand, 
determines the proportion of times the full knowledge set 
will be fitted into the model. The resulting fitted model can 
then be stored in memory. Because of the remaining fitting 
time, the underlying Keras framework provides insights into 
the current model performance using specified metrics 
throughout training. MIScnn also provides the use of a fitting 
evaluation questioning practicality, in which the fitting 
scores and metrics are saved in a tab-separated file or 
immediately plotted as a graph. 

5.5 Prediction 

       Once trained, an associate degree previously fitted neural 
network model will be utilized directly or it will be imported 
from a file for segmentation prediction. For each panel, the 
algorithm estimates a Sigmoid price for each category. This 
panel's probability assessment for the related label is 
represented by the Sigmoid price. The argmax of the One Hot 
encoded category is then born-again to one result variable 
holding the category with the best Sigmoid pricing, which is 
known for multi-class segmentation challenges. MIScnn 
provides two approaches for patches inside the prediction 
after using the overlapping patch-wise analysis methodology 
during the training. Either the prediction approach develops 
discrete patches and regards overlapping patches as solely 
knowledge enhancement during the training, or overlapping 
patches are produced for prediction. Due to a lack of 
prediction capacity at patch edges, generating a second 
prediction for edge pixels in patches by victimizing associate 
degree overlap may be an underutilized technique. Within 
the overlapping section of two patches and with numerous 
predictions, a merging method for the pixels is needed 
within the subsequent merge of patches back to the basic 
medical picture form. MIScnn estimates the mean of the 
predicted Sigmoid values for each category in each 
overlapping panel by default. The resulting picture matrix 
with segmentation prediction, which has the same format as 
the original medical image, is stored into a file structure 
using the knowledge I/O interface supplied. The predicted 
segmentation matrix is stored in NIfTI format with no 
further information by default when using the NIfTI 
knowledge I/O interface. 
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5.6 Evaluation  

       Multiple automatic analysis techniques are supported by 
MIScnn to investigate medical image segmentation 
performance: k-fold cross-validation, leave-one-out cross-
validation, percentage-split validation, hold-out sets for 
checking (data set split into test and plaything with a given 
percentage), and elaborate validation in which it is 
frequently given which pictures should be used for training 
and testing. Apart from extensive validation, sampling is 
used to create training and testing data sets in all analytical 
methodologies. The specified measurements and loss 
performance for the model are automatically planned in 
figures during the study and recorded in tab-separated files 
for easy examination. In addition to performance measures, 
the constituent worth changes, and the frequency of 
segmentation categories in medical images are frequently 
examined as part of the MIScnn study. By producing picture 
representations with segmentation overlays, the resulting 
forecast is frequently compared directly to the bottom truth. 
The slices with the segmentation overlays are mechanically 
depicted inside the Graphics Interchange Format (GIF) for 
3D images, such as MRIs. 

5.7 Convolutional Neural Network (U-net) 

        A contracting path (left side) and an expansive path 
(right side) make up the network design (right side). The 
convolutional network's contracting route follows the 
standard architecture. It is made up of two 3x3 convolutions 
(unpadded convolutions) that are applied repeatedly, each 
followed by a rectified linear unit (ReLU) and a 2x2 max 
pooling operation with stride 2 for downsampling. We 
quadruple the number of feature channels with each 
downsampling step. An upsampling of the feature map is 
followed by a 2x2 convolution ("up-convolution") that halves 
the number of feature channels, a concatenation with the 
proportionally cropped feature map from the contracting 
path, and two 3x3 convolutions, each followed by a ReLU in 
the expanding path. Due to the loss of boundary pixels in 
every convolution, cropping is required. A 1x1 convolution is 
employed at the final layer to convert each 64-component 
feature vector to the appropriate number of classes. The 
network comprises a total of 23 convolutional layers. To 
ensure that the output segmentation map tiles seamlessly 
(see Figure 2), the input tile size should be chosen so that all 
2x2 max-pooling operations are applied to a layer with an 
even x- and y-dimension. 

