
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1563

Critical Scrutiny of Sybil Attack Resistance Protocols based on Blockchain

Om Brahmbhatt1, Shrey Arora1, Trupal Chaudhary2, Shashank Mistry1, Qusai Onali1, Dharven
Doshi1*

1B. Eng. Student, Department of Information Technology, GCET, Anand, India
2B. Tech. Student, U & P.U. Department of Computer Engineering, CSPIT, Anand, India

--***---
Abstract - Resistance to Sybil attacks is becoming increasingly
relevant as decentralized systems such as cryptocurrency are
rising in popularity. As far as we know, avoiding Sybil attacks
in a decentralized manner is not feasible due to the fact that IP
addresses do not correspond to individuals. However, there are
two basic techniques to reducing the risk of Sybil attacks:
either making it difficult for a single person to control a large
number of peers or detecting abnormal Sybil attack activity
patterns in the decentralized system and ejecting malevolent
nodes. This paper focuses on the first approach and rely on the
complexity of some computations. Indeed, if joining a peer-to-
peer network requires a lot of processing, such as solving a
crypto puzzle, joining a large number of peers becomes
prohibitively expensive that an attacker will relinquish to even
try to endeavor the attack.

Key Words: Blockchain, Sybil Attack, GO, Proof of Work,
Cryptopuzzle

1. Goals and Functionalities

The purpose of the first section of the paper is for joining
peers to submit a PoW (proof-of-work) in order to be
accepted. We decided to design a protocol that would allow
us to generate a crypto puzzle and ask the peer who wanted
to join for the solution. The solution should be a time-limited
valid token that validates network access eligibility.

To put it another way, each joined peer should keep records
of the IDs of the accepted nodes. A new peer N, who does not
have an ID, sends a join request to an existing peer P. P
delivers a crypto puzzle to N along with an available ID and
timestamp. This crypto puzzle should not rely exclusively on
P, because solving a crypto puzzle produced by P is
straightforward if P and N are both malevolent and
cooperate. Then N solves the crypto puzzle, with the solution
serving as its proof-of-work and sends it back to P for
verification. After then, all peers should be aware that N has
joined the network. The timestamp will be included in the
crypto puzzle solution, ensuring that all peers have the same
ID with the same creation timestamp. These IDs will become
obsolete once a certain amount of time has passed, and the
peers will have to show a new PoW.

The next goal is to ensure that communication inside the
system is predicated on the possession and validity of such a
token after we have that ID based on a proof-of-work. Each
token should be associated with a single user; no other user
should be able to decipher another's token. The following is
the second section of the paper.

To put it another way, every time a peer A wishes to connect
with a peer B (either to transmit a rumor, a private message,
or whatever), B should make sure that A is one of the
accepted peers who has shown proof-of-work that has not
yet expired. A hostile peer M should not be able to
communicate as A, hence B should be able to validate A's
signature in some way. Another requirement is that a
malicious peer M who has demonstrated PoW should not be
able to interact from many locations at the same time using
its ID. As a result, peers should be aware of which peers are
now active in order to decline contact from a peer who is
currently active in another area.

2. Related Work

As previously mentioned, there are a variety of ways to
detect or prevent Sybil attacks, such as trusted certifications
or social graph patterns, but here we'll focus on the many
methods for imposing a high cost to join the system, hence
reducing the likelihood of Sybil attacks. There are a variety of
ways to establish incentives for adversaries to refrain from
executing Sybil attacks. For instance, the Dash
cryptocurrency requires to pay $ 13,000 to attain a master
node. Another option is to involve CAPTCHAs, which are
apparently difficult for a machine but not for a human to
solve but completing a large number of them would take a
long time even for humans, especially if the system requires
recurrent solutions.

This paper [2] describes a method for a joining peer to solve
crypto challenges without relying on a single peer or all peers
to do so (the first case is insecure if that peer is malevolent,
and the second case is practically infeasible because the
probability that all peers are active is extremely low). A tree
hierarchical structure is used to organize the nodes. To
connect, a peer must locate a leaf node and request a crypto
challenge from him. When this is completed, the joining peer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1564

receives a token that allows him to request another crypto-
challenge from the parent node. This process continues until
the peer solves the root node's challenge, at which time the
peer is permitted into the network. This has the advantage of
distributing burden and trust among diverse peers, but it
necessitates a hierarchy and, most critically, a single
trustworthy root node. Because we're trying to develop
entirely decentralized systems, this isn't a desirable trait.

