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Abstract - Reliability study of dams is essential for 
operational safety, which depends on the complexity in dam 
failure causes. The assessment of the dam reliability can be  
mainly probabilistic or nonprobabilistic. The probabilistic 
method is usually applied to the cases with sufficient 
knowledge on dam parameters, while the nonprobabilistic 
method is suitable for the cases with insufficient knowledge on 
dam parameters. Since a dam can contain multiple 
parameters, information abundancy can vary among those 
parameters, and neither the probabilistic method nor the 
nonprobabilistic method alone is enough for dam reliability 
assessment. In this paper, the First order second moment 
method is used to analyse the  dam reliability assessment. The 
probabilistic analysis is done along with the fuzzy method to 
determine the various factors  that contributes to the safe 
operation of the dam. 
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1. INTRODUCTION  

A dam contains various parameters, so information 
abundancy can be unbalanced. Neither a single probabilistic 
model nor a single nonprobabilistic model is suitable for the 
dam failure risk assessment. As a result, a combination of 
probabilistic model and nonprobabilistic model should be 
studied to solve the risk analysis of dam failure under 
different operation conditions. 

1.1 Probabilistic Risk Assessment 

Malkawi et al. [1] established performance functions based 
on the Swedish circle method, simplified Bishop’s method, 
simplified Janbu’s method, and Spencer’s method, 
respectively. The first-order second-moment method and the 
Monte Carlo simulation method were used to solve the 
reliability index, and the instability reliability model was 
established based on the reliability index. Kruger et al. [2] 
calculated the risk probability of the RCC gravity dam by 
using the first-order second-moment method, improved 
first-order second-moment method, and Monte Carlo 
simulation method and provided suggestions for 
maintenance and reinforcement of the dam based on the 
calculation results. Leszek [3] believed that there were 
various loads in the dam structure that maintained or caused 
the crash, and the uncertainty of the load ratio could be 
estimated. Based on this load ratio, the probability of dam 

instability was calculated. Leszek [4] assumed that the 
antisliding and sliding forces were controlled within the 
accracy range of 15%. 

1.2 NonProbabilistic Risk Assessment 

In the case of insufficient engineering data, Elishakoff [5] 
used the convex model for uncertainty analysis and verified 
the effectiveness of the method. Ben-Haim [6] considered the 
uncertainty of the variables and verified that the variation of 
the variables within a certain range had no great influences 
on the structure reliability. Elishakoff [7] raised the idea that 
the nonprobabilistic reliability index should be a specific 
interval rather than a value. Based on the properties of the 
convex set operation and considering the maximum 
allowable uncertainty of the system, Ben-Haim [8] proposed 
a theory of the nonprobabilistic reliability. 

1.2 Study Area 
 
The Hypothetical dam to be analyzed in this thesis is taken 
from the theme C of the eleventh ICOLD benchmark 
workshop on numerical analysis of dams (3IWRDD ICOLD, 
2011). The problem in the benchmark workshop aims at 
analyzing the dam with a 2D model. Total height of the dam is 
80 m with drain axis 10 m from the upstream end. The other 

dimensions are given in Figure 1. The objective of the 
ICOLD proposal was to benchmark numerical and 
analytical methods for the evaluation of the maximum 
sustainable reservoir level before dam collapsing and the 
evaluation of the uplift pressure distributions acting along the 
dambase.  
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Fig -1: Dam geometry (3IWRD ICOLD, 2011) 
 

1.3 Random Variables 
The variables are classified as deterministic or random. In the 
present thesis, the random variables considered are friction 
angle ‘φ’ and cohesion ‘c’ along the dam-foundation interface. 
Probability density functions are determined for friction and 
cohesion and the probability distribution is assumed normal. 
The friction angle is defined by a normal probability function 
with a mean value μ f and standard deviation σ f . Similarly, 
cohesion is normally distributed with a mean μ c and standard 

deviation σ c. 
 

Table -1: Mean and standard deviation values 
used for friction and cohesion 

 

Normal 

Probability 

Distribution 

Friction  

Angle (φ) 

Degrees 

Cohesion (c) Mpa 

Mean 52.40 0.3367 

Standard 

Deviation 

7.989 0.2468 

 

1.4 Deterministic variables 

The considered deterministic variables are 
1. Concrete density (kN/m3 ) 
2. Water density (kN/m3 ) 
3. Water Pressure ‘P’ (kN/m2 ) 
4. Self-weight of the dam ‘W’ (kN/m) 

5. Horizontal load due to water pressure acting on the 
upstream face of the dam ‘H’ (kN/m) 
6. Uplift load acting on the base of the dam ‘U’ (kN/m) 
7. Tensile stress ‘σ’ (kN/m2 ) 
8. Moment of inertia ‘I’ (m4 ) 
All the load variables are considered as deterministic. Some 
of the variables are considered constant throughout the 
calculations while some have their values determined 
according to the varying load conditions. 
 
