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Abstract - Catastrophic fracture failure of engineering 
structures is due to cracks which proceed beyond safe size. A 
crack always exists in all structures up to some extent. 
Cracks are due to local damage or manufacturing defect. 
Growth of cracks is due to fatigue, creep or stress corrosion. 
Structural strength gets decreased due to crack growth. 
Thus when the service loading cannot be barred by current 
strength, fracture takes place which leads towards failure of 
structure. In order to estimate structure durability and 
damage tolerance it is essential to analyze the crack within 
structure. By default cracks may exists in structure and 
hence fatigue life of structure depends upon size and 
location of crack. Thus in order to estimate fatigue life of 
any component we should study crack growth. Various FEM 
based commercial software are used for simulating a 
cracked structure. This software’s are not having capacity to 
study automatic crack growth tracking capability.  In the 
present work, a method will be developed for automatic 
crack propagation in ANSYS software. A code will be 
developed in APDL (ANSYS Parametric Design Language) 
for automatic crack propagation in ANSYS. The input to the 
code will be initial crack length and crack location in the 
structure. The output from the code will be the final path of 
the crack and life cycle required for the crack length. 

Key Words:  APDL, Fatigue life, ANSYS, FEM, Fracture 
Mechanics, Automatic crack propagation. 
 

1. INTRODUCTION  
 
It has been suggested that 50 to 90 percent of all 
mechanical failures are due to fatigue, and the majority of 
these failures are unexpected. Fatigue causes failure in 
many structures in automobiles, ships and aircraft as well 
as any other device which undergo repeated loading.  In 
1978, a comprehensive study indicated a cost of $119 
billion (in 1982 dollars) due to fracture in the United 
States. This study suggested that using proper and current 
technology is design could significantly reduce this cost. 
There are currently many approaches to fatigue design. 
Some are simple and inexpensive; others are extremely 
complex and expensive. If initially an expensive complete 
fatigue design procedure is implemented, this may lead to 
lower cost in the long run by reducing failure. Proper 
characterization of fatigue behavior can lead to the more 
competitive products. In the aircraft and automotive 
industries this can mean lighter structures. Fatigue life of a 
component can be divided into two parts: 

1. Crack initiation 
2. Crack propagation to critical crack size. 

Catastrophic fracture failure of engineering structures is 
caused by cracks that extend beyond a safe size. Cracks, 
present to some extent in all structures, either as a result 
of manufacturing fabrication defects or localized damage 
in service, may grow by mechanisms such as fatigue, 
stress-corrosion or creep. The crack growth leads to a 
decrease in the structural strength. Thus, when the service 
loading cannot be sustained by the current residual 
strength, fracture occurs, leading to the failure of the 
structure. The analysis of cracks within structures is an 
important application if the damage tolerance and 
durability of structures and components are to be 
predicted. As part of the engineering design process, 
engineers have to assess not only how well the design 
satisfies the performance requirements but also how 
durable the product will be over its life cycle [1]. Often 
cracks cannot be avoided in structures; however the 
fatigue life of the structure depends on the location and 
size of these cracks. In order to predict the fatigue life for 
any component, a fatigue life and crack growth study 
needs to be performed. Damage tolerant methodology can 
be used for designing initially flawed components or 
determining the remaining life to failure once a flaw is 
detected. This is particularly of interest to the aircraft 
industry, where cracks are commonly detected and 
monitored in nearly every structural component of the 
aircraft. Damage tolerance assessment is a procedure that 
defines whether a crack can be sustained safely during the 
projected service life of the structure. Damage tolerance 
asessment is, therefore, required as a basis for any 
fracture control plan, generating the following 
information, upon which fracture control decisions can be 
made: 

1. The effect of cracks on the structural residual 
strength, leading to the evaluation of their maximum 
permissible size. 

2. The cracks growth as a function of time, 
leading to the evaluation of the life of the cracks to reach 
their maximum permissible size, from which the safe 
operational life of the structure is defined. 

