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Abstract – The task of selecting the right image recognition 
and object detection framework for an application has become 
difficult with improvements in AI technologies as several 
frameworks are made available. Some frameworks perform 
better than others in terms of certain metrics. This article 
compares popular object detection and image recognition 
frameworks based on several metrics including accuracy 
metrics, efficiency metrics, training time, training ease, 
deployment ease and inference time. Conclusions about the 
behaviour and applicability of the frameworks have been 
made after comparing the training results on a dataset of 
Indian Currency Notes. 
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1. Introduction 
 
The visual system of humans is extremely fast and complex, 
allowing us to perform vision-based inference without any 
additional thought. This is possible due to the immensely 
complex networks of neurons in our brains which become 
capable of recognition, detection and localization of objects 
using just our visual input after being exposed to several 
examples of the objects. Neural networks are an attempt to 
replicate this behaviour of the human brain by building 
networks of neurons which become capable of human-like 
processing of inputs. Several frameworks, algorithms or 
techniques have been developed to aid in producing these 
results. With each method having its pros and cons, it 
becomes important to know the tradeoffs before selecting 
one for tackling a problem. Multiple factors have to be taken 
into consideration before proceeding with such a neural 
network method depending on the area of application, for 
example, to detect objects from a continuous video stream in 
real-time would require techniques that provide quick 
processing in exchange for some imperfections in 
localization.  
 
With advancements in hardware, processing times have 
drastically reduced - this allows for more accurate algorithms 
to be deployed in practice since the processing time for 
inference would vary only slightly. There is another factor 
that can sometimes influence the selection of a technique - 
the time required to train and deploy the neural network 
model used for inference. Given the same data to several 

algorithms, the time required per epoch and the number of 
epochs required to train the model varies for different 
techniques. This article details the comparative study made 
using popular object detection and image recognition 
frameworks to compare methods based on certain metrics 
and to examine the effect of variations in the dataset on 
performance metrics.   
 
Several popularly used frameworks like TensorFlow[1], 
PyTorch[2] and Darknet[3] exist for the purpose of object 
detection and image recognition, which can be used alongside 
many different algorithms to develop neural networks for the 
required purpose. The You Only Look Once(YOLO) approach 
to object detection moves away from the ideology of using 
classifiers to perform detection, instead, it frames the object 
detection problem as a regression problem to spatially 
separated bounding boxes and associated class 
probabilities[4]. Another popular library for training deep 
learning models (especially for image classification) is the 
Fast.ai library. This library sits on top of the PyTorch library 
and provides powerful functions that allow models to be 
trained and tested using just a few lines of code. It also allows 
lower-level access to programmers to perform minute tweaks 
easily [5]. 
 
The working of a neural network prompting it to detect an 
object or to recognize an image can be split into two stages - 
feature extraction and detection. During detection, initially, 
common features from various regions of the image are 
extracted using the starting layers of the neural network. 
These layers are usually large in comparison to the number of 
layers towards the end that are used to gather this feature 
information and perform the detection task. Extremely large 
datasets like ImageNet[6] are needed to train the neural 
networks to develop the ability to extract different features 
like gradient, texture, edges, etc. In the present day, almost no 
image recognition or object detection model is trained from 
scratch since several pre-trained models having excellently 
trained feature extraction layers are available. Only the layers 
closer to the output layer need to be trained to adapt these 
models to recognize newer objects, this method of training a 
model is known as transfer learning[7]. The biggest 
advantage of transfer learning is that despite having a smaller 
dataset, good results can be obtained as the number of layers 
that require training is significantly lesser than the total 
number of layers present in the network - the pre-trained 
layers can be retained for feature extraction.  
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2. Literature Review 

