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Abstract - Generative Adversarial Networks have produced considerable enthusiasm in the field of Artificial Intelligence 

owing to their ability to generate new data. Among the plethora of applications, GANs are commonly utilised for apparel 

designing in the fashion sector. GANs can be seen in artistic circumstances working as creative helpers to designers, creating 

distinctive items with realistic, attractive, and/or considerate traits. GANs are generative models that use 2 neural networks, a 

generator and a discriminator that compete with each other. While the generator is responsible for generating realistic data, 

the discriminator tries to identify whether the data is made artificially. They use existing data, in this case, images of clothing 

to generate new plausible images of apparels. The generators pretend to be designers while the discriminators act as design 

judges. Three distinct GANs are implemented and compared in this study. GANs (Generative Adversarial Networks), DCGAN 

(Deep Convolutional Generative Adversarial Network), and Capsule Network GAN (CapsNet GAN) with capsule network in 

discriminator are the three types. 
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1. INTRODUCTION 

In machine learning, generative modelling is an unsupervised learning job that entails automatically detecting 
and learning regularities or patterns in input data so that the model may be used to produce or output new 
examples that could have been drawn from the original dataset. Generative Adversarial Networks are part of 
the generative model family. It implies that they have the ability to create/generate new stuff. GANs, in general, 
are a model architecture for training a generative model, and deep learning models are most commonly used in  

 

 
      Fig 1: The structures of GANs used in this paper. (a) is GAN, using MLP (b) is DCGAN, using CNN and (c) is CapNetGAN, 

using capsule network in discriminator and CNN in generator 

 

this architecture. They are an ingenious way of training a generative model by framing the problem as a 
supervised learning problem with two sub-models: the generator model, which we train to generate new 
examples, and the discriminator model, which attempts to classify examples as either real (from the domain) or 
fake (generated). The two models are trained in an adversarial zero-sum game until the discriminator model is 
tricked around half of the time, indicating that the generator model is creating credible examples. GAN's 
generator/discriminator models usually use Convolutional Neural Networks or CNNs with the picture data. 
This can be attributed both to the first description of the technique in computer vision and the use of CNNs and 
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image data and to the remarkable progress made with CNNs more generally over the last years in achieving 
state-of-the-art results in a number of computer vision tasks, such as object detection and facial recognition. 

GANs are an exciting and rapidly changing field that fulfils the promise of generative models by generating 
realistic examples across a wide range of problem domains, most notably in image-to-image translation tasks, 
and in generating realistic photos of objects, scenes, and people that even humans cannot tell are fake. In 
particular to the fashion industry, Artificial intelligence has recently been incorporated  to provide new 
services, and research into combining fashion design and AI is ongoing. In the fashion business, generative 
adversarial networks that synthesis realistic-looking images have been widely used. The increasing diversity of 
customer wants, strong worldwide competition, and decreasing time-to-market (a.k.a. “fast fashion") all add to 
the designers' struggle. Recent advancements in deep generative models have opened up new avenues for 
designers to overcome cognitive barriers by automating the development and/or editing of design concepts. 

Ian Goodfellow et al.[1] first proposed GANs in 2014, and this issue has since opened up a new area of research. 
Within a few years, the scientific community produced a plethora of publications on this subject, some of which 
had quite intriguing titles. This paper compares three such GAN networks namely Generative Adversarial 
Networks or GANs(Goodfellow et al., 2014)[1] , Deep Convolutional Generative Adversarial Network or 
DCGAN(Radford et al., 2015)[2] and Capsule Network GAN(CapsNet GAN)(Jaiswal et al., 2018)[32] for apparel 
image production using the Fashion-MNIST dataset. 
 
2. GENERATIVE ADVERSARIAL NETWORK 

As proposed by Goodfellow et al.[1], GAN is made up of two separate networks: a Generator and a 
Discriminator. This generator creates false data samples and tries to mislead the discriminator. On the other 
hand, the Discriminator seeks to differentiate between true and fraudulent specimens. The generator and the 
discriminator are multilayer perceptrons, both of which compete in the training phase. The stages are 
performed multiple times and, after each repetition, the generator and the discrimination officer improve and 
improve in their respective roles. 
 
While the Generator is generates synthetic samples given random noise [selected from a latent space], the 
Discriminator is a binary classifier that distinguishes between whether the input sample is real [output a scalar 
value 1] or fake [output a scalar value 0]. The Discriminator aspires to be the best at what it does. When the 
Discriminator is given a synthetic sample [created by the Generator], it wants to call it out as fake, while the 
Generator wants to create samples in such a way that the Discriminator calls it out as real. In a way, the 
Generator is attempting to deceive the Discriminator. The Generator and the Discriminator are antagonistic in  
this formulation, which adds to its beauty. 
 
2.1. Training Process 

Detailed GAN training as proposed by Goodfellow et al.[1] is as follows, 
 
1. We take some noise from a random distribution and feed it to the Generator G to generate the false x 
2. Discriminator D is fed with both fake and real data alternatively 
3. The discriminator D calculates loss for both real and fake data and adds them up to compute final loss 

Dloss 
4. Since each network has a different objective function, the generator G calculates the loss from it’s noise 

as Gloss 
5. These two losses are back-propagated to their respective networks to learn from and adjust the 

parameters according to the loss 
6. An optimization algorithm is applied and this process is repeated for a number of epochs until a 

satisfactory result is obtained. 
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Before calculating the final loss, the discriminator network runs twice (once for real, once for fake), whereas 
the generator simply runs once. We calculate the gradients based on their parameters and back propagate 
across their networks independently after we have these two losses. The generator G becomes better and 
better at producing realistic results, while the discriminator D gets better and better at determining which ones 
are real and which are counterfeit. The model should produce high real data probabilities and low fake data 
probability (generator's output). 
 