Linear elastic fracture mechanics can be used in 
damage tolerance analyses to describe the behavior of 
cracks. The fundamental assumption of linear elastic 
fracture mechanics is that the crack behavior is 
determined solely by the values of the stress intensity 
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factors which are a function of the applied load and the 
geometry of the cracked structure. The stress intensity 
factor, thus play a fundamental role in linear elastic 
fracture mechanics applications. Crack growth processes 
are simulated with an incremental crack-extension 
analysis. For each increment of the crack extension, a 
stress analysis is carried out and the stress intensity 
factors are evaluated [2]. The crack path, predicted on an 
incremental basis, is computed by a criterion defined in 
terms of the stress intensity factors. Thus, computation 
stress intensity factor plays a major role in fracture 
analysis. In the next section, computation of stress 
intensity factor using FEM has been discussed. Most of the 
commercially available FE software like ANSYS, ABAQUS 
and NASTRAN etc. have capabilities to model crack tip and 
compute the stress intensity factors. However, for the 
study of crack propagation, the crack tip modeling and 
computation of stress intensity factor has to been done at 
each incremental step along the crack length. This 
requires remodeling of the FE model to update the cracked 
geometries. Currently none of the above mentioned 
software has any automatic procedure to do the 
remodeling procedure. Thus, either this has to be done 
manually or use any third party software to do the 
process. The task of manually remodeling the crack tip will 
make the simulation process very lengthy.  Using a third 
party software will add additional cost as well as learning 
a new tool. Thus, in this project an automatic procedure 
has be developed to do the remodeling process. This has 
been done in ANSYS software using APDL (ANSYS 
Parametric Design Language) scripting language [4]. 

1.1 Objective 

The objective of this paper is to develop an APDL 
script to automatically model the crack tip and predict the 
crack propagation path. The project currently focuses on 
2D problems. The input to the APDL script will the initial 
crack location, crack orientation and crack increment. The 

APDL script takes all the above and automatically model 

the crack tip, compute the stress intensity factors, and 

predict the crack propagation path. 

2. FRACTURE MECHANICS  
2.1 Introduction 
 
Fracture mechanics has developed into a useful discipline 
for predicting strength and life of cracked structures. It 
can be divided into two parts: Linear Elastic Fracture 
Mechanics assumes that the material is isotropic and 
linear elastic. Based on the assumption, the stress field 
near the crack tip is calculated using the theory of 
elasticity. When the stresses near the crack tip exceed the 
material fracture toughness, the crack will grow. LEFM 
applies when the nonlinear deformation of the material is 
confined to a small region near the crack tip. For brittle 
materials, it accurately establishes the criteria for 

catastrophic failure. However, severe limitations arise 
when large regions of the material are subject to plastic 
deformation before a crack propagates. Elastic Plastic 
Fracture Mechanics is proposed to analyze the relatively 
large plastic zones. EPFM assumes isotropic and elastic-
plastic materials [3]. Based on the assumption, the strain 
energy fields or opening displacement near the crack tips 
are calculated. Although the term elastic-plastic is used in 
this approach, the material is merely nonlinear-elastic. In 
others words, the unloading curve of the so called elastic-
plastic material in EPFM follows the original loading curve, 
instead of a parallel line to the linear loading part which is 
normally the case for true plastic-plastic materials [9]. Fig-
1 shows the difference between LEFM, EPFM and true 
elastic-plastic behavior. 

Fig-1: LEFM, EPFM and True Elastic Plastic behavior 

Linear elastic fracture mechanics applied to gear tooth has 
become increasingly popular [4]. 

2.2 Different Fracture Modes 

The three basic types of loading that a crack can 

experience are shown in Fig-2. Mode I loading is normal to 
the crack plane, and tend to open the crack. The crack 
surfaces tend to separate symmetrically with respect to 
the crack plane. 

Mode II corresponds to in-plane shear loading and tends 
to slide one crack face with respect to the other (shearing 
mode). The stress is parallel to the crack growth direction. 

Mode III corresponds to out-of-plane shear, or tearing. 
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Fig - 2 Type of loading on a cracked body. (a) Mode I. (b) 
Mode II. (c) Mode III. 

3. FORMULATION OF CRACK PROPAGATION  
 
3.1 Overview of formulation 

An APDL code is developed for automatic modeling of 
crack tip and crack propagation is developed. Few plate 
problems defined as a 2-D plane stress problem are taken 
to validate the code.  The code has the capability of 
automatic modeling of the crack at the user defined 
location. The code then automatically does the static 
analysis and then calculates the KI and KII and predicts the 
crack growth angle. The code then increments the crack 
tip, in the direction calculated, by an amount defined by 
the user. This procedure is repeated for the user defined 
number of steps.  

3.2 Software Requirement 

The project is carried out using ANSYS as a Finite Element 
Software. One of the unique features of ANSYS is APDL 
(ANSYS Parametric Design Language). APDL is a macro 
language developed by Ansys Inc., to be used in 
conjunction with ANSYS. The language is similar to any 
programming language (more like FORTRAN).  A 
parametric model, with all the boundary conditions and 
load conditions incorporated within, can be developed 
using APDL. Thus, by changing only the parameter the 
model changes and the effect of parameter can be studied 
without bothering to create a new model each time. The 
language also provides the looping and condition checking 
facilities which is necessary in many applications. It can 
also do matrix operations. Only because of these flexibility 
provided by the language, it was possible to develop the 
code for automatic crack propagation.  