Two cases of drain effectiveness are considered with discrete 
probabilities associated: 
Case A: Drains effective 
Case B: Drains not effective 
 

1.5 Stability Analysis 

The Stability Analysis is carried out by deterministic method 
for the following load cases: 
Load combination A: (Empty reservoir condition) : When the 
reservoir is empty, the force acting on the dam profile will be 
due to the self weight only, which acts at inner middle third. 
Other forces such as water pressure and uplift will be zero.  
2. Load combination B (normal operating conditions): Full 
reservoir elevation, normal dry weather tail water, normal 
uplift, ice and silt (if applicable). Here for Indian conditions 
the silt load is neglected  

3. Load combination C: (Flood discharge condition) - 
Reservoir at maximum flood pool elevation all gates open, 
tailwater at flood elevation, normal uplift, and silt (if 
applicable)  

4. Load combination D: Combination of A and earthquake  

5. Load combination E: Combination B, with earthquake but 
no ice  

6. Load combination F: Combination C, but with extreme 
uplift, assuming the drainage holes to be Inoperative  

7. Load combination G: Combination E but with extreme 
uplift (drains inoperative) 

2.0 Methodology 

2.1 Mean-Value First-Order Second-Moment 
Method (MFOSM) 

The First-Order Second-Moment method is also referred to as 
the MFOSM method. The MFOSM method derives its name 
from the fact that it is based on a first-order Taylor’s series 
approximation of the performance function linearized at the 
mean values of the random variables, and because it uses 
only second-moment statistics (means and standard 
deviations) of the random variables.(Wolff et. al., 2004)[9] 

Let the performance function be written as : 
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Z=g(X)=g(X1, X2, X3,.............., Xn)  ………....  2.1 

A Taylor’s series expansion of the performance function 
about the mean value gives: Z=g(μx) where the derivatives 
are evaluated at the mean values of the random variables (X1, 

X2, X3,.............., Xn) and 
μxi is the mean value of Xi. Truncating 

the series at the linear terms, we obtain the first-order 
approximate mean and variance of Z as: 

μZ= g(μx1 ,μx2 ,. .. . .. .. . .. .. .μxn )  …………  2.2 

and , 

σZ
2 =∑

i= 1

n

(∂ g

∂ Xi
)
2

Var ( Xi)+2∑
i = 1

n−1

∑
j= i+1

n
∂ g

∂ Xi

∂ g

∂ X j

CV ( Xi X j )

        …………  2.3 

where CV(Xi.Xj) is the covariance of Xi and Xj  

If the variables are uncorrelated, then the variance is: 

σZ
2 =∑

i= 1

n

(∂ g

∂ Xi
)
2

Var ( Xi)

   …………   2.4 

The standard deviation of Z is 

 
σ

Z
=√Var (Z)

     …………  2.5 

Two approaches are used to estimate the variance of the 
performance function as approximated by the MFOSM 
method. The first method is a direct evaluation of the 
differential equation given in equation 2.3 or 2.4. This is a 
closed form solution for variance of the performance 
function. However, for most of slope stability analysis such 
evaluation is practically impossible and inconvenient. The 
second approach involves a numerical approximation of the 
partial derivatives. In this study, the second approach is used 
for computing the uncertainty of the performance function. 
Taylor series finite difference (TSFD) method is used for the 
numerical approximation of the partial derivatives and is as 
discussed below: 

The performance function (Z) has to be evaluated at two 
points. The function is evaluated at one increment above and 
below the expected value of the random variable Xi as shown 
below: 

Zi
+
= g[μxi ,μx2 ,. .. . .. .. ..(μxi+σxi )... . .. . ]  ……   2.6 

Zi
−
= g[μxi ,μx2, .. .. . .. .. .(μxi− σxi )..... . .] …   2.7 

Although the derivative at a point is most precisely evaluated 
using a very small increment, evaluating the derivative over a 
range of plus and minus one standard deviation may better 
capture some of the nonlinear behavior of the function over a 
range of likely values. Using the central difference 
approximation 

∂ g

∂Xi

=
Zi

+
− Zi

−

2σxi    …………   2.8 

Substituting the above equation in equation 2.4, we get 

σZ
2 =∑

i= 1

n

(Zi
+− Zi

−

2σxi
)
2

Var ( Xi )

