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Abstract - In today’s Data Science and AI community, NLP 
has become one of the most important topics for research as 
we move to a world where communication is becoming 
increasingly important between humans and machines as well. 
Spell Correction and suggestion have become an essential part 
of many applications. The applications are supposed to give us 
the right suggestions and answers even if we make a mistake 
in spelling or we use different sentences for the same meaning. 
Spell Correction is to find a word close to the word typed. 
There are many ways to achieve this but in this paper, we have 
demonstrated it using the Levenshtein distance. Levenshtein 
distance is a similarity measure used for finding similarity 
between 2 words. We have implemented movie suggestions by 
finding the words (movie names) that have a close distance 
from the word we typed. 
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1. INTRODUCTION 
 
NLP has become the forefront of today’s AI and ML research 

as the applications that utilize NLP become increasingly 

popular. The most common use case you will come across is 

spelling correction and auto-suggestions based on keywords. 

Almost every application utilizes this feature, the most 

prominent being the search engines. 

The search engines use spell correction and 

recommendation to give you relevant search results even if 

your choice of words is different or the spelling is incorrect. 

Before NLP came along it was very difficult for any search 

engine to show relevant results as people often used 

different words and some spelled words incorrectly and 

hence the results were not relevant. It was clear that this 

technology was needed. 

Levenshtein distance is an algorithm that calculates the 

similarity between two words based on the number of edits 

required to convert one word to another. The operation 

Levenshtein distance covers insertion, deletions, and 

substitutions. Levenshtein distance is a special case of the 

Edit distance where the weights of all operations are 1 unit. 

Levantine distance algorithm is one of the most widely used 

algorithms for spell correction and word recommendation. 

In this paper, we use the Levenshtein distance on the movie 

dataset. We find the relevant movies based on the words the 

user has entered. The algorithm is implemented from scratch 

using python. As we will see in the results section the results 

produced by the Levenshtein distance are optimal and 

similar words are being detected. We have also validated 

some of our cut-offs and assumptions using Wikipedia spell 

correction dataset. 

2. SIMILARITY MEASURES AND THEIR 

APPLICATIONS IN DIFFERENT FIELDS 

NLP is one of the blooming and fastest-growing sectors of the 
IT industry. NLP involves processes such as voice-to-text 
conversion or text conversion from a language to another or 
word recommendation, etc. For all these operations, we need 
algorithms or methods to compare and verify the results on 
the basis of inputs. For finding the similarity between text 
words or phrases. Predominantly, similarity measures are 
used as a metric to find whether there is any relation 
between two words or to what extent are the two words 
similar. A few similarity measures are mentioned below: 

a. Edit Distance 

b. N-Gram Distance 

c. Jaro Similarity 

d. Cosine Similarity 

e. Jaro- Wrinkler Similarity 

The various application of these Similarity measures are:  

a. Automatic Suggestion 

b. Text Recommendation Systems 

c. Plagiarism Checking 

d. Gene Matching in Computational Biology 

e. Automatic Answer Correction System (for MCQ 
question based on already known correct answers) 

f. Automatic Spelling Correction System 

g. Sequence Matching in Data Mining and Cyber 
Security 

3. METHODOLOGY 

For creating a spelling corrector or spelling checker, first it 
was important to restrict the domain of the input words to a 
particular field, else, a dictionary would be required for 
implementing the system in general English language. Hence, 
the domain of the system is restricted to Hollywood, English 
movie names. Further due to memory and hardware 
restrictions, the system is trained on names of movies 
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released in or after 2000. After the user inputs the movie 
name, the system checks the edit distance of the input and all 
the movie names. 
 

3.1 Edit Distance Algorithm 
 
Edit distance between 2 words is calculated by calculating 

the number of Edit operations (Insertion, Deletion and 

Replacement) carried out on one word to transform it into 

the second. Each operation is given some cost. Consider all 

the operations are of cost y. 

Eg: Edit Distance between “FOOD” and “FODDER” is 3y as if 

we want to convert FOOD to FODDER, we replace the second 

‘O’ with D and insert ‘ER’ which will cost y for replacement 

and 2y for 2 insertions making it 3y. 

3.2 Levenshtein Distance Algorithm 
 
In 1965, Soviet mathematician Vladimir Levenshtein 

formulated and explained Levenshtein Distance after which 

the distance metric was introduced and named after him. 

Many fields like spell checking, speech recognition, DNA 

analysis, and plagiarism detection use the Levenshtein 

Distance (LD) algorithm. The distance is the number of 

deletions, insertions, or substitutions required to transform 

into. Levenshtein Distance is a special version or case of Edit 

distance where y (cost) = 1 

To restrict the output or results, we have used a measure of 

Distance limit (all words having Levenshtein Distance with 

the input less than or equal to Distance Limit will be shown). 

These systems can be used in many video streaming or 

entertainment platforms and integrated with different 

search buttons and results in APIs. 

 
Fig.-1: Levenshtein Distance Formula 

3.3 Workflow and Steps involved 
 
To Create a Word-Bank of Movies: 

1) Import Required libraries 

2) Read the “IMDb movies.csv” dataset. (Link provided 
in the reference section) 

3) Filter all the movie names of the movies which are 
released after 2000 and are in English and store 
them in a list 
 

For Word Correction System 

1) Accept Input word from the user 

2) Validate the input 

3) Calculate the Levenshtein Distance between the 
input word and all the words available in the Word 
bank 

4)  Check if the word is already present in the Word 
Bank: 

a. If yes, the input word is correct 
b. Else, continue to step 3 

5) Display all the words which have a Levenshtein 
Distance less than or equal to a threshold value (in 
our case 2) 

 

4. IMPLEMENTATION 

The system was implemented in Python and the editor used 

was Google Colab. Along with python, we used the dataset, 

“IMDb movies.csv”, which was derived from Kaggle and 

contained the information of all the movies released after the 

1860s.  