3.3 Modeling of the crack 

As we know that, the main difficulty in modeling the crack 
in FEM is to model the singularity (1/√r) behavior of the 
crack tip. Traditionally a very fine mesh was used at the 
crack tip to capture the singularity behavior. But this 
makes the computational time expensive. A special type of 

element is, therefore, used in this formulation. This special 
type of element is known as quarter point element. An 
introduction to this kind of element is given below [3]. 

3.3.1 Quarter point elements 

As mentioned earlier, one of the major difficulties in 
fracture mechanics using FEM is the modeling of the 
singularity (1/√r) in the stress field formed at the crack 
tip. Henshell and Shaw discovered that it was possible to 
represent the (1/√r) stress singularity using quadratic 
isoparametric elements. Barsoum formulated a quadratic 
isoparametric element able to represent the (1/√r) stress 
singularity moving the mid side node of the two sides to 
the quarter point position [8].  A brief formulation of the 
element is given. Fig-3 shows the quarter point 8-noded 
element. 

 

Fig-3 Quarter point 8-noded element 

The geometry of an 8-noded plane isoparametric element 
can be mapped into a normalized square space (ξ, η), (-1≥ 
ξ ≥1,-1≥ η ≥1) through the following transformation: 

 

 

The shape functions for the three nodes can be written as, 
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Which makes the determinant of the Jacobian vanish at the 
crack tip when x=0 

Regarding the displacement along the line 1-5-2: 
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So, the strain in the x direction is given by: 

 

The singularity achieved for the strain filed in above 
Equation is of order 1/√x, therefore, at the crack tip, the 
stress is infinite which, is the same singularity achieved 
beyond the elastic plane analysis. A 6-noded triangular 
element is shown in the Fig- 4. In this case the singularity 
is investigated along the x-axis, where η=0, and for this 
line we have, 
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It reduces to, 

 

Fig-4 Quarter point 6-noded element 
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Which is the same singularity achieved in 8-noded 
element. Quadrilateral quarter point element is used less 
frequently in practice than the triangular version. These 
may be because of fewer number of this element being 
able to place around the crack tip. With fewer elements, 
the circumferential variations of the stress and 
displacement fields around a crack tip may be can less 
accurately represented then the triangular case where 
more elements can be placed around the tip. 

3.3.2 Modeling crack tip using Quarter point 
element 

In the present work, 6-noded quarter point element is 
used to model the crack tip. The APDL macro developed, 
clear.mac, has the capability to automatically model the 
crack tip with 6-noded quarter point element. The user 
has to input the crack initiation node and the crack tip 
location. Most of the time, the crack initiates at maximum 
principles stress [6]. The procedure is shown below in the 
Fig- 5. Once the crack tip is remeshed with QP element, 
static analysis is carried out. The stress intensity factor 
and propagation angle are found out. Based on these 
values the crack is incremented by the APDL code 
iaclear.mac.  

3.4 Extracting SIF using FEM 

Displacement correlation technique is used in the present 
work for extracting the stress intensity factor [6]. As the 
present work is for 2-D analysis, only KI and KII values 
have to be calculated. This is done by the macro sif1.mac. 
We can calculate the KI and KII  values by using formulae 
given below. This method was because of the simplicity 
and less computational time required. The Table -1 shows 
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d) Step 4: 
Local remeshing with QP element 

Fig - 5 Automatic Modeling of crack 

 Nodal displacement of nodes behind crack tip.  
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For plane stress condition
  

 For plane strain condition 

For example, after doing the static analysis on the initial 
crack in, let the nodal displacement values of the element 
on the crack edge be 

Let E = 2.1E6, v = 0.3 and L = 0.02. Then, 

 

 

 

 

Table -1 Nodal displacement of nodes behind crack tip 

Node position UX (mm) UY (mm) 

Crack Tip 0.48331 E-3 0.22029 E-2 

Quarter Point 
(Upper side) b 

0.4992E-3 0.23636E-2 

End Point (Upper 
side) c 

0.52207E-3 0.25313E-2 

Quarter Point 
(Lower side) d 

0.47856E-3 0.20550E-2 

End Point (Lower 
Side) e 

0.48373E-3 0.19266E-2 

 

    

(Shear modulus) 

For plane stress condition 

    

    

    

The relative nodal displacement due to the displacement 
of the crack tip can be calculated as below. 

