
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1977

SPELL CORRECTION AND SUGGESTION USING LEVENSHTEIN DISTANCE

Ansh Mehta1, Vishal Salgond2, Darshan Satra3, Nikhil Sharma4

1-4Department of Information Technology, K. J. Somaiya College of Engineering, Mumbai
---***--
Abstract - In today’s Data Science and AI community, NLP
has become one of the most important topics for research as
we move to a world where communication is becoming
increasingly important between humans and machines as well.
Spell Correction and suggestion have become an essential part
of many applications. The applications are supposed to give us
the right suggestions and answers even if we make a mistake
in spelling or we use different sentences for the same meaning.
Spell Correction is to find a word close to the word typed.
There are many ways to achieve this but in this paper, we have
demonstrated it using the Levenshtein distance. Levenshtein
distance is a similarity measure used for finding similarity
between 2 words. We have implemented movie suggestions by
finding the words (movie names) that have a close distance
from the word we typed.

Key Words: Levenshtein Distance, Edit Distance, Data
Science, AI, NLP, Spell Correction

1. INTRODUCTION

NLP has become the forefront of today’s AI and ML research

as the applications that utilize NLP become increasingly

popular. The most common use case you will come across is

spelling correction and auto-suggestions based on keywords.

Almost every application utilizes this feature, the most

prominent being the search engines.

The search engines use spell correction and

recommendation to give you relevant search results even if

your choice of words is different or the spelling is incorrect.

Before NLP came along it was very difficult for any search

engine to show relevant results as people often used

different words and some spelled words incorrectly and

hence the results were not relevant. It was clear that this

technology was needed.

Levenshtein distance is an algorithm that calculates the

similarity between two words based on the number of edits

required to convert one word to another. The operation

Levenshtein distance covers insertion, deletions, and

substitutions. Levenshtein distance is a special case of the

Edit distance where the weights of all operations are 1 unit.

Levantine distance algorithm is one of the most widely used

algorithms for spell correction and word recommendation.

In this paper, we use the Levenshtein distance on the movie

dataset. We find the relevant movies based on the words the

user has entered. The algorithm is implemented from scratch

using python. As we will see in the results section the results

produced by the Levenshtein distance are optimal and

similar words are being detected. We have also validated

some of our cut-offs and assumptions using Wikipedia spell

correction dataset.

2. SIMILARITY MEASURES AND THEIR

APPLICATIONS IN DIFFERENT FIELDS

NLP is one of the blooming and fastest-growing sectors of the
IT industry. NLP involves processes such as voice-to-text
conversion or text conversion from a language to another or
word recommendation, etc. For all these operations, we need
algorithms or methods to compare and verify the results on
the basis of inputs. For finding the similarity between text
words or phrases. Predominantly, similarity measures are
used as a metric to find whether there is any relation
between two words or to what extent are the two words
similar. A few similarity measures are mentioned below:

a. Edit Distance

b. N-Gram Distance

c. Jaro Similarity

d. Cosine Similarity

e. Jaro- Wrinkler Similarity

The various application of these Similarity measures are:

a. Automatic Suggestion

b. Text Recommendation Systems

c. Plagiarism Checking

d. Gene Matching in Computational Biology

e. Automatic Answer Correction System (for MCQ
question based on already known correct answers)

f. Automatic Spelling Correction System

g. Sequence Matching in Data Mining and Cyber
Security

3. METHODOLOGY

For creating a spelling corrector or spelling checker, first it
was important to restrict the domain of the input words to a
particular field, else, a dictionary would be required for
implementing the system in general English language. Hence,
the domain of the system is restricted to Hollywood, English
movie names. Further due to memory and hardware
restrictions, the system is trained on names of movies

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1978

released in or after 2000. After the user inputs the movie
name, the system checks the edit distance of the input and all
the movie names.

3.1 Edit Distance Algorithm

Edit distance between 2 words is calculated by calculating

the number of Edit operations (Insertion, Deletion and

Replacement) carried out on one word to transform it into

the second. Each operation is given some cost. Consider all

the operations are of cost y.

Eg: Edit Distance between “FOOD” and “FODDER” is 3y as if

we want to convert FOOD to FODDER, we replace the second

‘O’ with D and insert ‘ER’ which will cost y for replacement

and 2y for 2 insertions making it 3y.

3.2 Levenshtein Distance Algorithm

In 1965, Soviet mathematician Vladimir Levenshtein

formulated and explained Levenshtein Distance after which

the distance metric was introduced and named after him.