 

 
 

Fig 2: Overview of GAN Architecture 

 
2.2. Objective Function 

The Discriminator function is denoted by the letter D, while the Generator function is denoted by the letter G.  
The following are the functions and variables defined by Goodfellow et al.[1] : 
 
1. z - Noise vector 
2. G(z) - Generator’s output 
3. x - training sample 
4. D(x) - Discriminator’s output for real data 
5. D(G(z)) - Discriminator’s output for generated fake data  
6. Pz - probability distribution of the latent space(usually a random Gaussian distribution) 
7. Pdata - the probability distribution of the training dataset 
 
The functions D(x) and D(G(x)) produce score between 0 and 1. G(z) produces data of the same shape as that of 
the real input data but with noise. The aim is to build a discriminator model that maximises the real data and 
minimises the fake data. The generator model built should maximise the fake data. Thus, at the Discriminator D, 
D(x) should be maximised and D(G(z)) should be minimised and at the Generator G, D(G(z)) should be  
 
 
maximised. The Discriminator wishes to reduce the probability of D(G(z)) to zero. As a result, it seeks to 
maximise (1-D(G(z))), whereas the Generator seeks to force the probability of D(G(z)) to 1 such that the 
Discriminator makes an error in identifying a generated sample as real. As a result, Generator wishes to 
minimise (1-D(G(z)). Figure  gives the objective function of GAN.  
 

 
 

Fig 3: Objective Function of GAN 
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Fig 4: A snippet from Ian et al.’s 2014 paper[1] 

 
3. DEEP CONVOLUTIONAL GAN 

DCGAN was proposed by Radford and other co-authors in 2015[2]. This was not the first time a group of 
academics attempted to employ Convolutional Networks in GANs, but it was the first time they were successful 
in combining them into a full-scale GAN model. DCGAN is a GAN architecture extension that uses deep 
convolutional neural networks for both the generator and discriminator models, as well as model and training 
configurations that result in robust training of a generator model. DCGAN is significant because it proposed the 
model restrictions needed to effectively create high-quality generator models in practise. In turn, this 
architecture served as the foundation for the quick creation of a huge number of GAN extensions and 
applications. 
 
3.1. Architecture 

The key component of the DCGAN model is to replace the fully connected layers in the generator 
with convolutional layers. Radford et al.[2] established a family of architectures in his paper after significant 
model exploration that resulted in robust training across a range of datasets and enabled for training better 
resolution and deeper generative models.  
 
The writers of the original paper[2] mention three sources of inspiration in building this architecture.  
1. Spatial downsampling convolutions can be used to replace pooling operations 
2. Fully connected layers after convolutions can be eliminated 
3. Normalisation activations can help gradient flow 
 
The following are the architecture guidelines for stable Deep Convolutional GANs:  
 
1. Strided convolutions (discriminator) and fractional-strided convolutions (generator) should be used in 

place of any other pooling layers   
2. Batch normalisation should be used in both the generator and the discriminator  
3. For deeper architecture, fully connected hidden layers should be removed. 
4. In the generator, employ ReLU activation for all layers except for Tanh in output  (Since images are 

normalised between [-1, 1] rather than [0, 1], Tanh is preferred to sigmoid.) 
5. For all layers, use LeakyReLU activation in the discriminator 
 
Many modern GAN literature has now been elaborated on these architectural standards. The structure's other 
fundamental is, the first layer of  DCGAN, which accepts a uniform noise distribution Z as input, might be 
referred to as fully connected network because it is simply a matrix multiplication, and the result is then 
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formed into a 4-dimensional tensor and utilised as the start of the convolution stack. The final convolution 
layer is flattened and fed into a single sigmoid output for the discriminator. 

 
Fig 5: DCGAN architecture used by Radford et al.[2] to generate 64x64 RGB bedroom images from the LSUN dataset 

 
More information on the network's parameters and training are as follows:  
 
1. Other than scaling to the range of the tanh activation function [-1,1], no pre-processing is required for the 

training images 
 
2. All models were trained using 128-batch mini-batch stochastic gradient descent (SGD) 
 
3. All weights were drawn from a zero-centered Normal distribution with a standard deviation of 0.02 
 
4. In all models of the LeakyReLU, the slope of the leak was adjusted at 0.2 
 
5. Previously, momentum was employed to accelerate training; however, this paper used the Adam 

optimiser with customised hyperparameters. The learning rate has been set to 0.0002  
 
6. Set beta1 to 0.5 for the momentum term 
 
3.2. Unsupervised Representation and Feature Extraction 

Many applications for GANs have been investigated, and much of the research is focused on improving image 
synthesis quality. Because they require class labels for conditioning, many of the methods for attaining high-
quality picture synthesis are truly supervised learning techniques. 
 
The fundamental idea is to use the discriminator's characteristics as a feature extractor for a classification 
model. Radford et al.[2], in particular, investigated the use of unsupervised GAN feature extractors in 
conjunction with an L2 + SVM classification model. The SVM model employs a high-dimensional hyperplane 
and a loss function that seeks to optimise inter-class distance based on the margin between nearest points in 
each class. The SVM model is an excellent classifier, but it's not a feature extractor, and using it on images as 
they are will result in a huge number of local minima, effectively rendering the problem intractable. As a result, 
the DCGAN acts as a feature extractor, reducing the dimensionality of the images while maintaining semantics, 
allowing an SVM to develop a discriminative model.  
 