 vb = 0.23636E-2 - 0.22029E-2 = 0.1607E-3 

 ub = 0.4992E-3 - 0.48331E-3 = 0.1589E-4 

 vd =0.20550E-2 - 0.22029E-2 = -0.1479E-3 

 ud =0.47856E-3 - 0.48331E-3 = -0.475E-5 

Similarly, vc =0.3284E-3 uc =0.3876E-4 

     ve =-0.2763E-3  uc =0.42E-6 

Using the above values, KI and KII can be calculated as, 

 
2

4
1

I b d e cK v v v v
L

 


     

 

 

 

    

a) Un-cracked 
region                               

b) Define 
Crack tip and 
end point 

c) Element 
deletion   
around crack 
tip 

3 4

3 4

1

v

v

v





 








          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 08 | Aug 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3466 

  
2

4
1

II b d e cK u u u u
L

 


     

 

   

3.5 Calculating Crack Propagation Angle 

Crack propagation angle is calculated using the maximum 
tangential stress theory. This method can only be applied 
to 2-D problem and the problem defined here is 2-D. Also, 
the simplicity of this method is that only KI and KII values 
are required [3]. Thus, this method is computationally 
inexpensive. While the other two methods, are 
computationally expensive. This method has been 
implemented in the macro sif1.mac. The Equation for 
calculating the angle is given as, 

2
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Here, θm is the angle calculated with respect to x-axis of 
the coordinate system with its origin at the crack tip. Note 
that if KII is positive then subtraction should be done in the 
equation and vice-verse [5]. 

 For example, let KI = 378.13 MPa√mm  and KII = 
26.5898 MPa√mm, then θm can calculated as, 

 

 

3.6 Crack growth rate model 

Paris model was used for calculating the crack growth rate 
and thus the life for the crack growth. Paris model is quite 
simple and less material parameter is required. Due to non 
availability of other material properties for fracture 
mechanics, Paris equation has to be used [8]. We know 
that, the equation for crack growth rate according to Paris 
model is given as, 

 
nda

C K
dN

 
 

Where, C and n are constants that are found by a curve fit 
to experimental data [7]. ΔK is the range of stress intensity 
factor for each cycle.   ΔK can be calculated as shown in the 

Fig – 6. For the present model Kmin is zero. Hence for the 
present formulation, 

 
Fig – 6 Range of K 

ΔK=Kmax 

Kmax and Kmin are the mixed mode stress intensity factor. 
Mixed mode stress intensity factor can be calculated as 
shown below, 

 

Where K is the mixed mode stress intensity factor. KI, KII 
are the stress intensity factor due to mode I and mode II 
loading conditions. v is the Poisson’s ratio. Thus, Kmax can 
be calculated by substituting KI and KII. This has been 
implemented in the code lif.mac. 

 For example, let KI = 378.13 MPa√mm, KII = 
26.5898 MPa√mm and let the crack be incremented in the 
direction at angle -7.967o. Let C = 1.33559e-13 and n = 
2.954. Then for the crack to grow 0.1 mm length, number 
of cycles required can be calculated as below, 

 

 

 

As ΔK = Kmax, therefore ΔK = 361.6037 MPa√mm. Using 
these values in Paris equation, the number of cycles can be 
calculated as shown in equation.  

 

 

 

A flowchart showing the work flow in the code is given in 
Fig - 7. The functionality of all the macros in the code has 
also been described in Table -2. 
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Fig – 7 A flowchart describing the working of the APDL 
code 

 

 

 

Table – 2 Functionality of all the macros 

Macro Description 

 

clear.mac Takes crack increment size and initial 
crack angle as input and models initial 
crack in the FE model. 

sif1.mac  Solves the model and calculates the KI 
and KII values and the crack growth 
direction 

iaclear.mac Increments the crack tips in the crack 
growth direction calculated by a user 
defined amount. It does so by deleting 
and remeshing elements locally. For 
remeshing it calls the macro ac.mac 

ac.mac Remeshes the region deleted by clear.mac 
and iaclear.mac. Places the quarter point 
element around crack tip. 

bound1.mac Determines the boundary of the region 
deleted by clear.mac and iaclear.mac. 

life.mac Calculates the number of cycles required 
for the crack propagation. 

Sol1.mac Loops all the macro, until the no. of steps 
for crack propagation is achieved. Writes 
results of each loop in a file result.mac 

 

 

4 VALIDATION OF CODE 

Based on the formulation described in the previous section 
an APDL script was developed needs to validate by some 
means. Thus, the results of the crack propagation code are 
compared with the FRANC2D. This software is available 
free. Franc2D was developed by the Cornell Fracture Group 
at Cornell University. The program is designed for two 
dimensional problems and uses the principle of linear 
elastic fracture mechanics. It is capable of analyzing plane 
stress, plain strain or axis-symmetric problems. A unique 
feature of the program is the ability to model a crack in a 
structure. For this, it uses a method called “delete and fill”. It 
has been widely used by different organizations and 
institutions for the study of crack growth. A number of 
international papers on fracture mechanics have reference 
to this software. One problem is taken to compare the 
results predicted by APDL with FRANC2D. In the problem 
mixed mode crack propagation occurs. Thus the prediction 
of K1 and K2 mode can be compared [3]. 

