
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1965

Comparison of Object Detection and Image Recognition
Frameworks on Indian Currency Notes

M C Sohan1, Akanksh A Manjunath2, Prof. Lalitha V P3

1Undergraduate Student, R V College of Engineering, Bangalore, Karnataka, India
2Undergraduate Student, R V College of Engineering, Bangalore, Karnataka, India

3Assistant Professor, R V College of Engineering, Bangalore, Karnataka, India
---***--

Abstract – The task of selecting the right image recognition
and object detection framework for an application has become
difficult with improvements in AI technologies as several
frameworks are made available. Some frameworks perform
better than others in terms of certain metrics. This article
compares popular object detection and image recognition
frameworks based on several metrics including accuracy
metrics, efficiency metrics, training time, training ease,
deployment ease and inference time. Conclusions about the
behaviour and applicability of the frameworks have been
made after comparing the training results on a dataset of
Indian Currency Notes.

Keywords: Object detection, Image classification, YOLO,
Tensorflow, PyTorch

1. Introduction

The visual system of humans is extremely fast and complex,
allowing us to perform vision-based inference without any
additional thought. This is possible due to the immensely
complex networks of neurons in our brains which become
capable of recognition, detection and localization of objects
using just our visual input after being exposed to several
examples of the objects. Neural networks are an attempt to
replicate this behaviour of the human brain by building
networks of neurons which become capable of human-like
processing of inputs. Several frameworks, algorithms or
techniques have been developed to aid in producing these
results. With each method having its pros and cons, it
becomes important to know the tradeoffs before selecting
one for tackling a problem. Multiple factors have to be taken
into consideration before proceeding with such a neural
network method depending on the area of application, for
example, to detect objects from a continuous video stream in
real-time would require techniques that provide quick
processing in exchange for some imperfections in
localization.

With advancements in hardware, processing times have
drastically reduced - this allows for more accurate algorithms
to be deployed in practice since the processing time for
inference would vary only slightly. There is another factor
that can sometimes influence the selection of a technique -
the time required to train and deploy the neural network
model used for inference. Given the same data to several

algorithms, the time required per epoch and the number of
epochs required to train the model varies for different
techniques. This article details the comparative study made
using popular object detection and image recognition
frameworks to compare methods based on certain metrics
and to examine the effect of variations in the dataset on
performance metrics.

Several popularly used frameworks like TensorFlow[1],
PyTorch[2] and Darknet[3] exist for the purpose of object
detection and image recognition, which can be used alongside
many different algorithms to develop neural networks for the
required purpose. The You Only Look Once(YOLO) approach
to object detection moves away from the ideology of using
classifiers to perform detection, instead, it frames the object
detection problem as a regression problem to spatially
separated bounding boxes and associated class
probabilities[4]. Another popular library for training deep
learning models (especially for image classification) is the
Fast.ai library. This library sits on top of the PyTorch library
and provides powerful functions that allow models to be
trained and tested using just a few lines of code. It also allows
lower-level access to programmers to perform minute tweaks
easily [5].

The working of a neural network prompting it to detect an
object or to recognize an image can be split into two stages -
feature extraction and detection. During detection, initially,
common features from various regions of the image are
extracted using the starting layers of the neural network.
These layers are usually large in comparison to the number of
layers towards the end that are used to gather this feature
information and perform the detection task. Extremely large
datasets like ImageNet[6] are needed to train the neural
networks to develop the ability to extract different features
like gradient, texture, edges, etc. In the present day, almost no
image recognition or object detection model is trained from
scratch since several pre-trained models having excellently
trained feature extraction layers are available. Only the layers
closer to the output layer need to be trained to adapt these
models to recognize newer objects, this method of training a
model is known as transfer learning[7]. The biggest
advantage of transfer learning is that despite having a smaller
dataset, good results can be obtained as the number of layers
that require training is significantly lesser than the total
number of layers present in the network - the pre-trained
layers can be retained for feature extraction.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1966

2. Literature Review

A comparison of TensorFlow and Pytorch was previously
made by Simmons and Holliday using the publicly available
set of Amazon reviews for video games. The binary
classification was performed using sentiment analysis to
classify the reviews as being positive or negative. They
compared the training time, memory usage, and ease of use of
the two frameworks in the same testing environment (on the
same Google Colaboratory GPU instance)[8]. There are
however some peculiarities that are exhibited based on the
dataset as seen in the research of Hussain et al. where
performance analysis of five machine learning algorithms
(Naïve Bayes, Bayes Net, K-Nearest Neighbour, Multi-Layer
Perceptron, and Support Vector Machine) for recognizing
daily life activities was done. It was seen that some models
did well to recognize some activities and failed to recognize
other activities, different models better recognized different
activities[9].