3.3. Overfitting 

The paper[2] discusses about GAN overfitting. In the context of supervised learning, overfitting is extremely 
intuitive. The highly parametric model adapts itself to match the training data accurately and without error. 
When we take a step back from the statistics of the bias-variance tradeoff, we may think of overfitting as the 
model's generalisability, or how well it performs on training data versus testing data. Looking at this idea in the 
context of DCGANs, the generator's objective is to generate data that the discriminator predicts as 'real’, that is, 
data that closely resembles the training dataset. The generator appears to be the most successful if it rejects 
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any attempt to add stochastic variations to data points and simply duplicates the training data exactly. The 
paper[2] proposed three intriguing techniques for demonstrating that the DCGAN model is not performing this 
function. 
 
1. Models that learn quickly and generalise effectively, referred to as heuristic approximations 
 
2. Collisions between auto-encoder hashes(To examine how similar the low-dimensional representations 

are after a trained auto-encoder has encoded both generated and original data) 
 
3. Latent Space Smoothness (sharp transitions = overfitting) 

 
3.4. Visualisation of Features 

Previous researches has shown that supervised CNN training on big image datasets yields extremely powerful 
learned features. Object detectors are also learned by supervised CNNs trained on scene classification. The 
researchers, in the paper[2], showed that an unsupervised DCGAN trained on a large image dataset(LSUN 
bedroom dataset) may learn a hierarchy of useful features. It is demonstrated through guided back-
propagation that the discriminator's learnt features activate on typical aspects of a bedroom, such as beds and 
windows. 

3.5. Latent Space Interpolation 

 Latent Space interpolation allows for control of the generator. With their generated photos, Radford et al.[2] 
investigates this interpolation. One intriguing aspect of the latent space interpolation addressed in this study is 
that the Z vectors of individual points are not used. They instead demonstrated that averaging the Z vector 
created for three cases produced consistently reliable generations that obeyed linear arithmetic conceptually. 
Including object manipulation and facial expressions. 

To create a smiling male image, for example, they do not just take the Z vector of one smiling lady, subtract the 
Z vector of one neutral woman, and then add the Z vector of one neutral guy, as shown in Figure 7. Rather, they 
pick the average Z vector of a set of created images with exterior attributes such as ‘smiling woman’, as shown 
in Figure 8. 

This is one of the first instances that fully unsupervised models can learn to model object properties such as 
scale, rotation, and position convincingly. 
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Fig 6: The following is how feature visualisation in CNNs is accomplished. Gradient descent is used to train a generator 
network to produce a picture with the highest activation from a given feature.  

 
Radford et al.[2] put this to the test with their discriminator model on the LSUN  bedroom dataset and presented the image 

above 
 

 

 
 

Fig 7: Image from the original paper[2] where the Z vector of one smiling woman is subtracted 
from the Z vector of one neutral woman and then is 

added to the Z vector of one neutral man to achieve a 
smiling man image 
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Fig 8: Image from the original paper[2] where they take the average Z vector of a series of generated images that display 
the external characteristics such as ‘smiling woman’ 

 

 
 

Fig 9: Classification results of DCGAN implemented by Radford et al. [2] that is pre-trained on Imagenet-1k and the 
features are used to classify CIFAR-10 images 

 

 
4. CAPSULE NETWORKS 

Geoffrey Hinton and his research team invented capsule networks (CapsNets)[8]. It is a machine learning 
approach that attempts to more precisely simulate biological neuron architecture using artificial neural 
networks. It was released in 2017. The research offered a completely new notion, one that did not follow the 
typical layered structure of neural networks, but instead took a different approach to the problem. Sabour et 
al.[8] proposed that a typical CNN be enhanced by adding capsule structures and reusing the output from 
several of these capsules to generate more stable representations for higher capsules in the network.  

 
4.1. Capsule 

Hinton introduced capsules in his paper on Transforming Auto-encoders[7]. A capsule is a group of neurons 
that each activate for different aspects of an item, such as position, colour, and size. The length of the vector 
obtained from the capsule's output can be used to measure the entity's presence in a certain input, while the 
vector's orientation can be used to quantify the capsule's attributes. Capsules, unlike artificial neurons, are self-
contained in nature. This means that when numerous capsules agree, the chances of a correct identification 
increase dramatically. Capsules are a type of artificial neural layer that allows you to store all of the essential 
and required information about the state of the features as a vector. Each capsule, according to Hinton and his 
team, performs complex internal computations on its input before encapsulating the result into a small vector 
of highly informative output. This is far superior to artificial neurons, which display the end results of 
computations using a single scalar output. 
 
4.2. Drawbacks of CNN 

CNNs are credited with giving computers the ability to decipher and analyse images. CNNs, however, have some 
restrictions. The convolutional layer is the most important aspect of a CNN. It looks for essential features in an 
image's pixels. Deeper layers in the network would detect simpler characteristics (such as edges and contours) 
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than higher layers, which would combine these simpler features to detect more complex features and produce 
classification predictions.Conventional CNNs have a key flaw, they don't usually take into account spatial  
distances between features when predicting features and classifying images. For example, in the case of a 
digitally manipulated image in which the components of a face (eyes, nose, mouth) are jumbled together(Figure 
10), the presence of these elements provides sufficient proof that there is a face present in the image for a CNN. 
It makes no difference whether the mouth is above or below the eyes. Faces would be detected because the 
higher layers would detect the traits related to the faces on which they were trained.The cause of this issue is 
Max pooling. While max pooling is an approach that helps CNNs perform amazingly effectively, it also causes 
the loss of essential information such as the pose link between higher-level features.In short, the layers in a 
CNN do not account for the key spatial hierarchies between image detected features. In the above example, the 
simple presence of eyes and a mouth should not be sufficient to detect a face. The neural network should also 
be able to determine whether and how these features are orientated in relation to one another. 
 