 

Start 

Define the no of step for crack propagation and 
intial setting. 

APDL Macro: sol.mac 

Enter the crack increment size and initial crack 
angle 

APDL Macro: clear.mac 

Models the initial crack with Quarter Point 
Element. 

APDL Macro: clear.mac 

Static analysis, calculate SIFs and crack 
propagation direction. Write results to a file 

result.txt 

APDL Macro: sif1.mac 

Calculate the no. of cycles required for the 
increment of calculated using Paris model 

APDL Macro: life.mac 

Propagation of Crack Tip in the calculated 
direction 

APDL Macro: iaclear.mac 

Check if looped 
for the defined 

crack  steps  

Yes 

End 

No 
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4.1 Problem Description 

Problem: In this problem, a hole of radius 4 mm is made at 
top part of the plate. The geometrical dimensions of the 
plate is same as problem 1. The intention of making a hole 
was to introduce a weak region in the plate and to study the 
effect of this on the crack propagation path. Fig - 8 shows 
the dimensions for the problem. 

 

Fig – 8 Dimensions for the problem 
 

The problem is solved using APDL and FRANC2D 
software. Initial crack of 0.5 mm length is initiated at the 
notch. The crack is propagated for 80 increment step with a 
crack increment size of 0.5 mm.   Thus the crack propagates 
for a length of 40 mm. The results are discussed below. The 
Fig -9 shows the crack path predicted by APDL and 
FRANC2D software. 

Fig - 9 Crack Propagation Path predicted by APDL and 
FRANC2D 

Again, the path predicted by ANSYS APDL and FRANC2D is 
the same. This suggests that the calculation made by the 
APDL script is correct. Thus, it validates the APDL script. 
The predicted path in this problem is curvilinear, whereas 
in the simple plate problem it was straight line. This 
suggests that the crack path is affected by any nearby weak 
region. Also, as this is a curvilinear path, both K1 mode and 

K2 mode play important role in deciding the crack 
propagation path. In the simple plate problem (Problem 1), 
there was no role played by K2 mode and its value was 
negligible compared to K1. 

In the Fig – 10 & Fig - 11 shown below, the 
prediction made by APDL and FRAN2D for K1 and K2 has 
been plotted. 

 

Fig – 10 K1 Vs Crack Length 

Fig – 11 K2 Vs Crack Length 

Fig - 10 shows that the K1 prediction along the crack 

 length is same in APDL and FRACN2D. In Fig - 11, K2 
predictions are plotted. The plot shows that the K2 
prediction for the APDL and FRANC2D matches very well. 
This again confirms that the predictions made by APDL 
and FRANC2D are matching. Initially the K2 values are 
very small. At that point of time the crack is moving along 
a straight line. This can be seen in the Fig - 9. Once the 
crack reaches near the hole (weak region in the plate), 
there is increase in the value of K2. Thus, now there is 
crack propagation due to mixed mode, i.e., the crack path 
prediction is taking place due to K1 and K2 mode. This 
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results in a curvilinear crack path. In the above problem, 
comparison was made between the APDL predictions and 
FRANC2D predictions. Very good correlation is found 
between the predictions of APDL and FRANC2D. It is also 
found that the predictions are correct in pure K1 mode 
problems as well as in the mixed mode (K1 and K2 mode) 
problems. Thus the APDL script is validated through this 
problem. 

5. CONCLUSIONS 

An APDL code is developed for the automatic modeling as 
well as propagation of crack. The code is validated by 
comparing its result with one of the widely used software, 
Franc2D. Based on the numerical investigations carried 
out on different plate problems, following conclusions can 
be deduced.   

1. The results predicted by APDL for KI and KII 
modes match very well with the results predicted 
by FRANC2D. Thus the developed APDL script is 
validated. 

2. The results show that when KI mode is dominant 
(Pure KI mode), the crack moves along a straight 
path. As the KII mode start playing role in the 
crack propagation the curve takes a curvilinear 
path. 
3. The study on the crack increment size 
showed that the KI mode is not affected by higher 
increment size but the KII mode is affected by it. 
There is change in crack propagation path with 
different crack increment size in mixed mode 
problems. 
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