 
A comparison of TensorFlow and Pytorch was previously 
made by Simmons and Holliday using the publicly available 
set of Amazon reviews for video games. The binary 
classification was performed using sentiment analysis to 
classify the reviews as being positive or negative. They 
compared the training time, memory usage, and ease of use of 
the two frameworks in the same testing environment (on the 
same Google Colaboratory GPU instance)[8]. There are 
however some peculiarities that are exhibited based on the 
dataset as seen in the research of Hussain et al. where 
performance analysis of five machine learning algorithms 
(Naïve Bayes, Bayes Net, K-Nearest Neighbour, Multi-Layer 
Perceptron, and Support Vector Machine) for recognizing 
daily life activities was done. It was seen that some models 
did well to recognize some activities and failed to recognize 
other activities, different models better recognized different 
activities[9]. 
 
Another comparison between PyTorch and TensorFlow was 
performed by Heghedus et al. A comparison of the two 
frameworks was performed on traffic data obtained from 
various IoT sensors. It was seen that one model 
outperformed the other in some scenarios whereas the result 
was the opposite for a few other scenarios. It was observed in 
the results that some network configurations performed 
better on one framework than the other[10]. Google 
Research, Brain Team studied the impact of data 
augmentation on object detection[11] and demonstrated that 
data augmentation operations borrowed from image 
classification may be helpful for training detection models, 
but the improvement is limited.  Their experiments reported 
an improved accuracy on both COCO and PASCAL VOC 
datasets by an optimized data augmentation policy. This 
shows that augmentation to be applied is dependent on the 
dataset rather than the representation or the model that is 
being used. 
 
An improved method for training models when a small 
dataset is available was described by Li et al[12]. They 
described a process of sample enhancement and transfer 
learning for the YOLO method using their small dataset 
containing 363 images (296 training images and 67 test 
images) having playing cards of 6 different types. The results 
show that YOLO is fast and accurate, and that sample 
enhancement can improve detection performance. Contrary 
to Li et al.[12] Abramovich et al. [13] studied the accuracy of 
multiclass image classification in a high dimensional setting 
where the number of classes were large. An extremely 
counter-intuitive observation was made where the results 
indicated that the precision of classification can improve as a 
number of classes grow in a higher-dimensional setting.   
 
Redmond et al.[14] described both an improvement on the 
old YOLO - calling it the YOLOv2 and also a new technique 
named YOLO9000 in which joint training of data using both 

image classification and object detection datasets 
simultaneously allowed the training of YOLO9000 to be 
capable of recognizing more than 200 classes whilst having 
object detection annotations for only 44 classes. Padilla et 
al.[15] compared various available metrics for object 
detection and matched the metrics with the methods with 
which they are available. The study showed that not all 
metrics are available to be used with every approach readily 
and hence, proposed a standard implementation that can be 
used as a benchmark with minimum adaptation. The same 
authors continued their work [16] to produce an open-source 
toolkit that provides tools to compute metrics in a 
standardized manner, supporting all the popular annotation 
formats.  
 
NVIDIA research[17] suggests that to capture the temporal 
nature of the video, Average Precision metric is not sufficient. 
For real-time video analysis, the inference time matters and 
hence an average delay metric was proposed. The research 
also proposes that for detection activity, the corresponding 
delay must be taken into consideration. Zou et al.[18] 
surveyed 400+ research articles to produce a summary of 
object detection in the past 20 years. The authors detail how 
the object detectors got split into two major categories 
(single-stage and multi-stage detectors) around 2014. The 
study indicates that one of the great successes of the decade 
was RCNN, it changed the way object detection problems 
were approached - improved versions of this multi-stage 
detector were developed (viz. Fast RCNN and faster RCNN).  
 