Another strategy is described in this publication [1] The
topology of a chord is used to define the neighbors of peers.
The concept is to broadcast challenges to all other peers, and
these challenges must be created by all peers. They generate
puzzles by concatenating the ids of peers, and the non-
invertibility property of hash functions ensures that a
challenge cannot be computed without the challenges from
other peers. Peers ping each other on a regular basis to
determine which peers are online and must participate in the
puzzle computation process. Each peer can check to see if a
new challenge has its own challenge. This time, the solution is
a completely decentralized system with no single point of
failure. It ensures that all active nodes compute a challenge.
The nodes that are down at that time, however, are not part
of the computation. Another drawback is that the
communication protocol, with all its pings and broadcasts, is
highly bandwidth intensive.

Bitcoin is probably the most closely linked work because it
makes use of the blockchain technology that we will employ
in this paper and detail in the next part.

3. Background

The blockchain technology is used in the initial portion of the
paper's design and implementation. Blockchain is a
continuously expanding distributed list of records organized
into ‘blocks' and linked by hashing. In essence, each block
contains some data relevant to the blockchain application, as
well as two additional fields: a nonce and a hash. Every peer
in a peer-to-peer system has a local copy of the entire
blockchain. New data can only be added in a block that
references the prior block before being added to the
blockchain. The hash field within a block is the hash of the
preceding block in the chain, allowing you to verify that one
block is the successor of another. In order for the blockchain
to be genuine, each block's hash must match some pattern
(often a number of leading zero bits in the hash). This is
where the nonce field comes into play: to validate a block
containing data and the hash of the previous block, the hash
of the block must fit the desired pattern by experimenting
with different nonce values. Due to the non-invertibility of
hash functions, the only way to find a correct hash is to use
brute force with various nonce values. Any peer wishing to
add a block to the chain will receive a proof-of-work.

For digital signatures, the second portion of the paper will
use asymmetric cryptography and hash functions. This is
used for communication authentication. When A delivers a
message to B, B wishes to double-check that the sender is A.
A could do this by ‘signing' the communication. A has a
public-private key pair, which it uses to hash the message it
wishes to transmit and then ‘decrypt' it with its private key.
This signature is then sent along with the message. B
encrypts the signature with A's public key at arrival. The
signature is validated if the result is equivalent to the
message's hash. Different asymmetric cryptosystems, such as
RSA or El-Gamal, can be used to do this. In the case of RSA,
the message m is hashed to H(m) and ‘decrypted' to sig =
(H(m) d) mod N with the secret exponent d and public
parameter N. By testing if (sige) mod N = H, the receiver
checks the signature with the public exponent e. (m).

4. Design and Architecture

4.1 Blockchain-based joining

A local copy of the blockchain will be available to all peers.
This storing of nodes is indeed unique and not changed as
required, based on the hash-based linking of blocks.
Furthermore, because each block is dependent on a peer and
the previous block, we assure that the crypto puzzle cannot
be forged by a single peer; instead, it will be determined by
the last block and transitivity across all blocks. Because each
peer has a complete copy of the blockchain, only one peer
needs to be active at the time of a joining request.

Figure 1. Blockchain replicated in the network

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1565

However, this architecture is insufficient because a
malevolent peer can listen in on conversations and know the
IDs of peers who have previously joined. When a network
peer A leaves, a malevolent peer M can use A's ID to interact.
M can utilize A's ID even while A is active by dropping its
packets if he can undertake a man-in-the-middle attack. To
avoid this, we'll need authentication. As a result, we'll need to
include a new field in each block: the peer's public key. This
will enable each peer to confirm that a peer claiming an ID
has the associated private key and is thus the correct peer.
This can be done with digital signatures using either a
challenge-response system or HMACs, as we'll see in the next
section.

Here's how the joining protocol works:

1. A sends B, an already-joined peer, a rumor or private
communication m. Every gossip packet now includes
a new field: the node's ID.

2. When B notices that A's ID isn't in the blockchain, it
sends A an ID, a timestamp, and the last block's hash

3. A creates a pair of public and private keys.

4. A creates a new block with the following fields: ID,
timestamp, pub key, nonce, and previous hash.

5. B receives the block from A.

6. B validates it, and if it is legitimate, B adds the block
to its local blockchain and uses gossiping to
broadcast the new block.

7. Now that A is permitted to join the network, B
delivers the entire blockchain to A and treats future
gossip packets normally.

