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Abstract- With the rising number of drivers behind the wheel, the number of road accidents has thrived exponentially. One of the 

significant reasons behind these fatal misfortunes has been the high avertness of Traffic signals. With these, there is the utter need 

of a model that can guide the self-driving cars and even the cars with the drivers to help them perceive the signals and dwindle the 

road accidents. For this, it is required for a to perform real time analysis of traffic signs and alert the drivers. Following this, we 

have built a traffic sign image recognition system that can help driverless cars to interpret the traffic signals without any human 

intervention. Additionally, we have employed disparate optimizers while building up the model. Different activation functions are 

used with respect to optimizers to calculate the training loss and validation loss and hence draw tables and graphs to compare 

them in order to find the best fit for the model. Thus, this will clarify how a model behaves in multiple scenarios, with amendment 

in hyperparameters and time it takes to evaluate the result.  
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Introduction 

In recent times, the world saw behemoth traffic on the 

road, which became a key reason for the escalating 

number of road accidents. According to the research, the 

reason for such surgical incidents has been averting the 

traffic signals. Therefore, traffic sign detection and 

recognition has clinched importance and popularity in 

image processing which allows passengers to fully use cars 

for travelling, leading to gigantic transformation in the 

arena of electric self-driving cars.  

An automated signal detection and recognition model will 

provide aptness for smart cars and driving to perceive the 

traffic signals and act accordingly. Not just for driverless 

cars, but also even with the driver behind the wheel, which 

may endorse with essential instructions, dwindling human 

fallacy that seeds accidents. With installation of such a 

system, it is anticipated the attrition of mishaps which will 

save a lot of human lives and capital associated with the 

car accidents. 

The main goal behind developing such a system is clear 

because of the benefits the system provides in saving 

human lives and monetary as well. Hence, the objective of 

this project is to build a deep neural network model that 

can classify the traffic signs present in image into different 

categories. The suggested work has faculty to interpret the 

sign captured by the camera and further processing it by 

CNN network. Additionally, this paper carries major 

objectives of implementing distinct hyperparameters by 

using various optimizers and to conceive the best 

optimizer to improve the accuracy of the model above 

95% such that the model functions well in a varied 

domain. 

Literature Review 

As the trend of machine learning is escalating at a rapid 

pace the number of hyperparameters and optimizers are 

also invented along the way to predict a deep classification 

among them and dig out the advancements made in them. 

With these advancements we are carrying out a 

comparative study of numerous activation functions under 

category image classification and how they perform under 

different circumstances. A lot of similar kind of work has 

been already been performed in this field, for instance: 

paper written by Zsolt T. Kharkov´acs, Zsombor Par´oczi 

and  Endre Varga focused profoundly upon the problems, 

the system could face while analysis of real time traffic 

signals due to various important factors and proposed a 

novel system to capture image with high quality web 

camera with high resolution(1600x1200 frames) such that 

these images are clearly discernible in poor environment 

and hurdles and finally classifying the traffic signs. [1].  

 

Another similar work in this field has been performed by 

Hui Guo and Zhongyu Wang, whose architecture was based 

on CNN and they introduced a novel, YOLO method for 

recognition which greatly improved accuracy of their 

model and provided faster results. [2] 
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Paper by Karthikeyan D, Enitha C, Bharathi S and 

Durkadevi K aimed at perceiving even the most perplexing 

images by learning in-depth features by rigorously 

learning from training samples by using YCBCR process. 

Their proposed work detects the image and compares it 

with images in their datasets to generate accurate 

prediction. Additionally, they have employed edge 

detection technique advanced GABOR filtering which is 

said to be as similar as human vision, which sections the 

traffic image from nearby images. [3] 

 

In the paper by Danyah A. Alghmgham, Jaafar Alghazo and 

loy Alzubaidi, their CNN model produced an accuracy of 

100%. They developed the model with 24 different traffic 

sign categories of Saudi Arabia with a total of 2718 images. 