3. Methodology 
 

3.1 Dataset 
 
We use a custom dataset of Indian currency notes 
(denominations 50, 100, 200, and 500) to perform the 
comparison. The dataset contained 490 images specifically 
selected and annotated for object detection purposes. It 
comprised of 50 images per class with just one object in the 
image and 90 images having multiple objects per image. Color 
and shape alone cannot be an indicator for the object, to 
ensure that this is not the case we included several objects 
that were not currency notes but resembled them in terms of 
shape and color. The notes were classified into 8 classes - a 
back and a front class each for the 4 denominations. This base 
dataset is then used to produce a dataset that is 3 times larger 
by using augmentation techniques like image rotation, skew 
and perspective warping. Care was taken that several images 
of notes of the same or similar color but of different 
currencies were added to the test set. This was to ensure that 
the models were able to pick up on the features of the notes 
and were not just relying on broad color patterns. In almost 
all the images, the notes are completely visible and are 
oriented without rotation relative to the camera frame - this 
was to ensure that folded/tilted notes in the background 
would not be recognized. The dataset used for training the 
models was a custom-created dataset of new Indian Currency 
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notes. This dataset was normalized to 2000x2000 pixel 
dimension and then passed through several augmentation 
stages of auto orientation, 90-degree rotations, slight object 
tilts of -7 to +7 degrees, and brightness changes. This yielded 
a dataset that was 3 times larger than the original raw 
dataset. 
 

3.2 Metrics 
 
We considered accuracy, training time, training ease, 
inference time and deployment ease as metrics of interest. 
Accuracy, Training time, Inference time are performance-
based metrics whereas training ease and deployment ease 
showcase the versatility and ease of understanding and 
using the frameworks. 
 

3.3 Environment 
 
All the below-mentioned models were trained using Google 
Colaboratory GPU instances. 
 

3.4 Image Classification 
 
TensorFlow and PyTorch frameworks for image classification 
were used to train models. These models were then evaluated 
using the above-mentioned metrics. PyTorch was evaluated 
by using the Fast.ai library which uses PyTorch under the 
hood. 
 

3.5 Object Detection 
 
For object detection, the trending YOLOv4-Darknet, YOLOv5-
PyTorch were compared. Additionally, YOLOv4 darknet 
weights were converted to TensorFlow weights and then 
converted to TensorFlow Lite format which can be directly 
deployed on a mobile device. The parameters and other 
configurations were tuned as per requirement and the 
models were trained. TensorFlow library was used for 
TensorFlow image recognition, the custom framework, 
Darknet[19],  was built from source for YOLO v4 object 
detection, YOLO v5[20] repository was cloned and Fast.ai 
library was used for image recognition. Tensorboard was 
used to evaluate the various metrics like mAP, precision, 
recall, and box accuracy for object detection. Training and 
Inference times were measured using a built-in command in 
Google Colab.  
 

3.6 Validation methodology 
 
During training, the models were provided with a validation 
set which was a tenth of the size of the training set. 
Additionally, a tenth of the set was retained for testing and 
was never shown to the model during training. The testing of 
the model was done automatically by using the trained 
models to infer/predict the denomination and the side 
(front/back) of the currency. The prediction results were 

verified manually to ensure that the expected predictions are 
being made w.r.t the bounding boxes. The metrics were 
automatically analyzed using Tensorboard and compared for 
the different models. Additionally, inference time for a set of 
40 images was also measured for each model. 
The complete flow has been summarized as a workflow 
diagram in Figure 1. 

 

 
Fig-1: Workflow diagram 

 

4. Results and Analysis 
 
Our comparison will be applicable to all areas where objects 
belonging to a few classes have to be detected and in case of 
using the object detection algorithms and 
detection/recognition applications where detection time is a 
key factor like counting the number of eggs and larvae from a 
photograph of a worm's nest or counting the number of 
different types of cells in a medical close up image, also 
applications where the dataset available is not large enough 
to attempt a full-fledged deep learning algorithm without 
transfer learning. In the below paragraphs we see the results 
of our experiments on object detection and image 
recognition.  

 
4.1 Image Recognition 
 
For image recognition, we picked the same architecture 
ResNet50 for both frameworks with ReLU activation function 
and Softmax in the last layer. This was done so as to have a 
consistent architecture to compare both frameworks 
effectively. Also, doing so allowed us to focus on any dataset 
issues or discrepancies.  

