
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1892

Experimentation and Comparison of Deep Learning based

Hyperparameters for Traffic Sign Recognition

Adarsh Neema¹, Adarsh Bhandari²

1,2Department of Computer Science and Engineering, Medi-Caps University, Indore

--***--
Abstract- With the rising number of drivers behind the wheel, the number of road accidents has thrived exponentially. One of the

significant reasons behind these fatal misfortunes has been the high avertness of Traffic signals. With these, there is the utter need

of a model that can guide the self-driving cars and even the cars with the drivers to help them perceive the signals and dwindle the

road accidents. For this, it is required for a to perform real time analysis of traffic signs and alert the drivers. Following this, we

have built a traffic sign image recognition system that can help driverless cars to interpret the traffic signals without any human

intervention. Additionally, we have employed disparate optimizers while building up the model. Different activation functions are

used with respect to optimizers to calculate the training loss and validation loss and hence draw tables and graphs to compare

them in order to find the best fit for the model. Thus, this will clarify how a model behaves in multiple scenarios, with amendment

in hyperparameters and time it takes to evaluate the result.

Keywords- CNN, Traffic sign recognition, Image processing, Traffic signs.

Introduction

In recent times, the world saw behemoth traffic on the

road, which became a key reason for the escalating

number of road accidents. According to the research, the

reason for such surgical incidents has been averting the

traffic signals. Therefore, traffic sign detection and

recognition has clinched importance and popularity in

image processing which allows passengers to fully use cars

for travelling, leading to gigantic transformation in the

arena of electric self-driving cars.

An automated signal detection and recognition model will

provide aptness for smart cars and driving to perceive the

traffic signals and act accordingly. Not just for driverless

cars, but also even with the driver behind the wheel, which

may endorse with essential instructions, dwindling human

fallacy that seeds accidents. With installation of such a

system, it is anticipated the attrition of mishaps which will

save a lot of human lives and capital associated with the

car accidents.

The main goal behind developing such a system is clear

because of the benefits the system provides in saving

human lives and monetary as well. Hence, the objective of

this project is to build a deep neural network model that

can classify the traffic signs present in image into different

categories. The suggested work has faculty to interpret the

sign captured by the camera and further processing it by

CNN network. Additionally, this paper carries major

objectives of implementing distinct hyperparameters by

using various optimizers and to conceive the best

optimizer to improve the accuracy of the model above

95% such that the model functions well in a varied

domain.

Literature Review

As the trend of machine learning is escalating at a rapid

pace the number of hyperparameters and optimizers are

also invented along the way to predict a deep classification

among them and dig out the advancements made in them.

With these advancements we are carrying out a

comparative study of numerous activation functions under

category image classification and how they perform under

different circumstances. A lot of similar kind of work has

been already been performed in this field, for instance:

paper written by Zsolt T. Kharkov´acs, Zsombor Par´oczi

and Endre Varga focused profoundly upon the problems,

the system could face while analysis of real time traffic

signals due to various important factors and proposed a

novel system to capture image with high quality web

camera with high resolution(1600x1200 frames) such that

these images are clearly discernible in poor environment

and hurdles and finally classifying the traffic signs. [1].

Another similar work in this field has been performed by

Hui Guo and Zhongyu Wang, whose architecture was based

on CNN and they introduced a novel, YOLO method for

recognition which greatly improved accuracy of their

model and provided faster results. [2]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1893

Paper by Karthikeyan D, Enitha C, Bharathi S and

Durkadevi K aimed at perceiving even the most perplexing

images by learning in-depth features by rigorously

learning from training samples by using YCBCR process.

Their proposed work detects the image and compares it

with images in their datasets to generate accurate

prediction. Additionally, they have employed edge

detection technique advanced GABOR filtering which is

said to be as similar as human vision, which sections the

traffic image from nearby images. [3]

In the paper by Danyah A. Alghmgham, Jaafar Alghazo and

loy Alzubaidi, their CNN model produced an accuracy of

100%. They developed the model with 24 different traffic

sign categories of Saudi Arabia with a total of 2718 images.