8. A verifies the blockchain's integrity, and if it is
correct, A considers itself to be a member.

Figure 2. Block Fields

B will see that A is in the blockchain at some point later in
step 2, but that the timestamp has expired. The procedure is
the same in this situation, and we follow the same stages,
which means A will have to mine a new block. This makes it
more difficult for an attacker to maintain control of a large
number of peers: to maintain control of N peers, the
adversary must mine N blocks every t time units, where t is
the expiration delay. Consider the scenario of establishing a
network: suppose A and Bare not connected to any network
and want to interact. Because there is no blockchain yet, A
can issue a join request to B as in step 1), but B will not
advance to step 2) because there is no blockchain yet. B can
then proceed to step2after creating its own block, the
beginning of the blockchain (the genesis block, with any
value as the previous hash). We've added a new flag genesis
to the gossiper command, which can be set to true if the node
wants to start the blockchain. Then when it has mined the
first block will it be considered joined, and only then will
other nodes be permitted to join. To keep the architecture
simple and avoid some issues, the genesis node is not treated
as a special node later on; instead, it behaves like the others,
which means its genesis block will expire at some point. [5]
So, we assume that there is always at least one joined peer in
the network, because otherwise the following could happen:
node A mines the genesis block, no one tries to join, and the
block expires at some point, then B tries to join to A, but A is
no longer joined, and no one can join. This is a design
limitation, but the assumption appears plausible, and if the
expiration period is long enough, this is unlikely to occur. It
should be noted that this method does not allow for the
merging of many peer-to-peer networks. [6] A single peer can
join any network or construct one of its own and wait for
additional peers to join, but a group of peers cannot merge
their blockchains with those of another peer-to peer network
[3]. Because nodes would try to connect at the same time to
different points in the network, we predict blockchains to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1566

diverge a lot in the network. Collisions, on the other hand, are
unnecessary. If two blocks are mined at the same time, one of
them will bedropped at each node. There will be two copies
of the blockchain, but this is unimportant because nodes only
need to be joined by their neighbors. We merely had to
change the node's ID field in every forwarded gossip packet
so that the node's ID field in every incoming packet was that
of a neighbor. We also don't have to preserve all the blocks in
the blockchain; we can delete the ones that have expired.
This has no bearing on the blockchain's integrity because if
one block expires, all prior blocks will likewise expire. As a
result, whenever a peer joins, it receives A blockchain that
begins with the first legitimates block and does not include
any subsequent blocks. The benefit is that we can always
have a blockchain with only n blocks for a network of n peers.

4.2 P2P Authentication

Once a peer has completed a PoW, it is registered in the
blockchain, and we must verify that it can communicate using
that registration at any point before the block’s timestamp
expires. In other words, if a node A leaves the network and
returns through anode B, it will submit its ID, which B will
check is available in the blockchain. [4] Now, we want to be
sure that a malicious peer M can't use A's ID to connect as A,
so A uses its private key to sign every packet it transmits to B.
With A's public key, which is stored in the block with A's ID, B
can check the authenticity and integrity of each packet.

This ensures that A can connect to the network at any time
and from any location, and that any joined peer can verify
that it is truly A. However, this is insufficient because a
malicious peer M might perform a PoW while connecting
through B and communicating regularly with other peers C,
D, and so on. We'll assume that the attacker can speak with
different peers using different IP addresses. Each peer
observes M acting normally, but they will be unaware that M
has joined the network several times unless they exchange
their data.

Each peer observes M acting normally, but they will be
unaware that M has joined the network several times unless
they exchange their data. Currently, each peer is aware of its
immediate neighbors, but it must now be aware of all active
peers in the network. To-do this, each peer should keep a
local list of active peers and send a specific packet to each of
its neighbors whenever a new peer joins the network. When
a peer receives such a packet from a neighbor, the new peer
is added to the peer's own list [7]. We can now share a list of
all current nodes in the network, but we need to be able to
remove a peer from the list if it fails or exits the network.
We'll need nodes to periodically Ping each other to see
whether they're still alive for this to work. Fortunately, the
anti-entropy system, which transmits status messages on a

regular basis, already does this. So, if a node A has not
received any status messages from a neighbor B after a
period of time T, A will deem B inactive and delete it from its
list of active nodes. A will additionally broadcast the fact that
B is no longer operational in a special packet. The other
nodes will also remove B from their list after they receive this
packet.

If the malicious peer M talks with B, B will not only verify the
blockchain ID and the digital signature's validity, but it will
also verify that M is not already on the list of active peers. If B
refuses to allow M, add it to the active peers list and
disseminate the change. Now, if M tries to talk with C, C will
refuse because M is already on the list of active peers.

To summarize, whenever node A sends packet m to node B,
node B must complete the following checks:

1. Is A's ID a portion of the blockchain that is valid?
If not, continue with protocol 5.1; if yes, move on
to check 2.

2. Is m's signature valid when utilizing A's public
key from the block? If not, reject m; if yes, move
on to step 3.

3. Is A already part of the list of active peers? If yes
reject m, if not add A to the list and propagate
the information that A has joined to the
neighbors, then treat m normally.

B simply needs to check the signature on the subsequent
packets.