 
Reported Accuracy:  TensorFlow has better validation 
accuracy (Figure 3) than PyTorch but performs poorer on 
the test dataset (Figure 4), this is because of overfitting of 
data which can be attributed to lack of training 
customization. However, with respect to PyTorch we see 
much better performance on the test dataset also. 
 
TensorFlow:  
Validation: 100%  
Test: 10/38 = 27% 
PyTorch:  
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Validation: 1/94 = 98.93%  
Test: 72.91% 
 

 
Fig-2: PyTorch confusion matrix  

 

 
Fig-3: TensorFlow confusion matrix 

 

 
Fig-4: TensorFlow test results 

 
Training Time: PyTorch took more time to train as it can be 
customized and the method of training involves selecting the 
range between which the learning rate is chosen. This also 
resulted in higher accuracy as can be seen above (Figure 2). 

This is known as the CLR (Cyclical Learning Rate) method 
(Figure 6). 

 
TensorFlow: 2min 36s 
PyTorch: 6min 36s 
 
Training Ease: 
TensorFlow: TensorFlow does not offer much 
customization (Figure 5) with respect to training apart from 
data augmentation techniques and the number of epochs, 
that PyTorch also offers. Hence, the training time of 
TensorFlow is lower compared to that of PyTorch. 
 

 
Fig-5: TensorFlow training  

 
PyTorch: PyTorch can be customized as highlighted above 
(refer Figure 6). PyTorch also allows a range of data 
augmentation techniques to be applied to the data and 
modifications in the number of epochs. Overall, PyTorch is 
the most customizable framework available and this can be 
attributed to the history and the purpose behind developing 
PyTorch.  

 
Fig-6: PyTorch training 

  
Time for Inference (for 40 images): The time taken to load 
the model and run inference on a batch of 40 images is 
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detailed here. TensorFlow takes double the time of PyTorch 
to run inference as it takes a lot of time to set up the model 
and infer from it. This is because of the complex architecture 
of the framework whereas PyTorch is a relatively lighter 
framework. 

 
TensorFlow: 52.5s 
PyTorch: 25.3s 
 
Deployment: TensorFlow features easy deployment and has 
natural libraries which port to other architectures like 
mobile devices. Many applications have also been developed 
on many platforms which showcase the ease and advantages 
of having a TensorFlow deployment. However, PyTorch 
being a relatively new framework does not support as many 
libraries as TensorFlow does. We have showcased a REST 
deployment model where the PyTorch model was exported 
to a pickle file and was deployed on a web service Render. 
PyTorch still has a long way to go with respect to 
deployment to reach the standards TensorFlow has set. 

 
TensorFlow: Direct inference from webcam live video feed 
and as a deployed mobile application. 
PyTorch: Deployed on Render web service. 

 
4.2 Object Detection 
 
4.2.1 YOLOv5 PyTorch 

 
Reported Accuracy: This model featured the highest 
accuracy over the other models. This can be attributed to its 
mature backend framework and the improvements of Yolov5 
over its predecessors. Accuracy is measured in terms of mAP 
which is the Maximum a Posteriori or MAP for short. It is a 
Bayesian-based approach to estimating distribution and 
model parameters that best explain an observed dataset. The 
mAP provides an alternate probability framework to 
maximum likelihood estimation for machine learning. We 
observed a mAP of 0.95 which was the highest achieved in 
our experiments.  
 
Training time: Although object detection algorithms take 
longer to learn compared to image recognition frameworks, 
this was one of the few algorithms along with the framework 
which resulted in very low training times. The total training 
time of Yolov5 Pytorch was just 21min 41s for 100 epochs. 
 
Time for inference: Inference time was 6.11 seconds for 49 
images which is faster than image recognition algorithms. 
Also, this framework would be used in real-time scenarios 
and hence is expected to have low inference times. Some of 
the sample inference results are shown in Figure 7. 
 