 
Fig 10: In both of the above images, a CNN would detect faces 

4.3. Capsule Network Architecture 

The capsule network defined by the authors in the paper[8] is separated into two major components: Encoder 
and Decoder. The encoder is associated with three major layers. They are summarized below: 
 
1. Convolutional Layer: The primary function of this layer is to detect basic features in a two-dimensional 

image. The convolutional layer in CapsNet has 256 kernels of size 9x9x1 and a stride of 1. 
 
2. PrimaryCaps Layer: This layer contains the primary capsules (which give the network its name) whose 

function it is to take the outputs of the convolutional layer's detected features and produce combinations 
of the input features. The layer contains 32 'primary capsules,' each of which generates an output tensor 
with the shape 6x6x8. This layer's ultimate output has the dimensions 6x6x8x32 (since there are 32 
capsules). 

 
3. DigitCaps Layer: There are ten capsules in this layer, one for each digit. ( This is unique to this network 

because it was trained on the MNIST  
 
4. dataset, which requires an output probability for ten classes.) Each capsule receives 6x6x8x32 shape 

vector and delivers a 16x10 matrix to the decoder. 
 

 
Fig 11: CapsNet Encoder Architecture by Sabour et al. [8] 
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Fig 12: CapsNet Decoder Architecture by Sabour et al.[8] 
 

The CapsNet decoder consists of three fully-connected layers (FCs) that train to decode a 16-dimensional input 
from the DigitCaps layer. The image replicated in the paper is 28x28 pixels in size. 

 
4.4. Dynamic Routing Algorithm 

It is a unique algorithm that is used to train a capsule network to perform the way it does. The primary idea 
behind the algorithm is best expressed as it's given in the paper[8]: Lower level capsule will send its input to 
the higher level capsule that “agrees” with its input. This is the essence of the dynamic routing algorithm. 
Because the output of a capsule is a vector, a strong dynamic routing technique may be used to ensure that the 
output of each capsule is sent to a specified and appropriate parent in the layer above it. The process is 
comparable to classic training approaches in that higher-level capsules cover bigger areas of the image. 
However, it ignores the max pooling phase, which, as previously stated, is linked with CNN training. Dynamic 
routing does not discard information about the entity's precise location within the region. The location 
information for capsules in the bottom level of the hierarchy is place-coded based on which capsule is active at 
any given time. As we progress up the network, more and more information begins to be rate-coded in the 
magnitude component of the output vector of the capsule. Figure 13 is a line-by-line description of the 
algorithm from the paper[8]. In a lower-level layer, a capsule i must determine how to send its output  
vector to higher-level capsules j. It makes a decision by adjusting the scalar weight c[ij], which multiplies its 
output vector and is then treated as input to a capsule higher up in the hierarchy. 
 
1. The procedure's first line takes all existing capsules at a lower level l and their outputs u, as well as the 

number of routing iterations r specified by the user. The last line implies that the operation would yield 
the output of a capsule located above in the network's hierarchy, v[j]. This approach is similar to the 
forward pass of a traditional neural network. 

 
2. The second line declares a coefficient b[ij], which is a temporary value that is updated iteratively and 

saved in c[ij] after the method is completed. At the start of the procedure, it is set to zero. 
 
3. The third line indicates that lines 4–7 will be iterated for r times. 
 
4. The fourth line computes the vector c[i], which contains all of the weights for the lower-level capsule i. 

This is then repeated for all lower level capsules. Softmax is employed to ensure that each captured 
weight c[ij] is non-negative and that the sum of all weights finally equals one. 

 
5. Step five creates a linearly connected combination of all obtained input vectors after the weights for all 

lower level capsules have been determined. The routing coefficient c[ij] computed in the previous phase 
is used to weight each input vector. 

 
6. The sixth line explains the vectors that are passed via the squash non-linearity, which ensures that the 

vector's direction component is preserved but that its length is limited to one. 
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Fig 13: Dynamic Routing Algorithm by Sabour et al.[8] 
 

5. CAPSULE NETWORK GAN 

GANs have mostly been used to simulate the distribution of picture data and related characteristics, as well as 
for other image-based applications such as image-to-image translation and image synthesis from textual 
descriptions. Conventionally, the generator and discriminator are built using deep CNNs following the DCGAN 
criteria. Jaiswal et al.[32] have designed the CapsNet GAN generator as a deep CNN using this concept. CapsNet 
discriminator, on the other hand, is designed using capsule-layers instead of convolutional layers because of 
the stronger intuition behind and higher performance of CapsNet networks compared to CNNs. The model is 
essentially made up of a DCGAN with a built-in Capsule Architecture in the Discriminator, which houses a 
classification function for identifying real and false labels for supplied images, and an unaltered Generator 
component(DCGAN generator architecture). The CapsNet GAN discriminator is architecturally similar to the 
CapsNet model proposed by Sabour et al. 
 