Many fields like spell checking, speech recognition, DNA

analysis, and plagiarism detection use the Levenshtein

Distance (LD) algorithm. The distance is the number of

deletions, insertions, or substitutions required to transform

into. Levenshtein Distance is a special version or case of Edit

distance where y (cost) = 1

To restrict the output or results, we have used a measure of

Distance limit (all words having Levenshtein Distance with

the input less than or equal to Distance Limit will be shown).

These systems can be used in many video streaming or

entertainment platforms and integrated with different

search buttons and results in APIs.

Fig.-1: Levenshtein Distance Formula

3.3 Workflow and Steps involved

To Create a Word-Bank of Movies:

1) Import Required libraries

2) Read the “IMDb movies.csv” dataset. (Link provided
in the reference section)

3) Filter all the movie names of the movies which are
released after 2000 and are in English and store
them in a list

For Word Correction System

1) Accept Input word from the user

2) Validate the input

3) Calculate the Levenshtein Distance between the
input word and all the words available in the Word
bank

4) Check if the word is already present in the Word
Bank:

a. If yes, the input word is correct
b. Else, continue to step 3

5) Display all the words which have a Levenshtein
Distance less than or equal to a threshold value (in
our case 2)

4. IMPLEMENTATION

The system was implemented in Python and the editor used

was Google Colab. Along with python, we used the dataset,

“IMDb movies.csv”, which was derived from Kaggle and

contained the information of all the movies released after the

1860s.

4.1 Dataset Description and Preprocessing:

The Kaggle dataset (link in references) was populated with a

huge number of entries. With these many rows and such a

huge dataset, it was important to prioritize time taken and

space complexities as basic Python data types were used to

accomplish the task. We decided to reduce the number of

movie names by only selecting the movies released after

2000, which reduced the size considerably.

Since the movies present in the database or dataset also

included the movies in other languages, the data was cleaned

by only considering the movies which were released post-

2000 and were in English. This helped in restricting the data

or input from the user and restricted our domain to some

extent. The system only accepted movie names that had

alphabets and spaces. We were finally left with around

13400 movies which were enough to train and implement

our model.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1979

Fig.-2: System Workflow and Architecture

The user first inputs the movie name which is validated and

accepted only if its length is greater than 3. Following this,

the system calls the Autocorrection class which finds and

returns all the movie names which can be derived or found

from the input string by replacing some letters. In the Auto-

Correction class, there are 2 functions namely, autocorrect

and _LevenshteinDistance. The autocorrect validates input

and finds the words which can be suggested to the user,

while on the other hand, _LevenstheinDistance calculates the

Levenshtein Distance and returns the distance.

Levenshtein Distance between all the 13400 words in the

name-bank or word bank and input word is calculated and

then the selected words or movie names that have

Levenshtein Distance less than or equal to the Distance limit

(threshold value) are printed or shown as the probable

words.

For finding the Distance limit, we first loaded a dataset (txt

file) of misspelled words in Wikipedia and created a

dictionary that contains possible Levenshtein Distances as

keys and the number of words with that distance from its

Correct Spelling as the values.

While comparing the values, we saw that most of the

misspelled words had a distance less than or equal to 2

(From their Correct Spelling). Keeping a higher threshold

value (or distance limit) would result in incorrect

suggestions or corrections. Hence, the distance limit was set

to 2 and the words having distance less than or equal to 2

are printed. A special case appears when the distance is

equal to 0, this means that there exists a movie with that text

or word as the movie name, and hence no suggestions or

corrections are recommended. The words are arranged in

increasing order of the Levenshtein distance

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1980

5. OUTPUT OF THE SYSTEM

Fig.-3: Sample Output of the system

Understanding the output given in Fig.-3:

Fig.-4: Levenshtein Distance between “THRO” and “TROY”

Using the Levenshtein distance formula, Fig.-4 illustrates

how the distance is calculated by the computer using a

matrix or tabular notation.

The distance between Thro and Troy is 2.

Considering the example of “TRI”:

Fig.-5: Levenshtein Distance between “TRI” and “THRO”

The Levenshtein distance between “TRI” and “THRO” is 2,

calculations for which can be referred from Fig.-5.

Here, both the words have Levenshtein distance equal to two
and hence, the words are displayed according to the order in
which they were stored in the dictionary. However, if the
distances were different, the output would be arranged in
the ascending order of the distance. For example: if the input
is Spector

Levenshtein Distance (Spectre, Spector) = 2

Levenshtein Distance (Species, Spector) = 3

So, the output of the system, when input = “Spector” will be
Spectre followed by Species as the distance between Spectre
and Spector is less (2 < 3) and the user might mean to find or
watch Spectre movie.