4.1 Dataset Description and Preprocessing: 

The Kaggle dataset (link in references) was populated with a 

huge number of entries. With these many rows and such a 

huge dataset, it was important to prioritize time taken and 

space complexities as basic Python data types were used to 

accomplish the task. We decided to reduce the number of 

movie names by only selecting the movies released after 

2000, which reduced the size considerably. 

Since the movies present in the database or dataset also 

included the movies in other languages, the data was cleaned 

by only considering the movies which were released post-

2000 and were in English. This helped in restricting the data 

or input from the user and restricted our domain to some 

extent. The system only accepted movie names that had 

alphabets and spaces. We were finally left with around 

13400 movies which were enough to train and implement 

our model. 
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Fig.-2: System Workflow and Architecture 
 

The user first inputs the movie name which is validated and 

accepted only if its length is greater than 3. Following this, 

the system calls the Autocorrection class which finds and 

returns all the movie names which can be derived or found 

from the input string by replacing some letters. In the Auto-

Correction class, there are 2 functions namely, autocorrect 

and _LevenshteinDistance. The autocorrect validates input 

and finds the words which can be suggested to the user, 

while on the other hand, _LevenstheinDistance calculates the 

Levenshtein Distance and returns the distance. 

Levenshtein Distance between all the 13400 words in the 

name-bank or word bank and input word is calculated and 

then the selected words or movie names that have 

Levenshtein Distance less than or equal to the Distance limit 

(threshold value) are printed or shown as the probable 

words. 

For finding the Distance limit, we first loaded a dataset (txt 

file) of misspelled words in Wikipedia and created a 

dictionary that contains possible Levenshtein Distances as 

keys and the number of words with that distance from its 

Correct Spelling as the values. 

While comparing the values, we saw that most of the 

misspelled words had a distance less than or equal to 2 

(From their Correct Spelling). Keeping a higher threshold 

value (or distance limit) would result in incorrect 

suggestions or corrections. Hence, the distance limit was set 

to 2 and the words having distance less than or equal to 2 

are printed. A special case appears when the distance is 

equal to 0, this means that there exists a movie with that text 

or word as the movie name, and hence no suggestions or 

corrections are recommended. The words are arranged in 

increasing order of the Levenshtein distance 
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5. OUTPUT OF THE SYSTEM 

 
Fig.-3: Sample Output of the system 

 
Understanding the output given in Fig.-3: 
 

 
Fig.-4: Levenshtein Distance between “THRO” and “TROY” 
 
Using the Levenshtein distance formula, Fig.-4 illustrates 

how the distance is calculated by the computer using a 

matrix or tabular notation. 

The distance between Thro and Troy is 2. 

Considering the example of “TRI”: 

 
Fig.-5: Levenshtein Distance between “TRI” and “THRO” 

 
The Levenshtein distance between “TRI” and “THRO” is 2, 

calculations for which can be referred from Fig.-5. 

Here, both the words have Levenshtein distance equal to two 
and hence, the words are displayed according to the order in 
which they were stored in the dictionary. However, if the 
distances were different, the output would be arranged in 
the ascending order of the distance. For example: if the input 
is Spector 

Levenshtein Distance (Spectre, Spector) = 2 

Levenshtein Distance (Species, Spector) = 3 

So, the output of the system, when input = “Spector” will be 
Spectre followed by Species as the distance between Spectre 
and Spector is less (2 < 3) and the user might mean to find or 
watch Spectre movie. 

6. FUTURE SCOPE 

The algorithm discussed and implemented in the paper was 
a naïve and basic algorithm and could lead to many more 
complex and advanced architectures. This system is 

currently designed only to correct or suggest corrections in 
Movie Names entered by a user on basis of a dataset of 
movies released after the year 2000. However, if this were to 
be implemented in a search engine, the dataset or database 
needs to be generalized and the barrier of movies released 
after 2000 needs to be removed. Also, for this system to be 
deployed on an entertainment platform, it needs to be made 
multi-lingual, where the user can get the freedom of 
searching his favorite movies in different languages, which is 
a complex task. A great efficiency is not the only objective, 
sometimes famous movies having superstars and 
international actors or singers or individuals of different 
domains are more searched than lesser known, low-budget 
films or documentaries. For an instance, when a user 
searches inter, Interstellar is shown first as a 
recommendation and the next movie shown is The Intern. 
This is because the former was a bigger, famous and 
acclaimed movie than the latter. To provide this, we can add 
weights to a movie according to its ratings, cast and 
popularity. Results can be arranged on the basis of this for 
better and satisfactory outcomes. 

7. CONCLUSION 

The paper discussed the importance of similarity measures 
and various types of similarity measures. Additionally, it also 
suggested different applications of similarity measures in 
various fields of human interests. The paper specified the 
importance of Spelling checking and its use in NLP. Along 
with this, the paper presented an efficient implementation of 
spell correction with Levenshtein distance with a unique 
algorithm which resulted in the Levenshtein distance 
correctly identifying the relevant words or movie names for 
any given input. It was also proved that using the cut off or 
threshold value equal to two is most optimal by validating it 
using Wikipedia spell correction dataset. Further, the paper 
mentions the future scopes that can be implemented in 
different projects or different methods which can make the 
system more efficient and useful. 
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