CapsNets contain a high number of parameters in general because, first, each capsule generates a vector output 
rather than a single scalar and, second, each capsule includes extra parameters connected with all the capsules 
in the layer above it that are used to forecast their outputs. The number of parameters in the CapsuleGAN 
discriminator must be kept low for two reasons: (1) CapsNets are powerful models that can easily begin 
harshly penalising the generator early in the training process, causing the generator to fail completely or suffer 
from mode collapse, and (2) current implementations of the dynamic routing algorithm are slow. It is worth  
noting that the first rationale for keeping the number of parameters of the CapsNet modest is consistent with 
the typical design of convolutional discriminators as relatively shallow neural networks with a few number of 
relatively large-sized filters in their convolutional layers. The CapsuleGAN discriminator's final layer comprises 
a single capsule, the length of which reflects the likelihood that the discriminator's input is real or artificial. The 
Discriminator network is built on the capsule network architecture presented by Sabour et al.[8] in Figure 11. 
 
Jaiswal et al.[32] trained the CapsuleGAN model using margin loss LM rather of the traditional binary cross-
entropy loss since LM performs better for training CapsNets. As a result, the goal of CapsuleGAN 
is formulated as illustrated in Figure 14. Jaiswal et al.[32] trained the generator to minimise LM(D(G(z)), T = 1) 
rather than —LM (D(G(z)), T = 0). This effectively removed the down-weighting influence λ in LM while 
training the generator, which contains no capsules. 
 

 
 

Fig 14: Formulated objective of CapNetGAN 

 
6. DATASET 

For the experiments, the Fashion-MNIST dataset was utilized, which is a new standard dataset used in 
computer vision and deep learning. The Fashion-MNIST dataset includes 60,000 training (and 10,000 test) 
28×28 pixel images of fashion and apparel items from 10 classes. The images are grayscale with a black 
background(0 pixel value) and the apparel images in white(pixel values near 255). This means if the images 
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were plotted, they would be mostly black with a white digit in the middle. Zalando developed Fashion-MNIST 
as a suitable alternative for the MNIST collection of handwritten digits.  

6.1. Loading and Preparing the Dataset 

Keras provides access to the Fashion-MNIST dataset. The images are 2D arrays of pixels, whereas convolutional 
neural networks require 3D arrays of images with one or more channels as input. The images are updated to 
have an additional dimension for the grayscale channel. Finally, the input values between [0, 255] will be 
normalised between -1 and 1. This implies that the value 0 will be mapped to -1, the value 255 to 1, and all 
values in between will be assigned a value in the range [-1, 1]. 
 

 
Fig 15: Class Labels and Images from the Fashion-MNIST Dataset 

 

7. METHODOLOGY 

To create the generated or fake samples of apparels, a batch of random points from the latent space is  
chosen to be used as input to the generator model. Then, as the real samples, a batch of samples from the 
training dataset is chosen to be fed into the discriminator. The discriminator model then generates 
predictions(probabilities) for the actual and fake samples, and the discriminator's weights are updated 
according to how accurate or inaccurate the predictions are. The model will be updated in batches, specifically 
with a collection of real examples and a collection of generated samples. In this study, I have implemented three 
distinct forms of GAN: Vanilla GAN, DCGAN, and CapNet GAN, utilising the Keras library on top of TensorFlow, 
and I have thoroughly explained my experimental settings here. 
 
7.1. GAN Structure 

The discriminator network will accept a flattened image as input and return the probability of it being part of 
the actual or fake dataset. Each image will be 28X28=784 pixels in size. There are three hidden layers in this 
network, each followed by a Leaky-ReLU nonlinearity and a Dropout layer to prevent overfitting. 
 
The Generative Network takes a point from the latent space as input. The latent space is an arbitrarily specified 
vector space with Gaussian-distributed values. It has no meaning, but by randomly drawing points from this 
space and supplying them to the generator model during training, the generator model will assign meaning to 
the latent points and, thus, the latent space, until, at the end of training, the latent vector space represents a 
compressed representation of the output space, Fashion-MNIST images, that only the generator knows how to 
turn into plausible Fashion-MNIST images. The generator network's goal is to learn how to make 
indistinguishable pictures of apparel, which is why its output is a new image. The generator network outputs a 
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784-valued vector that represents a flattened 28X28 picture. There are three hidden layers in this network, 
each with a Leaky-ReLU nonlinearity. A TanH activation function is included in the output layer. A normal 
distribution with mean 0 and variance 1 is used to sample the random noise which is given as the input to the 
generator model. 
 
For both neural networks, I used Adam as the optimisation algorithm, with a learning rate of 1e-4, or 0.0001. 
The loss function used for this task is Binary Cross Entopy Loss (BCE Loss), and it is used for this scenario as it  
 
resembles the log-loss for both the Generator and Discriminator. The average of the loss calculated for each 
mini-batch is considered.  
 
 

            
 

Fig 17: GAN Generator Architecture                                              Fig 18: GAN Discriminator Architecture 

 
In the formula for Binary Cross Entropy Log(Figure $), the values y are named targets, v are the inputs, and w 
are the weights. Since weights are not needed, it’ll be set to wᵢ=1 for all i. If we replace vᵢ = D(xᵢ) and yᵢ=1 ∀ i 
(for all i) in the BCE-Loss definition, we obtain the loss related to the real-images. Conversely if we set vᵢ = 
D(G(zᵢ)) and yᵢ=0 ∀ i, we obtain the loss related to the fake-images. In the mathematical model of a GAN, the 
gradient of this is ascended, but here the function is minimised instead. But there is no need for concern about 
the sign because maximising a function is the same as minimising it's negative, and the BCE-Loss term has a 
minus sign. The real-images ’targets are always ones, while the fake-images ’targets are zero. By summing up 
these two discriminator losses we obtain the total mini-batch loss for the Discriminator. 
 