 
Fig-7: Yolov5 results 

 
Training ease: Apart from data augmentation techniques, 
low-level customization cannot be expected in training of 
object detection algorithms.  Different Tensorboard graphs 
(Figure 8) offered a bird’s eye view of the training and a way 
to stop and restart the training whenever required since the 
training time was not high.  

 

 
Fig-8: Yolov5 training graphs  

 
Deployment: The only criteria where the Yolov4 performs 
better than Yolov5 is the deployment. Since it is a relatively 
new framework, there aren’t as many libraries built around 
getting it deployed on different platforms. Hence, this is an 
unexplored domain as of now but can be expected to pick up 
quickly since the training time reduction and accuracy 
increase was in multiples compared to Yolov4.  
 
4.2.2 Yolov4 Darknet 

 
Reported Accuracy: This model featured one of the highest 
accuracies over all the other models. We observed a mAP of 
0.993 which was the highest achieved till now in our 
experiments. However, since for implementations we would 
have to convert this to the Tflite representation, this would 
result in a drop of accuracy and hence justifies the high 
accuracy in the initial representation. 
 
Training time: The total training time of Yolov4 Darknet 
was 3h 16min 46s for ~1500 epochs. 
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Training Ease: The lack of graphs resulted in difficulty in 
training. It was only possible to know how well the model is 
performing through just the mAP value which was calculated 
every 1000 epochs. Adding more dynamic graphs would help 
in achieving more training ease. 
 
Time for Inference: Inference time was 7min 14s for 40 
images which are and should be faster than image 
recognition algorithms.  Sample inference results are shown 
in Figure 9. 
 

  
Fig-9: Yolov4 results 

Deployment: The only criteria where Yolov4 outperforms 
all the other algorithms is in a deployment where it can be 
converted to a Yolov4 Tflite representation which can be 
deployed on multiple platforms owing to its mobile nature 
for a small drop in the accuracy. This is acceptable since this 
would result in seamless deployment and hence no model 
would have to be trained again for mobile deployment 
specifically. Here we show deployment on a live webcam 
feed (Figure 10). 
 

   
Fig-10: Yolov4 deployment 

 
5. Conclusion and future enhancements 
 
Our intention was to capture the difference in frameworks 
keeping the dataset constant to answer the question that 
most newcomers to the machine learning domain have, 
“PyTorch or TensorFlow or something else?”. Hence, the 
article captures our efforts, experiments, and the 
documentation that went behind trying to explore this 
ourselves. Our motivation was to capture the mind of a 
beginner in the field and to help them pick a framework 

based on a series of metrics. This might have been achieved 
with respect to TensorFlow and PyTorch but not including a 
custom framework like Darknet which has many 
implementations and is relatively new to the field. Also, 
applying this to both image recognition and object detection 
helped us capture the differences in the frameworks 
available for different use cases. It required developing a 
complex dataset that would suffice with minor changes for 
both use cases. Hence, we were able to include metrics like 
deployment which are usually ignored in comparison of 
frameworks, typically only concerning performance. This 
would serve as an efficient guide to cover an end-to-end 
machine learning project, from preparing the dataset to 
deploying the model on more than one platform.  
 
Machine learning is a field known for not being kind to 
novices. It either requires a complex understanding of math 
or sometimes it is reduced to preparing the dataset and a 
model is picked and trained on the dataset making it an 
oversimplification. Capturing uncommon metrics and 
offering a wide array of growth was what we intended to do. 
A similar kind of study done on a more diverse dataset will 
prove to be more helpful in making a choice of the algorithm 
to be used. Also, introducing this technique to fields like NLP, 
speech processing would open up Artificial Intelligence and 
Machine Learning to a wide variety of audiences by making it 
accessible to all domainss, thus making it a global 
collaboration with contribution from all sectors. 
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