Another comparison between PyTorch and TensorFlow was
performed by Heghedus et al. A comparison of the two
frameworks was performed on traffic data obtained from
various IoT sensors. It was seen that one model
outperformed the other in some scenarios whereas the result
was the opposite for a few other scenarios. It was observed in
the results that some network configurations performed
better on one framework than the other[10]. Google
Research, Brain Team studied the impact of data
augmentation on object detection[11] and demonstrated that
data augmentation operations borrowed from image
classification may be helpful for training detection models,
but the improvement is limited. Their experiments reported
an improved accuracy on both COCO and PASCAL VOC
datasets by an optimized data augmentation policy. This
shows that augmentation to be applied is dependent on the
dataset rather than the representation or the model that is
being used.

An improved method for training models when a small
dataset is available was described by Li et al[12]. They
described a process of sample enhancement and transfer
learning for the YOLO method using their small dataset
containing 363 images (296 training images and 67 test
images) having playing cards of 6 different types. The results
show that YOLO is fast and accurate, and that sample
enhancement can improve detection performance. Contrary
to Li et al.[12] Abramovich et al. [13] studied the accuracy of
multiclass image classification in a high dimensional setting
where the number of classes were large. An extremely
counter-intuitive observation was made where the results
indicated that the precision of classification can improve as a
number of classes grow in a higher-dimensional setting.

Redmond et al.[14] described both an improvement on the
old YOLO - calling it the YOLOv2 and also a new technique
named YOLO9000 in which joint training of data using both

image classification and object detection datasets
simultaneously allowed the training of YOLO9000 to be
capable of recognizing more than 200 classes whilst having
object detection annotations for only 44 classes. Padilla et
al.[15] compared various available metrics for object
detection and matched the metrics with the methods with
which they are available. The study showed that not all
metrics are available to be used with every approach readily
and hence, proposed a standard implementation that can be
used as a benchmark with minimum adaptation. The same
authors continued their work [16] to produce an open-source
toolkit that provides tools to compute metrics in a
standardized manner, supporting all the popular annotation
formats.

NVIDIA research[17] suggests that to capture the temporal
nature of the video, Average Precision metric is not sufficient.
For real-time video analysis, the inference time matters and
hence an average delay metric was proposed. The research
also proposes that for detection activity, the corresponding
delay must be taken into consideration. Zou et al.[18]
surveyed 400+ research articles to produce a summary of
object detection in the past 20 years. The authors detail how
the object detectors got split into two major categories
(single-stage and multi-stage detectors) around 2014. The
study indicates that one of the great successes of the decade
was RCNN, it changed the way object detection problems
were approached - improved versions of this multi-stage
detector were developed (viz. Fast RCNN and faster RCNN).

3. Methodology

3.1 Dataset

We use a custom dataset of Indian currency notes
(denominations 50, 100, 200, and 500) to perform the
comparison. The dataset contained 490 images specifically
selected and annotated for object detection purposes. It
comprised of 50 images per class with just one object in the
image and 90 images having multiple objects per image. Color
and shape alone cannot be an indicator for the object, to
ensure that this is not the case we included several objects
that were not currency notes but resembled them in terms of
shape and color. The notes were classified into 8 classes - a
back and a front class each for the 4 denominations. This base
dataset is then used to produce a dataset that is 3 times larger
by using augmentation techniques like image rotation, skew
and perspective warping. Care was taken that several images
of notes of the same or similar color but of different
currencies were added to the test set. This was to ensure that
the models were able to pick up on the features of the notes
and were not just relying on broad color patterns. In almost
all the images, the notes are completely visible and are
oriented without rotation relative to the camera frame - this
was to ensure that folded/tilted notes in the background
would not be recognized. The dataset used for training the
models was a custom-created dataset of new Indian Currency

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1967

notes. This dataset was normalized to 2000x2000 pixel
dimension and then passed through several augmentation
stages of auto orientation, 90-degree rotations, slight object
tilts of -7 to +7 degrees, and brightness changes. This yielded
a dataset that was 3 times larger than the original raw
dataset.