4.3 Implementation Details

We'll give a quick overview of the Go code we implemented
in this section to make it easier to navigate. In essence, every
GossipPacket now has a new field called NodeID. It's only
going to be utilised for this paper. Every peer will now call a
function handleGossipPacket on every GossipPacket
reception, which will return a boolean indicating whether the
peer should accept or drop the packet. This function will
determine whether the NodeID is valid on the local
blockchain and then follow the protocols described in
sections 5.1 and 5.2. All message structures, handling, and
other details for the protocol specified in 5.1 are contained in
the file puzzleshandler.go. The file blockchain. go implements
the blockchain and offers functions for all relevant
blockchain operations. The file digital signatures.go is used to
construct and manage the digital signature security protocol.
The channels and code for the technique to define inactive
nodes can be found in the file node communication.go.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1567

5. Evaluations

To compare the joining times of a regular peer and a set of
Sybil peers, we will establish alternative p2p topologies and
measure the joining time of a normal peer and a set of Sybil
peers. The usual joining time should be affordable, whereas
the Sybil joining time should be prohibitively costly. We'll
experiment with different parameter values and compare the
results. Following the creation of the genesis block, we
measured the joining time for various levels of difficulty:

• Difficulty = 16

1. Node 1: 147.020307ms

2. Node 2: 164.127784ms

3. Node 3: 186.102790ms

4. Node 4: 214.628043ms

5. Node 5: 204.144341ms

6. Node 6: 194.548098ms

• Difficulty = 18

1. Node 1: 1.3468796s

2. Node 2: 768.457822ms

3. Node 3: 1.053998185s

4. Node 4: 1.581628689s

5. Node 5: 1.372276421s

6. Node 6: 1.472019263s

• Difficulty = 20

1. Node 1: 2.873795175s

2. Node 2: 3.093252135s

3. Node 3: 2.901926432s

4. Node 4: 2.663215389s

5. Node 5: 2.775930321s

6. Node 6: 2.823405346s

 • Difficulty = 22

1. Node 1: 6.366208633s

2. Node 2: 7.196392081s

3. Node 3: 8.758302038s

4. Node 4: 12.692505636s

5. Node 5: 8.263607094s

6. Node 6: 5.443429162s

• Level of difficulty = 24 (In this scenario, we constructed
a rogue node m1 that attempted to add other malicious
nodes m2, m3, m4, m5, m6, m7 to the blockchain, and it
took more than 10 minutes to do so, demonstrating the
legitimacy of our protocol): Diagram 3

Figure 3: Topology of our system with malicious nodes
attempting to join it.

1. Node 1: 45.8752036122s

2. Node 2: 47.3963730081s

3. Node 3: 47.7365930922s

4. Node 4: 49.2134378421s

5. Node 5: 53.3200982513s

6. Node 6: 58.0169600473s

6. Conclusions

In this paper we have discussed that, avoiding Sybil attacks in
a decentralized manner is not feasible due to the fact that IP
addresses do not correspond to individuals. There are two
basic techniques to reducing the risk of such attacks. One
involves making it difficult for one person to control a large
number of peers. The other involves detecting abnormal
activity patterns and ejecting malevolent nodes. Next goal is
to ensure that communication inside the system is predicated
on the possession and validity of such a token.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1568

As a result, each token should be associated with a single
user; no other user can decipher another's token. Another
requirement is that a malicious peer M who has
demonstrated PoW should not be able to interact from many
locations at the same time.

References

[1] Nikita Borisov. “Computational Puzzles as Sybil Defenses”.
In: (). doi:
https://nymity.ch/sybilhunting/pdf/Borisov2006a.pdf.

[2] Patrick McDaniel Hosam Rowaihy William Enck and
Thomas La Porta. “Limiting Sybil Attacks in Structured Peer-
to-Peer Networks”. In: (). doi:
http://nsrc.cse.psu.edu/tech_report/NAS-TR-0017-2005.pdf

[3] Srikanta Pradhan, Somanath Tripathy. "CAP", Proceedings
of the 10th International Conference on Security of
Information and Networks - SIN '17, 2017

[4] G. Bracha, “An o (log n) expected rounds randomized
byzantine generals’ protocol,” Journal of the ACM (JACM), vol.
34, no. 4, 1987.

[5] A. Hafid, A. S. Hafid, and M. Samih, “New mathematical
model to analyze security of sharding-based blockchain
protocols,” IEEE Access, vol. 7, pp. 185 447–185 457, 2019.

[6] P. Otte, M. de Vos, and J. Pouwelse, “Trustchain: A sybil-
resistant scalable blockchain,” Future Generation Computer
Systems, 2017.

[7] J. R. Douceur, “The sybil attack,” in International
workshop on peerto-peer systems. Springer, 2002, pp. 251–
260.

http://nsrc.cse.psu.edu/tech_report/NAS-TR-0017-2005.pdf