Their proposed work detects the image and the captured

image is processed by deep CNN. Moreover, they have

defined the CNN model that they have implemented and

published their results of accuracy and loss in tabular form

differentiated by number of epochs and batch size. As a

result, their final CNN model produced accuracy of 100%

on 150 epochs. [4]

In the work done by Glory Reuben Maxwell and Dr. Dinesh

D. Patil, they have described disparate methods for

detection of traffic signals based on color, texture, and

shape and explained them thoroughly. Furthermore, they

have subdivided the color, texture and shape based

method into subparts and defined them profoundly. [5]

After carefully scrutinizing the work performed by other

authors, we tried to perform our project differently from

the work discussed above. In our proposed system, we

have employed different optimizers with different

activation functions for parameter tuning, followed by

comparison of their performance. The results are

discussed at the end with tables and graphs.

Tools

In order to generate a highly efficient and smooth

functioning system, we have worked with high level

Machine Learning tools and technologies. These tools

enabled us to import various foremost important libraries,

allowed us to create graphs of accuracy and loss, helped us

to find out the accuracy score etc. Tools used in this model

are discussed below:

A. Jupyter Notebook: Jupyter notebook is a powerful tool

that provides us the platform to write, share and visualize

our code along with interactive development and

presentation of our project. The coding of our machine

learning model and implication of various

hyperparameters took place in a jupyter notebook.

B. Python: Python is one of the most powerful

programming languages majorly used in machine learning

and data science projects. Due to the simplicity it provides

while writing the code, it is the top preferred language for

any programmer. The overall coding of our ML model is

written in python. Additionally, numerous python libraries

were imported to add functionality to the model.

C. Matplotlib: This is one of the most popular python

libraries to visualize the data and know inner insights

about it. It is frequently used with python mathematical

library numpy and is free and open source. There are

numerous types of graphs and complex plots that can be

created with it like contour plot, polar plot, scatter plot,

image plot, 3-D plots, histogram etc. Also in order to

examine the accuracy and loss values in machine learning

models to know the model behaviour in order to clarify

them as overfitted or under fitted.

D. Scikit-Learn: This library is used to build the machine

learning and deep learning models. It comprises

supervised, unsupervised and reinforcement learning

algorithms and efficient versions to develop the model. It

is based on arithmetic python libraries like numpy,

pandas, sympy, matplotlib, Scipy and ipython. The

foundation of deep learning models is built on scikit learn

which has feature selection, feature extraction and

parameter tuning.

E. TensorFlow: It is an open source library for artificial

intelligence for training and inference of deep neural

networks. It is like a brain system which learns according

to the data and performs under desired conditions. The

novel ideas of image processing techniques specially used

in diagnostic techniques for diseases like cancer, bone

marrow, blood DNA analysis, genetic coding etc. are done

with the help of this library. Also the latest advancements

are done in this library to be used for solving AI related

problems.

F. Tensor board: It is also a visualization tool with a deeper

impact and insights about the deep learning model. It has a

variety of methods to evaluate the epochs behaviour by

depicting as histogram, time series analysis, graphs and

scalars. It helps to compute the training and testing values

under multiple hyperparameters to distinguish among

each of them. It takes its values from the directory as

specified during training of the machine learning model

and can be used on various operating systems.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1894

Optimizers

Over a period of time, machine learning and algorithms

have exhibited certain advantages over human existence

and transformed our lives with ease to make a certain

decision about a problem. On top of machine learning,

deep learning has offered higher flexibility and accuracy in

disparate applications with increased precision and

endorsement with its usage in almost every arena. With

profound use of these algorithms, it becomes necessary to

make use of these algorithms with minimal resources in

order to reduce the monetary burden and ameliorate the

performance by dwindling errors. This is where optimizer

comes into play. Optimizers are the algorithms or the

methods which transform our model into the most precise

form by updating certain parameters such as weights,

learning rate that minimizes the loss and improves the

accuracy. In order to generate models with highest

precision and minimum loss, we have employed different

hyperparameters by making use of disparate optimizers.