3.2 Metrics

We considered accuracy, training time, training ease,
inference time and deployment ease as metrics of interest.
Accuracy, Training time, Inference time are performance-
based metrics whereas training ease and deployment ease
showcase the versatility and ease of understanding and
using the frameworks.

3.3 Environment

All the below-mentioned models were trained using Google
Colaboratory GPU instances.

3.4 Image Classification

TensorFlow and PyTorch frameworks for image classification
were used to train models. These models were then evaluated
using the above-mentioned metrics. PyTorch was evaluated
by using the Fast.ai library which uses PyTorch under the
hood.

3.5 Object Detection

For object detection, the trending YOLOv4-Darknet, YOLOv5-
PyTorch were compared. Additionally, YOLOv4 darknet
weights were converted to TensorFlow weights and then
converted to TensorFlow Lite format which can be directly
deployed on a mobile device. The parameters and other
configurations were tuned as per requirement and the
models were trained. TensorFlow library was used for
TensorFlow image recognition, the custom framework,
Darknet[19], was built from source for YOLO v4 object
detection, YOLO v5[20] repository was cloned and Fast.ai
library was used for image recognition. Tensorboard was
used to evaluate the various metrics like mAP, precision,
recall, and box accuracy for object detection. Training and
Inference times were measured using a built-in command in
Google Colab.

3.6 Validation methodology

During training, the models were provided with a validation
set which was a tenth of the size of the training set.
Additionally, a tenth of the set was retained for testing and
was never shown to the model during training. The testing of
the model was done automatically by using the trained
models to infer/predict the denomination and the side
(front/back) of the currency. The prediction results were

verified manually to ensure that the expected predictions are
being made w.r.t the bounding boxes. The metrics were
automatically analyzed using Tensorboard and compared for
the different models. Additionally, inference time for a set of
40 images was also measured for each model.
The complete flow has been summarized as a workflow
diagram in Figure 1.

Fig-1: Workflow diagram

4. Results and Analysis

Our comparison will be applicable to all areas where objects
belonging to a few classes have to be detected and in case of
using the object detection algorithms and
detection/recognition applications where detection time is a
key factor like counting the number of eggs and larvae from a
photograph of a worm's nest or counting the number of
different types of cells in a medical close up image, also
applications where the dataset available is not large enough
to attempt a full-fledged deep learning algorithm without
transfer learning. In the below paragraphs we see the results
of our experiments on object detection and image
recognition.

4.1 Image Recognition

For image recognition, we picked the same architecture
ResNet50 for both frameworks with ReLU activation function
and Softmax in the last layer. This was done so as to have a
consistent architecture to compare both frameworks
effectively. Also, doing so allowed us to focus on any dataset
issues or discrepancies.

Reported Accuracy: TensorFlow has better validation
accuracy (Figure 3) than PyTorch but performs poorer on
the test dataset (Figure 4), this is because of overfitting of
data which can be attributed to lack of training
customization. However, with respect to PyTorch we see
much better performance on the test dataset also.

TensorFlow:
Validation: 100%
Test: 10/38 = 27%
PyTorch:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1968

Validation: 1/94 = 98.93%
Test: 72.91%

Fig-2: PyTorch confusion matrix

Fig-3: TensorFlow confusion matrix

Fig-4: TensorFlow test results

Training Time: PyTorch took more time to train as it can be
customized and the method of training involves selecting the
range between which the learning rate is chosen. This also
resulted in higher accuracy as can be seen above (Figure 2).

This is known as the CLR (Cyclical Learning Rate) method
(Figure 6).

TensorFlow: 2min 36s
PyTorch: 6min 36s

Training Ease:
TensorFlow: TensorFlow does not offer much
customization (Figure 5) with respect to training apart from
data augmentation techniques and the number of epochs,
that PyTorch also offers. Hence, the training time of
TensorFlow is lower compared to that of PyTorch.

Fig-5: TensorFlow training

PyTorch: PyTorch can be customized as highlighted above
(refer Figure 6). PyTorch also allows a range of data
augmentation techniques to be applied to the data and
modifications in the number of epochs. Overall, PyTorch is
the most customizable framework available and this can be
attributed to the history and the purpose behind developing
PyTorch.