Training the Generator to maximise log D(G(z)) rather than minimising log(1- D(G(z)) results in significantly 
higher gradients early in training. Both losses result in the same dynamics for the Generator and Discriminator, 
thus they may be changed around. Maximising log D(G(z)) is identical to minimising it's negative, and because 
the BCE-Loss definition has a minus sign, there is no need for concern about the sign. Similar to the 
Discriminator, if we set vᵢ = D(G(zᵢ)) and yᵢ=1 ∀ i, we get the required loss to be minimised. 
 
The weights of the generator model are updated based on the discriminator model's performance. When the 
discriminator is strong at identifying false samples, the generator model is updated more frequently, but when 
the discriminator model is relatively weak or confused at detecting fake samples, the generator model is 
updated less frequently. This establishes the two models' zero-sum or adversarial relationship. 

 

 
 

Fig 16: Binary Cross Entropy Loss 
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7.2. DCGAN Structure 

The input of the discriminator model is image with one channel and 28X28 pixels in size. The output is binary 
classification, probability that a sample is real or fake. The discriminator model has two convolutional layers 
with 64 filters for the first and 128 filters for the second, a small kernel size of 5X5, and larger than normal 
stride of 2X2. Each layer is followed by a Leaky-ReLU nonlinearity and a Dropout layer. 

 
  

 
 

Fig 17: Generator and Discriminator Model Plot in GAN 
 

The model has no pooling layers and only one node in the output layer to predict if the input sample is real or 
false. The model is trained to minimise the binary cross entropy loss function, appropriate for binary 
classification. Before the model generates an output prediction, the aggressive 2X2 stride downsamples the 
input picture, first from 28X28 to 14X14, then to 7X7. This pattern is intentional since I don't utilise pooling 
layers and instead use a big stride to create a comparable downsampling effect. As seen in the plot(Fig 22),the 
model expects two inputs and will predict a single output.  
 
The generator model exhibits a similar pattern, but in reverse. The generator accepts a point from the latent 
space as input and produces a two-dimensional square grayscale image of 28×28 pixels with pixel values in 
[0,1] as output. A vector from the latent space with 100 dimensions is transformed into a 2D array with 28×28 
or 784 values. The first hidden layer is a Dense layer with enough nodes to depict a low-resolution version of 
the output image. An image half the size (one quarter the area) of the output image would have 14X14 or 196 
nodes, while an image one eighth the size (one eighth the area) would have 7X7 or 49 nodes.  
 
Simply said, only one low-resolution image is not required; instead, many copies or interpretations of the input 
are desired. This is a phenomenon in convolutional neural networks where several parallel filters result in 
multiple parallel activation maps, termed feature maps, with diverse interpretations of the input. At reverse, we 
want multiple concurrent copies of our output with various learnt characteristics that can be collapsed into a 
final image in the output layer. Space is required for the model to invent, develop, or generate. As a result, the 
first hidden layer, the Dense, requires a sufficient number of nodes to support several low-resolution variants 
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of our output picture, such as 256. The activations from these nodes may then be moulded into something like 
an image to be sent into a convolutional layer, such as 256 distinct 7X7 feature maps. 
 
The Conv2DTranspose layer is used in the upsampling process, which includes upsampling the low-quality 
image to a higher resolution version of the image. The Conv2DTranspose layer is configured with a stride of 2×2 
and a kernel size of 5X5. This is repeated to arrive at our 28×28 output image. The second Conv2DTranspose 
layer has a filter size of 64, kernel size of 5X5 and a stride of 2X2, the output size of which is upscaled to 14X14 
pixels. The output layer of the model is a Conv2DTranspose with one filter and a kernel size of 5×5, stride of 2X2 
and ‘same ’padding, designed to create a single upscaled feature map and preserve its dimensions at 28×28 
pixels. A tanh activation is used to ensure output values are in the desired range of [-1,1].   
 
Leaky-ReLU non linearity function is used for each layer in the discriminator and the generator of the model. 
Batch Normalisation is provided for each layer in the generator. For optimisation, Adam version of stochastic 
gradient descent with a learning rate of 1e-4 i.e 0.0001 is used. The loss function used for this task is Binary 
Cross Entopy Loss (BCE Loss). 

 

      
 

Fig 19: DCGAN Generator Architecture                                             Fig 20: DCGAN Discriminator Architecture 
 

7.3. CapsNet GAN Structure 

The discriminator consists of a Capsule network adapted from the original paper[8] with some changes. As an 
input, the model is given a 28x28 pixel with a single colour channel from the Fashion-MNIST dataset. The first 
layer is a basic convolutional layer with 256 filters, a 9 pixel kernel size, and a stride value of 1. This layer 
transforms pixel intensities to local feature detector activities, which are subsequently utilised as inputs to the 
PrimaryCaps. This initial layer in many contemporary papers has a high filter size. The rationale for this is 
because it enables us to automatically expand the receptive field of all subsequent layers from now on. This 
layer, according to the original Dynamic Routing paper[8], takes low-level information from the image and 
allows us to transfer it to the Capsule network. 
 