Below discussed are the optimizers that we have used in

our project-

Table 1. Optimizers

Optimizers

Use

Adam

Adaptive moment system or Adam is a
widely used optimizer designed
specifically to train deep neural
networks. Due to its competence with
perplexed problems, minimal memory
requirement, it is heavily preferred.
While employing Adam optimizers it
gave best working accuracy..

Adagrad

Adaptive gradient optimizer or Adagrad
functions by thoroughly grasping the
learning rate of the parameters by
observing the frequency and behavior of
the parameters (small updating for high
frequency data and higher updating for
low frequency data) and hence works
best with scattered data.

RMSprop

Root mean square propagation or
RMSprop functions by moving the
average of the square of the gradients
and dividing the gradient by the root of
the average. It restricts oscillation in
vertical directions and only supports in
horizontal direction resulting in taking a
large step which normalizes the gradient.

SGD Stochastic Gradient Descent is an
iterative method which works well on
linear classifiers. It is one of the efficient
ways to train the model with ease of
implementation. The prime purpose of
SGD is to find global optima by making
amendments is learning rare alpha.

Adadelta

Adadelta or adaptive learning rate
optimizers is a stochastic gradient
descent method that is an extension of
adagrad optimizer. Adadelta functions by
restricting the fixed window size instead
of summing all past gradients, leading to
efficient updation of learning rate.

Activation Function

When input neurons are fed inside an artificial neural

network, it is required to decide whether the particular

neuron should be fired or not, which further helps to

understand the complex pattern in the data, that decision

parameters is known as activation function. Activation

function maps the input value into a particular range,

depending upon the type of function in use. In deep neural

networks, weights and biases are applied to the data input

and these input data are passed

through activation function. It is an activation function that

decides whether this particular input data, called neuron,

should be fired or not. In case the neuron is fired, the input

data is fed to the next layer known, this process is known

as forward propagation. In case, when the neuron is not

fired (by checking the errors i.e. if the output generated is

far from the actual value), it is fed to the previous layers

and its weights and biases are updated, this process is

known as back propagation. Depending upon the purpose,

Activation function is broadly divided in two categories,

they are discussed below:

A. Linear Activation Function:

As the name suggests, output in case of linear activation

function will not be constricted within any range and

therefore, it will produce continuous output. Because of

continuous output, the range is (-infinity to +infinity). In

practice, they are not much used in deep learning model

due to following reasons-

a) Back propagation is not supported in linear activation

function which further would not change the weights

associated with the input because of the reason that the

input value will always be same and the activation function

will not limit the value in any range

b) Because of the fact that the last layer in a deep neural

network is the linear function of the first layer (a linear

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1895

combination of linear functions is still a linear function), so

basically it converts the model into just a single layer.

B. Non Linear Activation Function:

Non-linear activation function as the name suggests is the

function that confines the output within a particular range

due to which output lies within a range. The range limit is

dependent on the type of activation function in use. They

help the model to learn all the involute patterns in the data

and cover all the limitations of the linear activation

function by supporting back propagation and by allowing

multiple hidden layers to create the deep neural model.

They learn advanced features in complex data such as

audio, video, image, text and thus provide precise

prediction. In our model, we have employed four non-

linear activation functions. They are discussed below in

the table-

Table 2. Activation Functions

 Activation
Function

Use

Sigmoid Sigmoid function takes the input and
converts it into range (0,1). Because of its
range, it is mostly preferred in predicting
the probability as an output. Sigmoid
function is defined by the function- [6]
 (1)

Relu Relu activation function works quite
differently from other functions. It checks
the input value and produces output
accordingly. if the input is positive, it will
generate the output without changing the
input value, but if the input is negative, it
will map the output to zero. Its range is (0,
infinity) therefore it is defined by the
function- [7]
 (2)