Fig-6: PyTorch training

Time for Inference (for 40 images): The time taken to load
the model and run inference on a batch of 40 images is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1969

detailed here. TensorFlow takes double the time of PyTorch
to run inference as it takes a lot of time to set up the model
and infer from it. This is because of the complex architecture
of the framework whereas PyTorch is a relatively lighter
framework.

TensorFlow: 52.5s
PyTorch: 25.3s

Deployment: TensorFlow features easy deployment and has
natural libraries which port to other architectures like
mobile devices. Many applications have also been developed
on many platforms which showcase the ease and advantages
of having a TensorFlow deployment. However, PyTorch
being a relatively new framework does not support as many
libraries as TensorFlow does. We have showcased a REST
deployment model where the PyTorch model was exported
to a pickle file and was deployed on a web service Render.
PyTorch still has a long way to go with respect to
deployment to reach the standards TensorFlow has set.

TensorFlow: Direct inference from webcam live video feed
and as a deployed mobile application.
PyTorch: Deployed on Render web service.

4.2 Object Detection

4.2.1 YOLOv5 PyTorch

Reported Accuracy: This model featured the highest
accuracy over the other models. This can be attributed to its
mature backend framework and the improvements of Yolov5
over its predecessors. Accuracy is measured in terms of mAP
which is the Maximum a Posteriori or MAP for short. It is a
Bayesian-based approach to estimating distribution and
model parameters that best explain an observed dataset. The
mAP provides an alternate probability framework to
maximum likelihood estimation for machine learning. We
observed a mAP of 0.95 which was the highest achieved in
our experiments.

Training time: Although object detection algorithms take
longer to learn compared to image recognition frameworks,
this was one of the few algorithms along with the framework
which resulted in very low training times. The total training
time of Yolov5 Pytorch was just 21min 41s for 100 epochs.

Time for inference: Inference time was 6.11 seconds for 49
images which is faster than image recognition algorithms.
Also, this framework would be used in real-time scenarios
and hence is expected to have low inference times. Some of
the sample inference results are shown in Figure 7.

Fig-7: Yolov5 results

Training ease: Apart from data augmentation techniques,
low-level customization cannot be expected in training of
object detection algorithms. Different Tensorboard graphs
(Figure 8) offered a bird’s eye view of the training and a way
to stop and restart the training whenever required since the
training time was not high.

Fig-8: Yolov5 training graphs

Deployment: The only criteria where the Yolov4 performs
better than Yolov5 is the deployment. Since it is a relatively
new framework, there aren’t as many libraries built around
getting it deployed on different platforms. Hence, this is an
unexplored domain as of now but can be expected to pick up
quickly since the training time reduction and accuracy
increase was in multiples compared to Yolov4.

4.2.2 Yolov4 Darknet

Reported Accuracy: This model featured one of the highest
accuracies over all the other models. We observed a mAP of
0.993 which was the highest achieved till now in our
experiments. However, since for implementations we would
have to convert this to the Tflite representation, this would
result in a drop of accuracy and hence justifies the high
accuracy in the initial representation.

Training time: The total training time of Yolov4 Darknet
was 3h 16min 46s for ~1500 epochs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1970

Training Ease: The lack of graphs resulted in difficulty in
training. It was only possible to know how well the model is
performing through just the mAP value which was calculated
every 1000 epochs. Adding more dynamic graphs would help
in achieving more training ease.

Time for Inference: Inference time was 7min 14s for 40
images which are and should be faster than image
recognition algorithms. Sample inference results are shown
in Figure 9.

Fig-9: Yolov4 results

Deployment: The only criteria where Yolov4 outperforms
all the other algorithms is in a deployment where it can be
converted to a Yolov4 Tflite representation which can be
deployed on multiple platforms owing to its mobile nature
for a small drop in the accuracy. This is acceptable since this
would result in seamless deployment and hence no model
would have to be trained again for mobile deployment
specifically. Here we show deployment on a live webcam
feed (Figure 10).

Fig-10: Yolov4 deployment

5. Conclusion and future enhancements

Our intention was to capture the difference in frameworks
keeping the dataset constant to answer the question that
most newcomers to the machine learning domain have,
“PyTorch or TensorFlow or something else?”. Hence, the
article captures our efforts, experiments, and the
documentation that went behind trying to explore this
ourselves. Our motivation was to capture the mind of a
beginner in the field and to help them pick a framework

based on a series of metrics. This might have been achieved
with respect to TensorFlow and PyTorch but not including a
custom framework like Darknet which has many
implementations and is relatively new to the field. Also,
applying this to both image recognition and object detection
helped us capture the differences in the frameworks
available for different use cases. It required developing a
complex dataset that would suffice with minor changes for
both use cases. Hence, we were able to include metrics like
deployment which are usually ignored in comparison of
frameworks, typically only concerning performance. This
would serve as an efficient guide to cover an end-to-end
machine learning project, from preparing the dataset to
deploying the model on more than one platform.