Unlike the study[8], however, I added extra Leaky ReLU activation and a batch normalisation on top of the first 
convolutional layer. The purpose of adding an activation function to the initial convolution is to make the 
Discriminator perform as well as possible, whereas an activation function such as a Leaky ReLU will not only 
introduce a non-linearity but will also take care of the vanishing gradient by allowing a small negative slope. 
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The core Capsule architecture begins here, since it specifies the PrimaryCaps layers. PrimaryCaps are a 
collection of convolution, reshape, and squashing functions. The lowest layer of the PrimaryCaps is a 
convolution with the same amount of filters as the preceding layer, 256, which implies an 8D vector with  
32 feature maps. Following that, a reshape function is used to divide all output neurons into an 8D vector. At 
this level, primary capsules include collections of activations that indicate the orientation of the apparel, as well 
as the strength of the vector, which indicates the presence of the apparel. Finally, a special squashing function 
and a Batch Normalisation (not present in the original paper[8]) are applied to PrimaryCaps . Batch 
Normalisation showed to stabilise learning by normalising the input to each unit to have zero mean and unit 
variance. This helps to tackle training issues that arise due to poor initialisation and helps gradient flow in 
deeper models. Directly applying Batch Normalisation to internal Primary- and Digit layers however, resulted 
in sample oscillation and model instability. This was avoided by not applying Batch Normalisation to internals 
of the Capsules but rather to outputs as in the case above.  
 
 

                                   
 

Fig 21: Generator Model Plot in DCGAN                                          Fig 22: Discriminator Model Plot in DCGAN 

 
 
DigitCaps are the architecture's second and most essential component, since they execute the "routing by 
agreement" method. DigitCaps, in comparison to PrimaryCaps, has been changed and works slightly  
differently from the original paper[8]. The key change is that at the end of each routing cycle, I replaced the 
squashing function with another Leaky ReLU activation, which otherwise causes artefacts on produced images. 
Although this method is the same in terms of computing, it is feasible that the implementation will result in a 
weaker equivariance. 
 
Values are flattened before being sent from PrimaryCaps to DigitCaps. The reason for this is that Keras Dense 
layers used as value/weight holders can only accept flattened neurons. DigitCaps are not vectorised, but rather 
represented as a collection of flattened neurons, which differs the most from the original study. However, all 
math operations are performed in the same manner as if they were performed on vectors. 
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Flattened neurone that get passed into Keras Dense layer acts as a prediction vector û. The prediction vector is 
made up of 160 neurons, which are represented by a multiplication of 10 capsules and 16 vectors. We also 
changed Keras Dense layer settings like the kernel initialiser to he_normal and the bias initialiser to zeros. The 
prediction vector ʌû is then transferred to a three-length loop that includes a C coupling coefficient that is a 
softmax over the bias weights of the previous layer (which ensures that all capsules in the layer below total to 
one) and û. Following each multiplication, LeakyReLU is activated. The discriminator's final layer, which 
determines the realness score of each image, is a Keras Dense layer with a single neuron and a sigmoid. 
 
The CapsNet GAN generator model is identical to the above explained DCGAN generator model. The Adam 
version of stochastic gradient descent, is utilised for optimisation. Binary Cross Entopy Loss is the loss function 
utilised for this work (BCE Loss). 

  

                 
 

Fig 23: CapsNet GAN Discriminator Architecture                             Fig 24: CapsNet GAN Generator Architecture 
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Fig 25: Discriminator Model Plot in CapsNet GAN.                            Fig 26: Generator Model Plot in CapsNet GAN 

 
8. RESULTS 

8. 1. Training Time 

The NVIDIA Tesla T4 GPU, which is accessible in Google Colab, was used to train the GAN and DCGAN models. 
On a 1.4 GHz quad-core Intel Core i5 CPU, the CapsNet GAN was trained. Each model was trained for about 
4000 epochs on the Fashion-MNIST dataset. 
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8.2. Qualitative Evaluation 
 
I compared the quality of images created at random using GAN (denoted by (a)), DCGAN (denoted by (b)), and 

CapsNet GAN (denoted by (c)). 

                           

Fig 27: Epoch 200                                                                                           Fig 28: Epoch 1000 

                                                                                                                                                 

Qualitatively, DCGAN produces better quality images during the initial epochs followed by GAN and the images 
produced by CapsNet GAN are comparatively not very accurate.   
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                            Fig 29: Epoch 2000                     Fig 30: Epoch 3000 

At the end of 4000 epochs, the images produced by DCGAN and CapsNet GAN are almost of similar quality. The 
images generated by CapsuleGAN are cleaner and sharper than those generated by DCGAN but DCGAN's images 
are, on average, more accurate when compared to the ones produced by CapsNet GAN. As a result, in the 
subsection below, I've included the findings of a quantitative comparison between DCGAN and CapsNet GAN for 
further analysis of their image generation performance. 

 

 

 

 

 

       

 

                                             

                                             

Fig 31: Epoch 4000 
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GAN is making good progress in image generation, but the quality of the images produced is comparatively low. 
At this stage of training, the diversity of the models in terms of generated clothing classes cannot be discussed 
because the images generated have to be more refined by further training. 

8.2. QUANTITATIVE EVALUATION OF DCGAN AND CapsNet GAN 
 
8.2.1. Inception Score 
 
One issue with generative models is that there is no way to objectively assess the quality of the images created. 
As a result, it's usual to generate and save images at regular intervals during the model training process, and 
then utilise subjective human evaluation of the generated images to assess the quality of the images. There 
have been several attempts to provide an objective measure of generated image quality. The Inception Score, or 
IS[11], is an early and frequently used example of an objective assessment technique for produced pictures. 
The Inception Score, or IS[11] for short, is a measure for assessing the quality of generated pictures, especially 
synthetic images produced by generative adversarial network models. Tim Salimans et al.[11] suggested the 
inception score. They developed the inception score as an attempt to remove the subjective human evaluation 
of images. 
 