Elu Elu functions somewhat in similar fashion
to Relu except for its behavior for the
negative value. It is defined by the
function- [8]
 (3)
 (4)
it outputs the input if the value is positive
but for negative value it produces a slightly
smooth curve near the constant alpha. Elu
has great advantages over other functions
and most importantly it solves the
problem of vanishing gradients (gradient

approaches zero and becomes hard to
train) and exploding gradients (gradient
becomes too large, resulting in large
update and unstable network) seen in
sigmoid function.

Selu Selu or self-exponential linear unit is a
well-known action function for self-
normalizing quality (meaning output of
each layer will produce zero mean and
unit variance). Moreover, Selu removed
the vanishing gradient and exploding
gradient problem. It is defined by the
function- [9]
 (5)
 (6)
where the value of λ and α are predefined
(λ=1.0507 and α=1.6733)

Proposed Work

This section consists of a series of steps undertaken,

broadly, to build the deep CNN model. In recent years, a

number of authors have worked in this field but no author

has ever used different hyperparameters for comparison

of the best optimizer for performance tuning in order to

perceive the optimizer with greatest accuracy. Steps

followed are as follows-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1896

Fig 1. Steps Involved in building model

A. Import the dataset:

Primary step involved before developing the model is to

load the dataset. In our model, we have imported a German

traffic signals dataset from Kaggle in a jupyter notebook

using python by defining the path of the data. Just by

specifying the path, the data is imported from the specified

location.

B. Analyzing the dataset:

After importing the dataset, another key process is to get

familiar with the loaded data and explore it. In our

proposed work, we have used a German traffic signals

dataset with 41 different labels, ranging from 0 to 40. The

shape of data is (39209,30,30,3), implying there are 39209

data with each image of size 30*30 pixels and 3 represents

the colored image (RGB value). This part also involves

feature engineering, meaning that the images are resized

to appropriate size by specifying the dimensions of the

image such that every image lies in the same scale.

C. Splitting the dataset:

Before moving further to develop the model, it’s necessary

to split the data into training and testing sets. In our

model, we have used 80% of data as training data and

remaining 20% of data as testing data. Splitting of data is

necessary as we do not want our model to get familiar with

every data present and want to save some percentage of

data to test our model in the end in order to check

accuracy.

D. Data preprocessing:

Data preprocessing is the process of transforming the raw

datasets into interpretable form that could be well

understood. Raw data is often imperfect having irregular

matrix size, color correction. Before fitting the dataset into

the model, it is required to convert the images into the

same format with the same size and remove all the

irregularities.

E. Building the CNN model:

For image classification into their respective categories,

we build the CNN model, which is one of the best known

methods for image classification. CNN is a deep learning

algorithm that takes an image as an input, converts the

input image in the form of pixels, assigns weights and

biases to the input image and passes it to the next layer in

the network. The network in CNN comprises different

channels namely- CNN layer, pooling layer, Activation

function layer and fully connected layer. Depending upon

the model these layers can be repeated a different number

of times. Architecture of our model is as follows-

F. Using Optimizers:

Optimizers are used in models to dwindle the loss factor

by making amendments in weights, biases and learning

rate and maximizing the efficiency of the system. After

building the CNN model, we have used optimizers to

calculate training accuracy, validation accuracy along with

the training loss and validation loss. In order to work with

the best optimizer, we have employed- ADAM optimizer,

SGD optimizers, ADAGRAD optimizer, ADADELTA

optimizer and RMSPROP optimizer. The result and

performance of these models are discussed in the result

and discussion section below.

G. Training the model:

After the model construction, we have trained our model

using the function model.fit() with different batch sizes of

32 and 64. As a result our model performed efficiently

with a batch size of 64. Approximately after 17 epochs, the

accuracy was stable.

H. Testing the model:

In this final step, we finally allowed the machine to see the

testing datasets and tested the working of the model by

passing this to the machine learning model created to

check the accuracy. In different scenarios, we got a

Import Dataset

Analyze Dataset

Data Splitting

Data

Preprocessing

Using

Optimizers

Training Model

Testing Model Building CNN

Model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1897

disparate percentage of accuracy. This is discussed in the

result and discussion part, later in this paper.

Results and Discussion

In this section, we are going to talk about the result of our

model. As conveyed above, we have employed various

optimizers and activation in order to calculate the

validation accuracy, training accuracy, validation loss. and

training loss and their behavior is rigorously discussed in

this part.

A. Selu as an Activation Function:

Opti
mize
r

Validation
Accuracy

Training
Accuracy

Validati
on Loss

Traini
ng Loss

Ada
m 0.9779 0.9161 0.0756 0.3502

RMS
prop 0.9802 0.9225 0.0824 0.4208

Adag
rad 0.9415 0.8083 0.2019 0.6504

Table 3. Comparison between accuracies and losses

keeping activation function as SELU

The above table illustrates the result obtained while using

selu as an activation function and Adam, RMSprop and

Adagrad as optimizers. Where Adam and RMSprop

functioned as the best parameters, Adagrad gave relatively

less accuracy. Although RMSprop has greater testing

accuracy compared to Adam, the validation and training

loss emerges Adam as the winner.

B. Sigmoid as an Activation Function:

Opti
mize
r

Validation
Accuracy

Training
Accuracy

Validati
on Loss

Traini
ng Loss

Ada
m 0.9855 0.9718 0.0453 0.0941

RMS
prop 0.9767 0.9596 0.1123 0.4306

Adag
rad 0.575 0.593 0.3489 0.3525

Table 4. Comparison between accuracies and losses

keeping activation function as Sigmoid

The above table illustrates the result obtained while using

Sigmoid as an activation function and Adam, RMSprop and

Adagrad as optimizers. The results show us that the Adam

optimizers gave precise results as compared to its peers.

Adagrad on the other hand gave aggravated results

(accuracy less than 60%).

C. Relu as a Activation Function:

Fig 2. Comparison between accuracies and losses keeping

activation function as Relu

In the figure above, we have used activation functions as

Relu and optimizers as Adam, RMSprop and Adagrad.

From the figure, it can be justified that Adam optimizers

gave the highest validation and training accuracy followed

by RMSprop.

98.67 97.54

88.91 94.01 90.15

68.49

4.88 11.7

67.24

21.35

46.02

12.533
0

20

40

60

80

100

120

Adam RMSprop Adagrad

V
al

u
e

in
 %

Activation function-Relu

Validation_Accuracy Training_Accuracy

Validation_Loss Training_Loss

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1898

D. Elu as an Activation Function:

Fig 3. Comparison between accuracies and losses keeping

activation function as Elu

Above figure depicts that Adam optimizers trained the

model with highest precision and also performed well with

training accuracy. Adagrad gave almost 60% of training

loss resulting in poor performance.

Fig 4. Comparison of the accuracy scores for each

Activation Function with respect to each Optimizers.

In the figure above, we have calculated the final accuracy

score of each activation function with respect to Adam,

RMSprop, Adagrad, Adadelts optimizers.

It can be concluded, Adam optimizers performed well with

all the activation functions, while the performance of

Adadelts was the worst, with less than 50% accuracy with

each activation function.

The reasoning behind the best performance of adam

optimizers is due to the fact that it combines the benefits

of both, RMSprop and Adagrad optimizer. Unlike RMSprop,

which calculates the learning rate based on the average

first moment (the mean) i.e despite of employing all the

gradient for the momentum, it only makes use of most

recent gradient, Adam optimizers on the other hand also

takes into the account the average of second moment of

the gradient as well, therefore it smoothly updates the

learning rate, thus impacting the accuracy in positive

manner. this could be understood with the mathematical

formula-

Learning rate of Adagrad and RMSprop: [10]

θt+1=θt−(η/√(E[g2]t+ϵ))*gt (7)

Learning rate of Adam:[11]

êt=et/(1-β1
t) (8)

ût=ut/(1-β2
t) (9)

To update the parameter, we use:
θt+1=θt−(η/(√êt+ϵ)) êt (10)

Taking into account the losses, Adam optimizers gave the
lowest validation losses. Lower percentage of validation
loss by adam optimizers can be now understood, due to
smooth and efficient updation of the learning rate, training
the model more perfectly and thus reducing the validation
loss.

98.72 98.67
92.77

94.89

94.09

82.24

5.79

60.5

26.19 23.62
29.02

59.1

0

20

40

60

80

100

120

Adam RMSprop Adagrad

V
al

u
e

in
 %

Activation function-elu

Validation_Accuracy Training_Accuracy

Validation_Loss Training_Loss

9
5

.3

9
0

.4

8
4

.2
7

1
3

.4
2

9
5

9
5

.2
8

6
8

.4
9

9
.6

9
3

.9
6

9
2

.7
4

8
9

.3
6

3
1

.5
9

9
5

.1

9
5

.2

5
2

.7

5

A D A M R M S P R O P A D A G R A D A D A D E L T A

V
A

LU
E

IN
 %

A C C U R A C Y S C O R E

relu elu selu sigmoid

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1899

Using RMS prop as a optimizer using different activation

functions:

Fig 5. Accuracy and Loss graph of RMSprop under different

activation functions.

The diagram depicts the different activation function used
with RMSprop optimizer under a similar number of epochs
i.e.12. This study is done to carefully examine the
validation accuracy and loss after training the model with
desired number of polling layers and batch size. While
relu, selu and elu showed a greater accuracy compared to
sigmoid which works for the two-class logistic regression
problems. In the two-class logistic regression, the
predicted probabilities are as follows, using the sigmoid
function: [12]
Pr(Yi=0) =e−β⋅Xi/(1+e−β⋅Xi) (11)

Pr(Yi=1) =1−Pr(Yi=0) =1/(1+e−β⋅Xi) (12)

Following a steep curve in sigmoid we conclude that
graphs for both the accuracy and loss are not following
exponential curve and irregular pattern which disobeys
the characteristics required for a proper training model
curve. Choosing the right activation function involves
which shows a greater accuracy and less loss where adam
comes out as a clear winner. Additionally, it has displayed
no overfitting and underfitting while carefully scrutinizing
it under a greater number of epochs i.e 24. Selu and elu
have also functioned well but they might do overfitting
after a certain threshold and also they have discerned
greater value loss as compared to adam. The two graphs
significantly convey the difference while carrying out the
research among activation functions under the same
optimizer.

Study of selu as an activation function under different

optimizers:

Fig 6. Accuracy graph of SELU activation function using

different optimizers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1900

Fig 7. Loss graph of SELU activation function using

different optimizers.

The other point of difference and study lies here where we

have the same activation function but different optimizers

under similar epochs. This tuning of hyperparameters

helps us to select among RMSprop and Adam because

clearly adagrad has underperformed.

 Adagrad's main downside is its accumulation of the

squared gradients in the denominator: Since every added

term is positive, the accumulated sum keeps growing

during training. As mentioned previously in this research

about the Adam and RMSprop functionality, where both

projected well for image classification. Additionally, with

selu there is greater accuracy (95%) but the difference lies

at initial stages, where Adam outperforms RMSprop with

higher training and testing values. Adam or Adaptive

Moment Optimization algorithms combine the heuristics of

both Momentum and RMSProp and so works better.

Changes with respect to different batch size:

Fig 8. Validation accuracy and loss using Adam optimizer

while training on different batch size

There is a significant impact while changing the batch size

during compilation of the model. While the accuracy score

remains significantly constant among the three scenarios

not greater or less than 2% when compared (for 32 batch

size: 96.30, for 64 batch size: 94.67, for 128 batch

size:94.93), but the time to train and run the model varies

according to the batch size. Although the number of epochs

while running batch size 32 is 981 as compared to 246

epochs in batch size 128, the batch size of 128 took more

time. Taking a too large batch size will indirectly lead to

poor generalization and the desired model will have low

bias and low variance. Thus, the inference can be drawn

that always choosing the larger batch size is not the

optimal solution as it either updates the gradient too large

or small, since it all depends upon the sample drawn from

the training data set.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1901

Discrepancies while studying graph of various optimizers

and activation function:

Fig 9. Comparison of Validation accuracy and loss of 4

different optimizers

Fig 10. Discrepancy while using Tanh under similar epoch

Fig 11. Discrepancy while using Softmax under similar

epoch

The above two figures illustrate the disparate optimizers

for this traffic sign recognition project to comprehend

their behavior at the initial number of epochs and

advocate us to understand why most of them cannot be

used to train the Neural Network. One of the prime areas

of our research is to find the action of the model while

training on different optimizers of a similar dataset. After

diligently studying the accuracy and loss graphs of every

optimizer we found that:

1. The adagrad performs the underfitting and does not

have an exponential curve with a certain threshold above

which the accuracy and loss becomes stable.

2. The tanh has so much noise while running the epochs,

therefore it cannot appropriately recognize the image and

unable to do distinct accurately.

3. Both the sgd and adadelta have no improvement in

accuracy values and show a constant value.

4. The RMSprop shows a better curve for both the loss and

accuracy values while training for certain epochs. But due

to advancement in adam, it clearly does the recognition

more accurately and at a rapid rate.

5. The softmax function is used as a final activation

function but not for all the layers in classification problems

since it converts the final output into normalized form, but

if used in all the layers, it will dwindle the values of vectors

and hence, it will not train the neural network to certain

characteristics. So using it at the last layer where the

model has already learned from the features will generate

a mean value which has a better impact on accuracy and

classification.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1902

CONCLUSION

In the research above, we saw how different optimizers

are used with different activation functions to calculate the

accuracy and losses of the dataset. After carefully

inspecting the graphs and tables, it can be concluded that

the Adam Optimizer is the best of all while Adadelta and

Adagrad were relatively less useful. In addition, we carried

out research in order to calculate the accuracy with

respect to different batch size of 32,64 and 128, where

batch size of 128 gave best results but it was prolonged in

running as compared to batch size of 32 and 64.

Additionally, although RMSprop too gave suitable results

but since Adam being the advanced version of adagrad and

rmsprop, it significantly performed proficiently and swiftly

while training and testing of data. Furthermore, we carried

on deeper analysis of numerous activation functions like

relu, elu, selu, softmax, sigmoid to know the effect while

training and testing on a traffic sign dataset. We also

examined and scrutinized profoundly why certain

activation and optimizers were a total fiasco because of

their working and mathematical functions and why they

behave differently seeing their testing and validation loss

and accuracy. Finally, the in-depth research to understand

the impact of hyperparameter tuning while making a deep

learning model remarkably endorsed for subtle insights

about the functioning of a neural network and how each

layer i.e. polling relates with the activation function with

the batch size.

REFERENCES

1. ard ov acs, Zsolt . 2011. eal-time Traffic Sign
 ecognition System.”
https://www.researchgate.net/publication/2242
55280_Real-
time_traffic_sign_recognition_system/citations.

2. Hui Guo, and Zhongyu Wang Zhongyu Wang East
China University of Science and Technology,
Shanghai China View Profile. 2019. Research on
Traffic Sign Detection Based on Convolutional
Neural Network.
https://dl.acm.org/doi/10.1145/3356422.33564
57.

3. D, Karthikeyan, Enitha C, and Bharathi S. 2020.
Traffic Sign Detection and Recognition using
Image Processing. N.p.: IJERT.
https://www.ijert.org/traffic-sign-detection-and-
recognition-using-image-processing

4. Alghmgham, Danyah A., and Ghazanfar Latif. 2019.
Autonomous Traffic Sign (ATSR) Detection and
Recognition using deep CNN.

https://pdf.sciencedirectassets.com/280203/1-
s2.0-S1877050919X00198/1-s2.0-
S1877050919321477/main.pdf?X-Amz-Security-
Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMS
JGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0l
Vk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCb
dHVgM%2FGVMH%2FvCV%2FoEGB.

5. Maxwell, Glory Reuben, and Dr. Dinesh D. Patil.
2020. A REVIEW ON TRAFFIC SIGN DETECTION
AND RECOGNITION SYSTEM.
https://www.irjet.net/archives/V7/i5/IRJET-
V7I5314.pdf.

6. Towards Data Science and Sagar Sharma. n.d.
Activation Functions in Neural Networks.
Accessed 2017.
https://towardsdatascience.com/activation-
functions-neural-networks-1cbd9f8d91d6.

7. Great Learning and Hussain Mujtaba. 2020. What
is Rectified Linear Unit (ReLU)? | Introduction to
ReLU Activation Function.
https://www.mygreatlearning.com/blog/relu-
activation-function/.

8. HANSEN, CASPER. 2019. Activation Functions
Explained - GELU, SELU, ELU, ReLU and more.
https://mlfromscratch.com/activation-functions-
explained/.

9. ML Glossary. n.d. Activation Functions. https://ml-
cheatsheet.readthedocs.io/en/latest/activation_fu
nctions.html.

10. Towards Data Science and Vitaly Bushaev. 2018.
Understanding RMSprop — faster neural network
learning.
https://towardsdatascience.com/understanding-
rmsprop-faster-neural-network-learning-
62e116fcf29a.

11. RUDER, SEBASTIAN. 2016. An overview of
gradient descent optimization algorithms.
https://ruder.io/optimizing-gradient-descent/.

12. Stack Exchange. Softmax vs Sigmoid function in
Logistic classifier?
https://stats.stackexchange.com/questions/2336
58/softmax-vs-sigmoid-function-in-logistic-
classifier.

https://www.researchgate.net/publication/224255280_Real-time_traffic_sign_recognition_system/citations
https://www.researchgate.net/publication/224255280_Real-time_traffic_sign_recognition_system/citations
https://www.researchgate.net/publication/224255280_Real-time_traffic_sign_recognition_system/citations
https://dl.acm.org/doi/10.1145/3356422.3356457
https://dl.acm.org/doi/10.1145/3356422.3356457
https://www.ijert.org/traffic-sign-detection-and-recognition-using-image-processing
https://www.ijert.org/traffic-sign-detection-and-recognition-using-image-processing
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050919X00198/1-s2.0-S1877050919321477/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEH0aCXVzLWVhc3QtMSJGMEQCIF%2Bb%2FBRV%2FXzMhwDTwPH9m0lVk4Nyc6miH4A2fBYgsXTRAiBmZ6iRvuNt9WAlCbdHVgM%2FGVMH%2FvCV%2FoEGB
https://www.irjet.net/archives/V7/i5/IRJET-V7I5314.pdf
https://www.irjet.net/archives/V7/i5/IRJET-V7I5314.pdf
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.mygreatlearning.com/blog/relu-activation-function/
https://www.mygreatlearning.com/blog/relu-activation-function/
https://mlfromscratch.com/activation-functions-explained/
https://mlfromscratch.com/activation-functions-explained/
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://ruder.io/optimizing-gradient-descent/
https://stats.stackexchange.com/questions/233658/softmax-vs-sigmoid-function-in-logistic-classifier
https://stats.stackexchange.com/questions/233658/softmax-vs-sigmoid-function-in-logistic-classifier
https://stats.stackexchange.com/questions/233658/softmax-vs-sigmoid-function-in-logistic-classifier