Their proposed work detects the image and the captured 

image is processed by deep CNN. Moreover, they have 

defined the CNN model that they have implemented and 

published their results of accuracy and loss in tabular form 

differentiated by number of epochs and batch size. As a 

result, their final CNN model produced accuracy of 100% 

on 150 epochs. [4] 

 

In the work done by Glory Reuben Maxwell and Dr. Dinesh 

D. Patil, they have described disparate methods for 

detection of traffic signals based on color, texture, and 

shape and explained them thoroughly. Furthermore, they 

have subdivided the color, texture and shape based 

method into subparts and defined them profoundly. [5]  

 

After carefully scrutinizing the work performed by other 

authors, we tried to perform our project differently from 

the work discussed above. In our proposed system, we 

have employed different optimizers with different 

activation functions for parameter tuning, followed by 

comparison of their performance. The results are 

discussed at the end with tables and graphs. 

 

Tools 

In order to generate a highly efficient and smooth 

functioning system, we have worked with high level 

Machine Learning tools and technologies. These tools 

enabled us to import various foremost important libraries, 

allowed us to create graphs of accuracy and loss, helped us 

to find out the accuracy score etc. Tools used in this model 

are discussed below: 

A. Jupyter Notebook: Jupyter notebook is a powerful tool 

that provides us the platform to write, share and visualize 

our code along with interactive development and 

presentation of our project. The coding of our machine 

learning model and implication of various 

hyperparameters took place in a jupyter notebook. 

B. Python: Python is one of the most powerful 

programming languages majorly used in machine learning 

and data science projects. Due to the simplicity it provides 

while writing the code, it is the top preferred language for 

any programmer. The overall coding of our ML model is 

written in python. Additionally, numerous python libraries 

were imported to add functionality to the model. 

C. Matplotlib: This is one of the most popular python 

libraries to visualize the data and know inner insights 

about it. It is frequently used with python mathematical 

library numpy and is free and open source. There are 

numerous types of graphs and complex plots that can be 

created with it like contour plot, polar plot, scatter plot, 

image plot, 3-D plots, histogram etc. Also in order to 

examine the accuracy and loss values in machine learning 

models to know the model behaviour in order to clarify 

them as overfitted or under fitted. 

D. Scikit-Learn: This library is used to build the machine 

learning and deep learning models. It comprises 

supervised, unsupervised and reinforcement learning 

algorithms and efficient versions to develop the model. It 

is based on arithmetic python libraries like numpy, 

pandas, sympy, matplotlib, Scipy and ipython. The 

foundation of deep learning models is built on scikit learn 

which has feature selection, feature extraction and 

parameter tuning.  

E. TensorFlow: It is an open source library for artificial 

intelligence for training and inference of deep neural 

networks. It is like a brain system which learns according 

to the data and performs under desired conditions. The 

novel ideas of image processing techniques specially used 

in diagnostic techniques for diseases like cancer, bone 

marrow, blood DNA analysis, genetic coding etc. are done 

with the help of this library. Also the latest advancements 

are done in this library to be used for solving AI related 

problems. 

F. Tensor board:  It is also a visualization tool with a deeper 

impact and insights about the deep learning model. It has a 

variety of methods to evaluate the epochs behaviour by 

depicting as histogram, time series analysis, graphs and 

scalars. It helps to compute the training and testing values 

under multiple hyperparameters to distinguish among 

each of them. It takes its values from the directory as 

specified during training of the machine learning model 

and can be used on various operating systems. 
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Optimizers 

Over a period of time, machine learning and algorithms 

have exhibited certain advantages over human existence 

and transformed our lives with ease to make a certain 

decision about a problem. On top of machine learning, 

deep learning has offered higher flexibility and accuracy in 

disparate applications with increased precision and 

endorsement with its usage in almost every arena. With 

profound use of these algorithms, it becomes necessary to 

make use of these algorithms with minimal resources in 

order to reduce the monetary burden and ameliorate the 

performance by dwindling errors. This is where optimizer 

comes into play. Optimizers are the algorithms or the 

methods which transform our model into the most precise 

form by updating certain parameters such as weights, 

learning rate that minimizes the loss and improves the 

accuracy. In order to generate models with highest 

precision and minimum loss, we have employed different 

hyperparameters by making use of disparate optimizers. 