To categorise the produced images, the inception score employs a pre-trained deep learning neural network 
model. Specifically t he Inception v3 model, as defined by Christian Szegedy et al. The inception score gets its 
name from its dependence on the inception model. The model is used to classify a huge number of generated 
images. The likelihood of an image class labels is forecasted in detail. The inception score is created by 
combining these predictions. The goal of the score is to capture two characteristics of a set of produced images: 
Image Quality and Image Diversity. 
 
The inception score has a lowest value of 1.0 and a highest value of the number of classes supported by the 
classification model; in this case, the Inception v3 model supports the 10 classes of the Fashion-MNIST dataset, 
and as such, the highest inception score on this dataset is 10. 
 
I have computed the inception score for 
DCGAN and CapsNet GAN models for the Fashion-
MNIST dataset. 
 
 
 

 

 

Higher the inception score, better the quality of images generated. According to the results obtained, DCGAN 
produces better quality images when  compared to CapsNet GAN for Fashion-MNIST dataset. 

8.2.2. Generative Adversarial Metric 
 
The generative adversarial metric (GAM) was introduced by Im et al. [33] as a pairwise comparison measure 
across GAN models by putting each generator against the opponent's discriminator, i.e., given two GAN models 
M1 = (G1,D1) and M2 = (G2,D2), G1 fights D2 while G2 fights D1. rtest and rsamples are the ratios of their 
classification mistakes on a genuine test dataset and on generated samples. To prevent numerical difficulties, 
the ratios of classification accuracies are determined instead of errors following their implementation[15], as 

indicated in equations in Figure 32. Both rsamples < 1 and rtest ≃ 1 must be met for CapsuleGAN to win over 
DCGAN. On the Fashion-MNIST dataset, we achieve rsamples = 1.0 and rtest = 0.89 in our trials. Thus, on 
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the Fashion-MNIST dataset, CapsuleGAN does not outperform DCGAN on this metric; rather, the two 
models tie on the dataset. 
 

 
 
 
 
 
 

Fig 32: Equations for sample ratio and test ratio 

 

8.2.3. Visualisation of loss and accuracy during CapsNet GAN training 
 

 
Graph 1: CapsNet GAN model discriminator loss and accuracy values across 4000 epochs on Fashion-MNIST dataset 

Figure 33 depicts the relationship between discriminator loss and accuracy. As its numbers do not reflect real 
progress, accuracy is shown inverted in relation to loss. The discriminator loss does not appear to be stable and 
continues to fluctuate. Accuracy does not reveal much since, despite study on the subject[12], there is no 
obvious ideal in practice. The discriminator's accuracy value simply cannot be translated to the output image 
quality. Throughout the training process, however, it is common for the accuracy score to stay around 40-75 
percent. 
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Graph 2: CapsNet GAN model generator loss values across 4000 epochs on Fashion-MNIST dataset 

Figure 34 depicts the generator's losses during training on the Fashion-MNIST dataset. The model's loss is 
fluctuating over all 4000 epochs, however it clearly lowers with time from 4.0. Although the pattern does not 
appear to depart the bounds of 3.0 and 1.5, which may be considered flattening, it is difficult to identify the 
flattening because it still varies a lot. These variations can be considered as evidence that the model is 
attempting to improve. Loss flattening would typically indicate that the model has reached a point where it can 
no longer improve, implying that it has learnt to translate the noise vector Z to a representation that is 
sufficient to challenge the discriminator. 

9. DISCUSSION AND FUTURE WORK 

GANs are famously difficult to train. As we have two different networks fighting each other, we need to 
optimise them both so that the fight lasts as long as possible by not prioritising one of them. Even with an 
alternative Discriminator architecture, such as Capsules, the inner GAN difficulties are not resolved; instead, 
issues relating to Convolutions are addressed. Research is being actively conducted towards further improving 
and making the training easier and more stable. 

GANs have a wide range of applications, and there is still much to learn about them. Recently, GANs have 
achieved significant advances in Computer Vision, including picture inpainting, style transfer, image 
improvement, and so on. Despite this, new studies and enhancements to current models are published on a 
weekly basis. In this research, I used the Fashion-MNIST dataset to compare the original vanilla GAN with such 
enhancements as the powerful DCGAN and the CapsNet GAN for apparel image generation. 

Using a more complicated dataset, integrating capsule network just in the generator, and using capsule 
network in both the generator and discriminator are some of the proposals for further study on this topic. 

10. CONCLUSION 

In conclusion, I demonstrated and described the features of the vanilla GAN, DCGAN, and the CapsNet GAN 
model, which was created by integrating Capsules into a DCGAN. I also went through the present bottlenecks of 
CNNs for modern Computer Vision applications, as well as a thorough discussion of Capsule Networks, their 
many layers, and the fundamental Routing algorithm that underpins them. I also presented a qualitative and 
quantitative comparison of the models which included  GAM and IS  which were used to explain the results of 
experiments. Although CapsNet GAN produced issues comparable to DCGAN, it was unable to outperform it in 
image generation for the Fashion-MNIST dataset.Vanilla GAN generates relatively less image quality. Although 
the vanilla GAN brings us to conclusion that DCGAN and CapsNet GAN are more powerful, 
DCGAN outperforming CapsNet GAN does highlight that the Capsule Network and DCGAN combination may not 
yet be fully robust. 
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