 

 

 

FIG 2 U-Net Architecture 

6. Real-Life Use Cases 

6.1 Kidney Tumor Segmentation 

       Computed Tomography scans of urinary organ tumors 
from the urinary organ tumor Segmentation Challenge 2019 
information set showing the urinary organ (red) 
and tumor (blue) segmentation as overlays. The 
photographs show the segmentation variations between the 
bottom truth provided by the KiTS19 
challenge and therefore the prediction from the quality 3D 
U-Net models of our three-fold cross-validation. 
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6.2 Coronavirus disease 2019(Covid-19) 

       COVID-19 might be a global pandemic virus that spreads 
quickly over the planet. RT-PCR (Reverse Transcription 
enzyme Chain Reaction) is a commonly used test for 
detecting COVID-19 infection. RT-PCR testing is that the gold 
standard for COVID-19 testing, RT-PCR is an incredibly 
complicated, long, and labor-intensive method, sparse 
availability, and not correct. Chest X-ray may be used for the 
initial screening of the COVID-19 in places having a shortage 
of RT-PCR kits and is additional correct at diagnosing. Many 
researchers have used deep learning to classify if the chest 
infection is thanks to COVID-19 or different ailments.  

6.2.1 PDCOVIDNET 

         The use of dilation to sight dominant options within the 
image was explored. The authors planned a parallel 
expanded CNN model. The expanded module concerned the 
skipping of pixels throughout the convolution method. 
Parallel CNN branches square measure proposed with 
completely different dilation rates. The results of parallel 
branches were combined and sent into the next convolution 
layer. The concatenation-convolution process was used to 
investigate feature relationships in enlarged convolutions, 
resulting in visually prominent classification alternatives. 
The model conjointly used Grad-CAM and Grad-CAM++ to 
highlight the regions of class-discriminative noticeable maps. 
The performance metrics used were accuracy, precision, 
recall, F1-score with ROC/AUC, and are 96.58%, 95%, 91%, 
93%, and 99.1% severally. 

7. Future Scope 

   Multiple essential aspects are now the focus of active 
MIScnn development: Adding more knowledge I/O 
interfaces for the most widely used medical image formats, 
such as DICOM, expanding preprocessing and knowledge 
augmentation procedures, and implementing a variety of 
cost-effective patch skipping approaches rather than 
ignoring each blank patch (e.g. denoising patch skipping) 
Implementation of an open interface for bespoke 
preprocessing algorithms for certain picture types, such as 
MRIs. The MIScnn road map also contains a model library 
expansion with a large number of progressive deep learning 
models for medical image segmentation, in addition to the 

scheduled feature implementations. Furthermore, an 
objective comparison of the U-Net model version selection 
has been made available in order to encourage a lot of 
insights on alternative model performances using the same 
pipeline. Contributions from the community in terms of 
implementations or critique are encouraged and might be 
included in the assessment. MIScnn currently has a strong 
pipeline for medical image segmentation; however, it will 
continue to be upgraded and extended in the future. 

8. Results 

     CNN models are delineated as black boxes and there is a 
great deal of analysis happening in terms of analyzing and 
understanding output at each layer. Since medical images 
square measure concerned, we'd like an associate degree 
responsible and economical prediction system that ought to 
even be able to articulate about a call taken. Image 
captioning is being done by researchers (textual 
representations of the image). This can change physicians to 
grasp the perception of the network at each output layer and 
intermediate levels. Researchers have tried theorem deep 
learning models that calculate the uncertainty estimates. 
This would facilitate physicians to assess the model. All of 
these might help clinicians analyze medical images faster by 
employing CNNs. Here, we tend to analyze and measure 
information from the urinary organ tumor Segmentation 
Challenge 2019 exploitation MIScnn. The main goal of this 
experiment is to demonstrate MIScnn's 'out-of-the-box' 
performance without doing extensive and lengthy 
optimizations on the data set or the medical anomaly. The 
scripts in the Appendix were used to acquire all of the 
findings. 

9. Conclusion 

    The ASCII text file Python package MIScnn: A framework 
for medical image segmentation with convolutional neural 
networks and deep learning was introduced in this 
publication. The user-friendly API enables rapid creation of 
medical image segmentation pipeline, as well as knowledge 
I/O, preprocessing, knowledge augmentation, patch-wise 
analysis, metrics, a library of progressive deep learning 
models, and model usages such as training, prediction, and 
completely automated analysis (e.g. cross-validation). Users 
may entirely personalize the pipeline because of its high 

FIG 3 Kidney Tumor Segmentation 
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configurability and many open interfaces. Researchers may 
use this framework to replace a complete medical image 
segmentation process with just a few lines of code. We're 
going to test the MIScnn practicality by conducting 
automatic cross-validation on the excretory organ neoplasm 
Segmentation Challenge 2019 CT knowledge set, which will 
result in a robust predictor. We expect that it will make it 
easier to move medical picture segmentation from analytical 
laboratories to practical applications. 
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