Below discussed are the optimizers that we have used in 

our project- 

Table 1. Optimizers 

Optimizers  
  

Use 

 
 
Adam  

Adaptive moment system or Adam is a 
widely used optimizer designed 
specifically to train deep neural 
networks. Due to its competence with 
perplexed problems, minimal memory 
requirement, it is heavily preferred. 
While employing Adam optimizers it 
gave best working accuracy.. 

 
 
Adagrad  
  

Adaptive gradient optimizer or Adagrad 
functions by thoroughly grasping the 
learning rate of the parameters by 
observing the frequency and behavior of 
the parameters (small updating for high 
frequency data and higher updating for 
low frequency data) and hence works 
best with scattered data.  

 
                
RMSprop  
  

Root mean square propagation or 
RMSprop functions by moving the 
average of the square of the gradients 
and dividing the gradient by the root of 
the average. It restricts oscillation in 
vertical directions and only supports in 
horizontal direction resulting in taking a 
large step which normalizes the gradient.  

SGD Stochastic Gradient Descent is an 
iterative method which works well on 
linear classifiers. It is one of the efficient 
ways to train the model with ease of 
implementation. The prime purpose of 
SGD is to find global optima by making 
amendments is learning rare alpha.  

 
 
Adadelta  
  
 

Adadelta or adaptive learning rate 
optimizers is a stochastic gradient 
descent method that is an extension of 
adagrad optimizer. Adadelta functions by 
restricting the fixed window size instead 
of summing all past gradients, leading to 
efficient updation of learning rate. 

 

Activation Function 

When input neurons are fed inside an artificial neural 

network, it is required to decide whether the particular 

neuron should be fired or not, which further helps to 

understand the complex pattern in the data, that decision 

parameters is known as activation function. Activation 

function maps the input value into a particular range, 

depending upon the type of function in use. In deep neural 

networks, weights and biases are applied to the data input 

and these input data are passed  

through activation function. It is an activation function that 

decides whether this particular input data, called neuron, 

should be fired or not. In case the neuron is fired, the input 

data is fed to the next layer known, this process is known 

as forward propagation. In case, when the neuron is not 

fired (by checking the errors i.e. if the output generated is 

far from the actual value), it is fed to the previous layers 

and its weights and biases are updated, this process is 

known as back propagation. Depending upon the purpose, 

Activation function is broadly divided in two categories, 

they are discussed below: 

A. Linear Activation Function: 

As the name suggests, output in case of linear activation 

function will not be constricted within any range and 

therefore, it will produce continuous output. Because of 

continuous output, the range is (-infinity to +infinity). In 

practice, they are not much used in deep learning model 

due to following reasons- 

a) Back propagation is not supported in linear activation 

function which further would not change the weights 

associated with the input because of the reason that the 

input value will always be same and the activation function 

will not limit the value in any range 

b) Because of the fact that the last layer in a deep neural 

network is the linear function of the first layer (a linear 
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combination of linear functions is still a linear function), so 

basically it converts the model into just a single layer.     

B. Non Linear Activation Function:   

Non-linear activation function as the name suggests is the 

function that confines the output within a particular range 

due to which output lies within a range. The range limit is 

dependent on the type of activation function in use. They 

help the model to learn all the involute patterns in the data 

and cover all the limitations of the linear activation 

function by supporting back propagation and by allowing 

multiple hidden layers to create the deep neural model. 