6. FUTURE SCOPE

The algorithm discussed and implemented in the paper was
a naïve and basic algorithm and could lead to many more
complex and advanced architectures. This system is

currently designed only to correct or suggest corrections in
Movie Names entered by a user on basis of a dataset of
movies released after the year 2000. However, if this were to
be implemented in a search engine, the dataset or database
needs to be generalized and the barrier of movies released
after 2000 needs to be removed. Also, for this system to be
deployed on an entertainment platform, it needs to be made
multi-lingual, where the user can get the freedom of
searching his favorite movies in different languages, which is
a complex task. A great efficiency is not the only objective,
sometimes famous movies having superstars and
international actors or singers or individuals of different
domains are more searched than lesser known, low-budget
films or documentaries. For an instance, when a user
searches inter, Interstellar is shown first as a
recommendation and the next movie shown is The Intern.
This is because the former was a bigger, famous and
acclaimed movie than the latter. To provide this, we can add
weights to a movie according to its ratings, cast and
popularity. Results can be arranged on the basis of this for
better and satisfactory outcomes.

7. CONCLUSION

The paper discussed the importance of similarity measures
and various types of similarity measures. Additionally, it also
suggested different applications of similarity measures in
various fields of human interests. The paper specified the
importance of Spelling checking and its use in NLP. Along
with this, the paper presented an efficient implementation of
spell correction with Levenshtein distance with a unique
algorithm which resulted in the Levenshtein distance
correctly identifying the relevant words or movie names for
any given input. It was also proved that using the cut off or
threshold value equal to two is most optimal by validating it
using Wikipedia spell correction dataset. Further, the paper
mentions the future scopes that can be implemented in
different projects or different methods which can make the
system more efficient and useful.

REFERENCES

[1] Aouragh Si Loussain, Gueddah Hicham, Yousfi Abdellah,

“Adapting the Levenshtein Distance to Contextual
Spelling Correction” (via ResearchGate), March 2015

[2] Thi Thi Soe, Zarmi Sann, “Study on Spell Checking
System using Levenshtein Distance Algorithm”,
International Journal of Recent Development in
Engineering and Technology, Vol. 8 (Issue: 9),
September 2019

[3] Muhammad Maulana Yulianto, Riza Arifudin, Alamsyah,
“Autocomplete and Spell Checking Levenshtein Distance
Algorithm to Getting Text Suggest Error Data Searching
in Library”, Scientific Journal of Informatics, Vol. 5, May
2018

[4] Maake Benard Magara, Sunday O. Ojo, Tranos Zuva, “A
Comparative Analysis of Text Similarity Measures and
Algorithms in Research Paper Recommender Systems”,
Conference on Information Communications Technology
and Society (ICTAS), 2018

[5] Li Qu, H.X. Lin, “Edit Distance Based Crossover Operator
in Gene Expression Programming”, 8th International

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1981

Conference on Bio-Medical Engineering and Informatics
(BMEI), 2015

[6] Yu Zhao, Hui Xing Jiang, XiaoJie Wang, “Minimum Edit
Distance-based text matching Algorithm”, 6th
International Conference on Natural Language
Processing and Knowledge Engineering (NLPKE), 2010

[7] Doru Anastasiu Popescu; Ovidiu Domşa; Ion Alexandru
Popescu,“Determining the degree of similarity of
answers given at a test using edit distance”

[8] Muhammad Ifte Khairul Islam , Rahnuma Islam Meem ,
Faisal Bin Abul Kasem, Aniruddha Rakshit, Md. Tarek
Habib, “Bangla Spell Checking and Correction Using Edit
Distance”, 1st International Conference on Advances in
Science, Engineering and Robotics Technology
(ICASERT), 2019

[9] Myunggwon Hwang, Do-Heon Jeong, Seungwoo Lee,
Hanmin Jung, “Measuring Similarities between Technical
Terms based on Wikipedia”, International Conference on
Internet of Things and 4th International Conference on
Cyber, Physical and Social Computing, 2011

[10] Dataset for implementation:

https://www.kaggle.com/stefanoleone992/imdb-
extensive-dataset

http://ieeexplore.ieee.org.library.somaiya.edu/xpl/conhome/8931128/proceeding
http://ieeexplore.ieee.org.library.somaiya.edu/xpl/conhome/8931128/proceeding
http://ieeexplore.ieee.org.library.somaiya.edu/xpl/conhome/8931128/proceeding
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset

