
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1748

Automated Question Generation from Scanned Documents

Pranjal Rane1, Ritvik Patil2, Ojas Natu3, Prahlad Pore4, Pranay Sridhar5

1Student, Dept. of Computer Engineering, Vishwakarma Institute of Technology, Maharashtra, India
2Student, Dept. of Computer Engineering, Vishwakarma Institute of Technology, Maharashtra, India
3Student, Dept. of Computer Engineering, Vishwakarma Institute of Technology, Maharashtra, India
4Student, Dept. of Computer Engineering, Vishwakarma Institute of Technology, Maharashtra, India
5Student, Dept. of Computer Engineering, Vishwakarma Institute of Technology, Maharashtra, India

---***--
Abstract - Student assessment has been an integral and a
critical aspect of the teaching and learning process of
today's time. Teachers assess the performance of students
mainly based on different kinds of tests. So it is necessary
for the teachers to make sure that the test covers all areas
of the course content. Moreover, teachers spend a lot of
time creating a question bank for a test by reading
textbooks word by word and framing questions. This time
could be better invested into teaching students and
improving the overall quality of education imparted by the
educational institutions. This is why tools which allow
teachers to upload images and get a question bank come in
very handy and resourceful.

Key Words: OCR, Tokens, POS Tagging, Classification,
NLP, Grammar Checking, Question Generation

1. INTRODUCTION

In this project, ‘Automated Question generation tool from
Scanned Documents’, we present a smart question
generating system. This tool allows the user to upload a
scanned document and generate different types of
questions depending upon the content uploaded by the
user. We will be achieving this using Image Processing and
Natural Language Processing. Generally, teachers or
administrators generate the question paper manually
using software like MS Word which requires a lot of time
and effort. This project eliminates human efforts and saves
resources and time. Our application allows educational
institutions to prepare questions for examination and for
students to practice. The basic idea is to perform Optical
Character Recognition(OCR) on the scanned documents to
generate text from them. Further the sentences go through
processing, to find the important words in them and
generate questions around them.

2. LITERATURE REVIEW

OCR (optical character recognition), also known as text
recognition, is used to distinguish printed or handwritten
text characters inside digital images of physical
documents, such as a scanned paper document.[1]

Tesseract supports unicode (UTF-8), and recognizes more
than 100 languages.[2] On the output side of things,
Tesseract can give output in various popular formats like:
HTML, PDF, Tab Separated values, plain-text and invisible-

text-only PDF. The results given by Tesseract are better
when the image quality is higher.

Peter Norvig’s blog post on setting up a simple spell
checking algorithm is used to develop a pure python spell
checking library.[3]

This spell checking requires finding all possible
permutations with an edit distance between 0 and 2 from
the original word. For doing so, the Levenshtein Distance
Algorithm is used.[4]

Later, all permutations (like transportation, deletions,
replacement, etc) are compared to known words within a
word frequency list. The words that are found to have a
high occurrence in the frequency list are more likely to be
the correct results.

The advantage of using this library is the availability of
plenty of algorithms that help in the learning process.

One can compare among different variants of outputs.
NLTK is used to perform parts of speech tagging and is
used to assign grammatical information of each word of
the sentence.[5]

There are more than a few algorithms suggested for the
task of automatic question generation. These algorithms
typically follow the flow consisting of the following steps:
‘Splitting Sentences based on punctuation’, ‘Tokenization’,
‘Classification of tokens’ and finally ‘Question generation’
based on the prominent tokens. However, the quality of
questions and problems like ‘pronoun identification and
replacement’ are not accounted for. The paper "Algorithm
for Generating Questions from Text."[10] mentions the
latter in detail and the algorithm mentioned has some
amount of human intervention involved.

The publication ‘A Systematic Review of Automatic
Question Generation for Educational Purposes’[11] from
Springer provides a systematic review of different
approaches tried so far in the domain of automatic
question generation. Even after extensive research in the
field, accuracy remains the main problem to be dealt with
and various different approaches are being tried to find an
algorithm with a higher accuracy than the existing ones.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1749

3. METHODOLOGY

The method is divided into 3 sub-parts:-

3.1 Optical Character Recognition :

Optical Character Recognition starts with a connected
component analysis.[6] In this phase the outlines of the
components are stored. The outlines are then gathered
together, by nesting into Blobs. The blobs are then
organized into text lines, which are then analysed for
proportional text.

Fig - 1 : Curved Fitted Baseline

The text lines are then broken into words differently
based on the kind of character spacing. Then the
recognition is done using two passes. The first pass is done
to recognize each word one by one. Each satisfactory word
obtained from the previous phase is then passed further
on to an adaptive classifier in the form of training data.

Fig - 2 : Fixed Pitch Chopped Word

The adaptive classifier then gets a chance to more
accurately recognize text that is going to be coming further
when we go on reading down the page. At times, it may be
that the adaptive classifier has learnt something useful too
late to make contributions near the top of the page. So, a
second pass is done so that words that were not
recognized well enough are recognized again.

Fig - 3 : Word Spacing

A final phase resolves fuzzy spaces, and locates the small
and capital text.

3.2 Spell Check :

The output of the above OCR model is a text file containing
the recognized text from a given image. This text file needs
to be processed in order to remove all the discrepancies so
as to avoid any difficulty while generating questions in the
later part.

Fig - 4 : Spell Check Flow

In every piece of text, there are certain characters which
have almost no significance while generating questions
from that text. A good example of such characters is the
punctuations present within a text. So the text obtained
from the OCR model is processed to remove punctuation
marks present within the text.

Each “entity” that is a part of the text is split up. Whenever
a sentence gets “tokenized” into words, each word within
the sentence is referred to as a ‘token’. [7] These tokens
are then stored in a list. This is essential to analyze each
word individually.

To ensure maximum accuracy while generating questions,
we must rectify misspelled words present within the text.
To do so, we have used the check() function from the
‘language_check’ library. But before using the check()
function we need to remove/mask proper nouns from the
text since those would always be considered as misspelled
words by the check() function. To identify proper nouns,
POS tagging has been used with the help of ‘nltk’ library.
POS tagging can be defined as the process of constructing
a word in a corpus to a corresponding part of a speech tag,
based on its context and definition. [5]

Fig - 5 : POS Tagging

After POS tagging, words except the proper nouns are
separated out by checking their tag. Then these words are
looked for spelling mistakes using spellchecker.

Now that misspelled words are identified, the last steps
would be to rectify these words. To rectify these words,
the check() function from the ‘language_check’ library is
used. In the end, these corrections are appended to the
original text file obtained from the OCR model along with
the masked proper nouns.

3.3 Question Generation:

Once the text has been corrected for spelling errors, it is
then sent to the Question generation phase.

The Question generation works on a very basic
assumption that, ‘words from the text would be great
answers for questions’. So our major efforts will have to be
to decide which words or phrases are good enough to
become answers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1750

The solution proposed is to generate multiple possible
answers from text, by splitting this complex problem into
the following simpler and smaller steps:

1. Recognise unique keywords from the input text and
use them as answers to the questions.

2. Replace these keywords from the sentence with blank
space and use it to form the base for the question.

3. Transform the sentences containing blank spaces into
a more question-like sentence.

4. Generate incorrect answers, by finding multiple
distractor words that are similar to the answer.

Before we could start generating questions, it is very
important to understand more about how questions are
made and what kind of words are it's answers. For this we
used the SQuAD 1.0 dataset which has about 1,00,000
questions generated from Wikipedia articles along with
answers to the questions. [8]

To decide the likeliness of a word to be an answer binary
classification was employed on each word from the text
This is where the 'spaCy' library really helped us and
provided the functionality of word tagging. [9]

To continue with the binary classification step we had to
create the entire dataset. We created a dataset by
extracting each non-stop word from the paragraphs of
each question in the SQuAD dataset and added some
additional features to it like:
1. Which part of speech is it?
2. Is it a Named entity?
3. Are only alpha characters used?
4. Shape i.e. whether given characters are only alpha

characters, or digits or punctuation marks (xxxx,
dddd, Xxx X. Xxxx)

5. Word count
6. And the label ‘isAnswer’ - this label signifies whether

the word extracted from the paragraph is the same
and also if it is in the same place as the answer of the
SQuAD questions.

The next step is to train the binary classification on the
above created dataset. We decided to use scikit-learn's
Gaussian Naive Bayes algorithm to classify each word
whether it's an answer [12]. The results were very good.
At a quick glance, the algorithm was able to successfully
classify most of the words as answers. The ones it didn't
classify were in fact considered to be unfit to be answers.

One of the biggest advantages of Naive Bayes is that it
returns the probability for each word whether it is fit to be
an answer or not. We've used this to order the words from
the most likely answer to the least likely.

By now we were able to classify which words in a sentence
could be possible answers for questions created using that
sentence. The next step is to generate distractors
(incorrect answers) for the question. This was done using
the gensim library and the Stanfords Glove dataset. The

Glove Dataset consists of word embeddings and cosine
similarity between different words.

Fig - 6 : Distraction Generation

Most of the words generated as distractors were just fine
and could easily be mistaken for the correct answer. But
some of the generated distractors were not appropriate.
Since we didn't have a dataset with incorrect answers we
fell back on a more classical approach. We cleaned the
results by removing the words that didn’t belong to the
same part of speech or the same named entity as the
answer, and added some more context from the question.

Now that we have trained a model we could make a pickle
file for this and load this to make predictions. It will tell us
the probability of words to be answers in the input text.
We can then replace the words with high probability with
a blank and form a ‘Fill in the Bank’ type question.
Following this we can add three distractors (incorrect
answers) generated above and form a ‘Multiple Choice
Question’. We can replace the blank with a distractor or
with the correct answer to form a ‘True or False’ type
question. In this way we can generate three different kinds
of questions using a single approach.

4. RESULTS

Three types of questions are being generated by the
system:

1. Multiple Choice Questions (MCQ) (Fig - 8)
2. Fill in the blanks Questions (Fig - 9)
3. True or False Questions (Fig - 10)

The automatic question generation system considers each
sentence of the paragraph and tries to create all possible
questions considering the most prominent keywords.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1751

Fig - 7 : Input Text

The following figures show the different questions
generated by the system on the text from Class 9 NCERT
Geography textbook, Chapter 2. Physical Features of India.
(Fig - 7)

Fig - 8 : Generated MCQ Questions

Fig - 9 : Generated Fill in the Blanks Questions

Fig - 10 : Generated True or False Questions

5. CONCLUSION

In this paper, we presented one possible approach to
generate questions automatically from a given text. As
discussed above, different algorithms are used to
overcome the different phases in the automatic question
generation system. It is highly probable there can be other
efficient methods to go around with this problem, but with
this method, we can systematically create questions with
high accuracy, i.e. the questions created will make perfect
sense.

6. ACKNOWLEDGEMENT

The successful completion of our project required the
guidance along with the assistance from various people
and we are extremely privileged to have got that. We
sincerely thank our project guide Prof. Virendra Pawar
who took keen interest in our project work.

REFERENCES

[1] What is OCR : https://www.necc.mass.edu/wp-

content/uploads/accessible-media-
necc/uncategorized/resources/What-is-
OCR.pdf#:~:text=OCR%20stands%20for%20%22Opti
cal%20Character,accessible%20electronic%20versio
n%20with%20text.

[2] Tesseract Documentation : https://tesseract-
ocr.github.io/

[3] How to write a Spelling Corrector:
https://norvig.com/spell-correct.html

[4] The Levenshtein Distance Algorithm :
https://dzone.com/articles/the-levenshtein-
algorithm-1

[5] Categorizing and POS Tagging with NLTK Python :
https://medium.com/@muddaprince456/categorizin
g-and-pos-tagging-with-nltk-python-28f2bc9312c3

[6] J. Memon, M. Sami, R. A. Khan and M. Uddin,
"Handwritten Optical Character Recognition (OCR): A
Comprehensive Systematic Literature Review (SLR),"
in IEEE Access, vol. 8, pp. 142642-142668, 2020, doi:
10.1109/ACCESS.2020.3012542.

[7] What is Tokenization in NLP? :
https://www.analyticsvidhya.com/blog/2020/05/wh
at-is-tokenization-nlp/

[8] The Quick Guide to SQuAD :
https://towardsdatascience.com/the-quick-guide-to-
squad-cae08047ebee

[9] SpaCy Documentation :

 https://spacy.io/usage

[10] "Algorithm for Generating Questions from Text."
ukdiss.com. 11 2018.

[11] Kurdi, G., Leo, J., Parsia, B. et al. A Systematic Review of
Automatic Question Generation for Educational
Purposes. Int J Artif Intell Educ 30, 121–204 (2020).

https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://www.necc.mass.edu/wp-content/uploads/accessible-media-necc/uncategorized/resources/What-is-OCR.pdf#:~:text=OCR stands for
https://tesseract-ocr.github.io/
https://tesseract-ocr.github.io/
https://norvig.com/spell-correct.html
https://dzone.com/articles/the-levenshtein-algorithm-1
https://dzone.com/articles/the-levenshtein-algorithm-1
https://medium.com/@muddaprince456/categorizing-and-pos-tagging-with-nltk-python-28f2bc9312c3
https://medium.com/@muddaprince456/categorizing-and-pos-tagging-with-nltk-python-28f2bc9312c3
https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
https://towardsdatascience.com/the-quick-guide-to-squad-cae08047ebee
https://towardsdatascience.com/the-quick-guide-to-squad-cae08047ebee
https://spacy.io/usage

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1752

[12] Kaviani, Pouria & Dhotre, Sunita. (2017). Short Survey
on Naive Bayes Algorithm. International Journal of
Advance Research in Computer Science and
Management. 04.

BIOGRAPHIES

 Pranjal Rane

Computer Engineering Student -
Vishwakarma Institute of
Technology, Pune

Ritvik Patil

Computer Engineering Student -
Vishwakarma Institute of
Technology, Pune

Ojas Natu

Computer Engineering Student -
Vishwakarma Institute of
Technology, Pune

Prahlad Pore

Computer Engineering Student -
Vishwakarma Institute of
Technology, Pune

Pranay Shridhar

Computer Engineering Student -
Vishwakarma Institute of
Technology, Pune