They learn advanced features in complex data such as 

audio, video, image, text and thus provide precise 

prediction. In our model, we have employed four non-

linear activation functions. They are discussed below in 

the table- 

 

Table 2. Activation Functions 

 Activation 
Function 

Use 

Sigmoid Sigmoid function takes the input and 
converts it into range (0,1). Because of its 
range, it is mostly preferred in predicting 
the probability as an output. Sigmoid 
function is defined by the function- [6] 
                                       (1)                            

Relu Relu activation function works quite 
differently from other functions. It checks 
the input value and produces output 
accordingly. if the input is positive, it will 
generate the output without changing the 
input value, but if the input is negative, it 
will map the output to zero. Its range is (0, 
infinity) therefore it is defined by the 
function- [7] 
                                            (2)                                                                                                                          

Elu Elu functions somewhat in similar fashion 
to Relu except for its behavior for the 
negative value. It is defined by the 
function- [8] 
                                                (3)                                                                                                       
                                         (4)                                                                                       
it outputs the input if the value is positive 
but for negative value it produces a slightly 
smooth curve near the constant alpha. Elu 
has great advantages over other functions 
and most importantly it solves the 
problem of vanishing gradients (gradient 

approaches zero and becomes hard to 
train) and exploding gradients (gradient 
becomes too large, resulting in large 
update and unstable network) seen in 
sigmoid function.   

Selu Selu or self-exponential linear unit is a 
well-known action function for self-
normalizing quality (meaning output of 
each layer will produce zero mean and 
unit variance). Moreover, Selu removed 
the vanishing gradient and exploding 
gradient problem. It is defined by the 
function- [9] 
                                                 (5)                                                                               
                                (6)                                                                                    
where the value of λ and α are predefined 
(λ=1.0507 and α=1.6733) 

 

Proposed Work 

This section consists of a series of steps undertaken, 

broadly, to build the deep CNN model. In recent years, a 

number of authors have worked in this field but no author 

has ever used different hyperparameters for comparison 

of the best optimizer for performance tuning in order to 

perceive the optimizer with greatest accuracy. Steps 

followed are as follows- 
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Fig 1. Steps Involved in building model 

 

A.  Import the dataset: 

Primary step involved before developing the model is to 

load the dataset. In our model, we have imported a German 

traffic signals dataset from Kaggle in a jupyter notebook 

using python by defining the path of the data. Just by 

specifying the path, the data is imported from the specified 

location. 

B. Analyzing the dataset:  

After importing the dataset, another key process is to get 

familiar with the loaded data and explore it. In our 

proposed work, we have used a German traffic signals 

dataset with 41 different labels, ranging from 0 to 40. The 

shape of data is (39209,30,30,3), implying there are 39209 

data with each image of size 30*30 pixels and 3 represents 

the colored image (RGB value). This part also involves 

feature engineering, meaning that the images are resized 

to appropriate size by specifying the dimensions of the 

image such that every image lies in the same scale. 

C. Splitting the dataset:  

Before moving further to develop the model, it’s necessary 

to split the data into training and testing sets. In our 

model, we have used 80% of data as training data and 

remaining 20% of data as testing data. Splitting of data is 

necessary as we do not want our model to get familiar with 

every data present and want to save some percentage of 

data to test our model in the end in order to check 

accuracy. 

 

D. Data preprocessing: 

Data preprocessing is the process of transforming the raw 

datasets into interpretable form that could be well 

understood. Raw data is often imperfect having irregular 

matrix size, color correction. Before fitting the dataset into 

the model, it is required to convert the images into the 

same format with the same size and remove all the 

irregularities.  

E. Building the CNN model: 

For image classification into their respective categories, 

we build the CNN model, which is one of the best known 

methods for image classification. CNN is a deep learning 

algorithm that takes an image as an input, converts the 

input image in the form of pixels, assigns weights and 

biases to the input image and passes it to the next layer in 

the network. The network in CNN comprises different 

channels namely- CNN layer, pooling layer, Activation 

function layer and fully connected layer. Depending upon 

the model these layers can be repeated a different number 

of times. Architecture of our model is as follows- 

F. Using Optimizers:  

Optimizers are used in models to dwindle the loss factor 

by making amendments in weights, biases and learning 

rate and maximizing the efficiency of the system. After 

building the CNN model, we have used optimizers to 

calculate training accuracy, validation accuracy along with 

the training loss and validation loss. In order to work with 

the best optimizer, we have employed- ADAM optimizer, 

SGD optimizers, ADAGRAD optimizer, ADADELTA 

optimizer and RMSPROP optimizer. The result and 

performance of these models are discussed in the result 

and discussion section below. 

G. Training the model: 

After the model construction, we have trained our model 

using the function model.fit() with different batch sizes of 

32 and 64. As a result our model performed efficiently 

with a batch size of 64. Approximately after 17 epochs, the 

accuracy was stable. 

H. Testing the model:  

In this final step, we finally allowed the machine to see the 

testing datasets and tested the working of the model by 

passing this to the machine learning model created to 

check the accuracy. In different scenarios, we got a 
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disparate percentage of accuracy. This is discussed in the 

result and discussion part, later in this paper. 

Results and Discussion 

In this section, we are going to talk about the result of our 

model. As conveyed above, we have employed various 

optimizers and activation in order to calculate the 

validation accuracy, training accuracy, validation loss. and 

training loss and their behavior is rigorously discussed in 

this part. 

A.  Selu as an Activation Function: 

 

Opti
mize
r 

Validation 
Accuracy 

Training 
Accuracy 

Validati
on Loss 

Traini
ng Loss 

Ada
m 0.9779 0.9161 0.0756 0.3502 

RMS
prop 0.9802 0.9225 0.0824 0.4208 

Adag
rad 0.9415 0.8083 0.2019 0.6504 

Table 3. Comparison between accuracies and losses 

keeping activation function as SELU 

The above table illustrates the result obtained while using 

selu as an activation function and Adam, RMSprop and 

Adagrad as optimizers. Where Adam and RMSprop 

functioned as the best parameters, Adagrad gave relatively 

less accuracy. Although RMSprop has greater testing 

accuracy compared to Adam, the validation and training 

loss emerges Adam as the winner.  

 

B. Sigmoid as an Activation Function: 

 

Opti
mize
r 

Validation 
Accuracy 

Training 
Accuracy 

Validati
on Loss 

Traini
ng Loss 

Ada
m 0.9855 0.9718 0.0453 0.0941 

RMS
prop 0.9767 0.9596 0.1123 0.4306 

Adag
rad 0.575 0.593 0.3489 0.3525 

Table 4. Comparison between accuracies and losses 

keeping activation function as Sigmoid 

The above table illustrates the result obtained while using 

Sigmoid as an activation function and Adam, RMSprop and 

Adagrad as optimizers. The results show us that the Adam 

optimizers gave precise results as compared to its peers. 

Adagrad on the other hand gave aggravated results 

(accuracy less than 60%).  

 
C. Relu as a Activation Function: 

 

Fig 2.  Comparison between accuracies and losses keeping 

activation function as Relu 

 

In the figure above, we have used activation functions as 

Relu and optimizers as Adam, RMSprop and Adagrad. 

From the figure, it can be justified that Adam optimizers 

gave the highest validation and training accuracy followed 

by RMSprop. 
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D. Elu as an Activation Function:  

 

 
Fig 3.  Comparison between accuracies and losses keeping 

activation function as Elu 

Above figure depicts that Adam optimizers trained the 

model with highest precision and also performed well with 

training accuracy. Adagrad gave almost 60% of training 

loss resulting in poor performance. 

 

Fig 4. Comparison of the accuracy scores for each             

Activation Function with respect to each Optimizers. 