Machine learning is a field known for not being kind to
novices. It either requires a complex understanding of math
or sometimes it is reduced to preparing the dataset and a
model is picked and trained on the dataset making it an
oversimplification. Capturing uncommon metrics and
offering a wide array of growth was what we intended to do.
A similar kind of study done on a more diverse dataset will
prove to be more helpful in making a choice of the algorithm
to be used. Also, introducing this technique to fields like NLP,
speech processing would open up Artificial Intelligence and
Machine Learning to a wide variety of audiences by making it
accessible to all domainss, thus making it a global
collaboration with contribution from all sectors.

REFERENCES

[1] Goldsborough, Peter. "A tour of tensorflow." arXiv

preprint arXiv:1610.01178 (2016).
[2] Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen et al.
"Pytorch: An imperative style, high-performance deep
learning library." arXiv preprint arXiv:1912.01703
(2019).

[3] Redmon, Joseph. "Darknet: Opensource neural networks
in c." (2013): 2021.

[4] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali
Farhadi. "You only look once: Unified, real-time object
detection." In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 779-788.
2016.

[5] Howard, Jeremy, and Sylvain Gugger. "Fastai: A layered
API for deep learning." Information 11, no. 2 (2020):
108.

[6] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei,
"ImageNet: A large-scale hierarchical image database,"
2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848

[7] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer
learning." IEEE Transactions on knowledge and data
engineering 22, no. 10 (2009): 1345-1359.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1971

[8] Simmons, Chance, and Mark A. Holliday. "A comparison
of two popular machine learning frameworks." Journal
of Computing Sciences in Colleges 35, no. 4 (2019): 20-
25.

[9] Hussain, Rida Ghafoor, Mustansar Ali Ghazanfar,
Muhammad Awais Azam, Usman Naeem, and Shafiq Ur
Rehman. "A performance comparison of machine
learning classification approaches for robust activity of
daily living recognition." Artificial Intelligence Review
52, no. 1 (2019): 357-379.

[10] C. Heghedus, A. Chakravorty and C. Rong, "Neural
Network Frameworks. Comparison on Public
Transportation Prediction," 2019 IEEE International
Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2019, pp. 842-849, doi:
10.1109/IPDPSW.2019.00138.

[11] Zoph, Barret, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin,
Jonathon Shlens, and Quoc V. Le. "Learning data
augmentation strategies for object detection." In
European Conference on Computer Vision, pp. 566-583.
Springer, Cham, 2020.

[12] Li, Guanqing, Zhiyong Song, and Qiang Fu. "A new
method of image detection for small datasets under the
framework of YOLO network." In 2018 IEEE 3rd
Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), pp. 1031-1035.
IEEE, 2018.

[13] Abramovich, Felix, and Marianna Pensky. "Classification
with many classes: challenges and pluses." Journal of
Multivariate Analysis 174 (2019): 104536.

[14] Redmon, Joseph, and Ali Farhadi. "YOLO9000: better,
faster, stronger." In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7263-
7271. 2017.

[15] Padilla, Rafael, Sergio L. Netto, and Eduardo AB da Silva.
"A survey on performance metrics for object-detection
algorithms." In 2020 International Conference on
Systems, Signals and Image Processing (IWSSIP), pp.
237-242. IEEE, 2020.

[16] Padilla, Rafael, Wesley L. Passos, Thadeu LB Dias, Sergio
L. Netto, and Eduardo AB da Silva. "A Comparative
Analysis of Object Detection Metrics with a Companion
Open-Source Toolkit." Electronics 10, no. 3 (2021): 279

[17] Mao, Huizi, Xiaodong Yang, and William J. Dally. "A delay
metric for video object detection: What average
precision fails to tell." In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 573-
582. 2019.

[18] Zou, Zhengxia, Zhenwei Shi, Yuhong Guo, and Jieping Ye.
"Object detection in 20 years: A survey." arXiv preprint
arXiv:1905.05055 (2019).