In the figure above, we have calculated the final accuracy 

score of each activation function with respect to Adam, 

RMSprop, Adagrad, Adadelts optimizers.   

It can be concluded, Adam optimizers performed well with 

all the activation functions, while the performance of 

Adadelts was the worst, with less than 50% accuracy with 

each activation function. 

 

The reasoning behind the best performance of adam 

optimizers is due to the fact that it combines the benefits 

of both, RMSprop and Adagrad optimizer. Unlike RMSprop, 

which calculates the learning rate based on the average 

first moment (the mean) i.e despite of employing all the 

gradient for the momentum, it only makes use of most 

recent gradient, Adam optimizers on the other hand also 

takes into the account the average of second moment of 

the gradient as well, therefore it smoothly updates the 

learning rate, thus impacting the accuracy in positive 

manner. this could be understood with the mathematical 

formula- 

Learning rate of Adagrad and RMSprop: [10] 

 

θt+1=θt−(η/√(E[g2]t+ϵ))*gt

 

Learning rate of Adam:[11] 

êt=et/(1-β1
t)                                                                     (8)                                                                   

ût=ut/(1-β2
t)                                                                     (9) 

 
To update the parameter, we use: 
θt+1=θt−(η/(√êt+ϵ)) êt                                                                                 (10)                                                                                                                                                                                                                                 

Taking into account the losses, Adam optimizers gave the 
lowest validation losses. Lower percentage of validation 
loss by adam optimizers can be now understood, due to 
smooth and efficient updation of the learning rate, training 
the model more perfectly and thus reducing the validation 
loss.  
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Using RMS prop as a optimizer using different activation 

functions: 

 

 
Fig 5. Accuracy and Loss graph of RMSprop under different 

activation functions. 

 

The diagram depicts the different activation function used 
with RMSprop optimizer under a similar number of epochs 
i.e.12. This study is done to carefully examine the 
validation accuracy and loss after training the model with 
desired number of polling layers and batch size. While 
relu, selu and elu showed a greater accuracy compared to 
sigmoid which works for the two-class logistic regression 
problems. In the two-class logistic regression, the 
predicted probabilities are as follows, using the sigmoid 
function: [12] 
Pr(Yi=0) =e−β⋅Xi/(1+e−β⋅Xi)                                         (11)                                             

Pr(Yi=1) =1−Pr(Yi=0) =1/(1+e−β⋅Xi)                          (12)                                                                                                                               

Following a steep curve in sigmoid we conclude that 
graphs for both the accuracy and loss are not following 
exponential curve and irregular pattern which disobeys 
the characteristics required for a proper training model 
curve. Choosing the right activation function involves 
which shows a greater accuracy and less loss where adam 
comes out as a clear winner. Additionally, it has displayed 
no overfitting and underfitting while carefully scrutinizing 
it under a greater number of epochs i.e 24. Selu and elu 
have also functioned well but they might do overfitting 
after a certain threshold and also they have discerned 
greater value loss as compared to adam. The two graphs 
significantly convey the difference while carrying out the 
research among activation functions under the same 
optimizer. 

Study of selu as an activation function under different 

optimizers: 

Fig 6. Accuracy graph of SELU activation function using 

different optimizers. 
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Fig 7. Loss graph of SELU activation function using 

different optimizers. 

 

The other point of difference and study lies here where we 

have the same activation function but different optimizers 

under similar epochs. This tuning of hyperparameters 

helps us to select among RMSprop and Adam because 

clearly adagrad has underperformed. 

 Adagrad's main downside is its accumulation of the 

squared gradients in the denominator: Since every added 

term is positive, the accumulated sum keeps growing 

during training. As mentioned previously in this research 

about the Adam and RMSprop functionality, where both 

projected well for image classification. Additionally, with 

selu there is greater accuracy (95%) but the difference lies 

at initial stages, where Adam outperforms RMSprop with 

higher training and testing values. Adam or Adaptive 

Moment Optimization algorithms combine the heuristics of 

both Momentum and RMSProp and so works better. 

 

 

 

 

 

 

 

 

Changes with respect to different batch size:  

 

Fig 8. Validation accuracy and loss using Adam optimizer 

while training on different batch size 

 

There is a significant impact while changing the batch size 

during compilation of the model. While the accuracy score 

remains significantly constant among the three scenarios 

not greater or less than 2% when compared (for 32 batch 

size: 96.30, for 64 batch size: 94.67, for 128 batch 

size:94.93), but the time to train and run the model varies 

according to the batch size. Although the number of epochs 

while running batch size 32 is 981 as compared to 246 

epochs in batch size 128, the batch size of 128 took more 

time. Taking a too large batch size will indirectly lead to 

poor generalization and the desired model will have low 

bias and low variance. Thus, the inference can be drawn 

that always choosing the larger batch size is not the 

optimal solution as it either updates the gradient too large 

or small, since it all depends upon the sample drawn from 

the training data set.  
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Discrepancies while studying graph of various optimizers 

and activation function: 

 
Fig 9. Comparison of Validation accuracy and loss of 4 

different optimizers 

 

 

Fig 10. Discrepancy while using Tanh under similar epoch 

 

Fig 11. Discrepancy while using Softmax under similar 

epoch 

 

The above two figures illustrate the disparate optimizers 

for this traffic sign recognition project to comprehend 

their behavior at the initial number of epochs and 

advocate us to understand why most of them cannot be 

used to train the Neural Network. One of the prime areas 

of our research is to find the action of the model while 

training on different optimizers of a similar dataset. After 

diligently studying the accuracy and loss graphs of every 

optimizer we found that: 

1. The adagrad performs the underfitting and does not 

have an exponential curve with a certain threshold above 

which the accuracy and loss becomes stable.  

2. The tanh has so much noise while running the epochs, 

therefore it cannot appropriately recognize the image and 

unable to do distinct accurately. 

3. Both the sgd and adadelta have no improvement in 

accuracy values and show a constant value. 

4. The RMSprop shows a better curve for both the loss and 

accuracy values while training for certain epochs. But due 

to advancement in adam, it clearly does the recognition 

more accurately and at a rapid rate.  

5. The softmax function is used as a final activation 

function but not for all the layers in classification problems 

since it converts the final output into normalized form, but 

if used in all the layers, it will dwindle the values of vectors 

and hence, it will not train the neural network to certain 

characteristics. So using it at the last layer where the 

model has already learned from the features will generate 

a mean value which has a better impact on accuracy and 

classification. 
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CONCLUSION 

 

In the research above, we saw how different optimizers 

are used with different activation functions to calculate the 

accuracy and losses of the dataset. After carefully 

inspecting the graphs and tables, it can be concluded that 

the Adam Optimizer is the best of all while Adadelta and 

Adagrad were relatively less useful. In addition, we carried 

out research in order to calculate the accuracy with 

respect to different batch size of 32,64 and 128, where 

batch size of 128 gave best results but it was prolonged in 

running as compared to batch size of 32 and 64. 

Additionally, although RMSprop too gave suitable results 

but since Adam being the advanced version of adagrad and 

rmsprop, it significantly performed proficiently and swiftly 

while training and testing of data. Furthermore, we carried 

on deeper analysis of numerous activation functions like 

relu, elu, selu, softmax, sigmoid to know the effect while 

training and testing on a traffic sign dataset. We also 

examined and scrutinized profoundly why certain 

activation and optimizers were a total fiasco because of 

their working and mathematical functions and why they 

behave differently seeing their testing and validation loss 

and accuracy. Finally, the in-depth research to understand 

the impact of hyperparameter tuning while making a deep 

learning model remarkably endorsed for subtle insights 

about the functioning of a neural network and how each 

layer i.e. polling relates with the activation function with 

the batch size.  
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