    ………… 2.9 

If (
Zi

+
− Zi

−

) = 
ΔZi  then, 

σ
Z
2 =∑

i= 1

n

(
ΔZ i

2 )
2

    ………… 2.10 

For correlated random variables 

σZ
2 =∑

i= 1

n

(∂ g

∂ Xi
)
2

Var ( Xi)+2∑
i = 1

n−1

∑
j= i+1

n
∂ g

∂ Xi

∂ g

∂ X j

CV ( Xi X j )

       ………… 2.11 

For dependent variables, CV(Xi,Xj) = rij.
σi .σ j  

σZ
2 =∑

i= 1

n

(ΔZ i

2 )
2

+
1

2
∑
i = 1

n− 1

∑
j= i +1

n

ΔZ i ΔZ j r ij

      …… 2.12 

2.2 Fuzzy Reliability Analysis 

Reducing complex real-world systems into precise 
mathematical model always is the main trend in science and 
engineering. However, real-world situations are often not as 
deterministic as one has recognized. To deal with 
uncertainty, the probability theory has been used 
traditionally for statistical problems. This probability theory 
does not allow the subjectivity connected uncertainty to 
propagate in the analysis, as this estimates the mean and 
standard deviation of the measured samples. Moreover, the 
number of samples required is very large for any reasonable 
estimate of reliability of the system and it is seldom possible 
in civil engineering due to financial constraints. Furthermore, 
the uncertainties connected with geotechnical engineering 
may be non-random (subjective) in nature. Fuzzy set theory 
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developed by Zadeh (1965) [10] has been applied widely to 
incorporate the non-random uncertainties into the developed 
fuzzy models 

2.3 Fuzzy First-Order Second-Moment Method 
(FFOSM) 

The uncertain parameters are described by their central 
values and standard deviations. In the present analysis, 
triangular fuzzy numbers (TFN) are considered. The value of 
the mode, minimum and maximum of the TFN are: 

b = mode = E[X] = expected value, 

a = E[X] - kσ[X] = minimum value, and 

c = E[X] + kσ[X] = maximum value 

k = the number of sigma units which will take values 
depending on data available and accuracy of the results 
desired.  

In the present work k = 1.5 is considered. For multivariate 
problems involving M uncertain parameters the proposed 
method selects its points for function evaluation based on the 
α-cut or α-level concept of fuzzy numbers. The points for 
function evaluation in the parameter space are as explained 
in equation 2.14. 

Vertex method algorithm has been applied in order to allow 
uncertainty to propagate through the solution processes. The 
vertex method, based on the α-level concept of a fuzzy 
number, essentially involves an interval analysis. The present 
study considers nine α-levels (from 0.1 to 0.9 possibility 
level) to represent the involved fuzzy numbers. For each 
investigated α level we need to evaluate the performance 
function 2n times, where n is the number of fuzzy uncertain 
variables.FS is the function of the uncertain variables as well 
as other non-fuzzy parameter, which will take single value 
while evaluating the FS. The following steps are used for the 
fuzzy reliability analysis of slope. 

[1] The triangular fuzzy numbers for each of the input 
uncertain variables are constructed based on the amount 
of variability to be represented by the fuzzy sets. Thus 
the values of the parameters a, b and c for each of the 
fuzzy sets are obtained. 

[2] The number of α-level are to be selected. For the case of 
three fuzzy variables, say X1, X2, X3,  we will get six 
values of the uncertain parameters i.e., three lower 
bound values and three upper bound values at each α-
level. According to the vertex method, we will get 2x3=6 
points for the function evaluation. These six function 
evaluation points are obtained by the combination of the 
lower/ upper bound values and mean values of the 
uncertain parameters. The corresponding six points at 
each α-level are as shown below: 

FSX1
+

= g[( X1αi
+

), E( X2), E( X3)]
…… 2.13 

FSX1
−

= g[( X1αi
−

), E( X2), E( X3)]
…… 2.14 

 
FSX 2

+
= g[ E( X1) ,( X2αi

+
) , E( X3)]

……2.15 

 
FSX 2

−
= g[ E( X1) ,( X2αi

−
) , E( X3)]

……2.16 

 
FSX 3

+
= g[ E( X1) ,E( X2) ,( X3αi

+
)]

 …..2.17 

 
FSX 3

−
= g[ E( X1) ,E( X2) ,( X3αi

−
)]

……2.18 

Based on these six values of FS, the lower and upper bounds 
of FS can be chosen which represent the computed FS values 
as a fuzzy interval value i.e., FSmax and FSmin at that α-level. 
These interval values of FS constitute the resulting FS fuzzy 
set. 

The expected value of FS is obtained by considering the 
modal values of the triangular fuzzy numbers of the uncertain 
variables. 

The standard deviation σ(FS) is approximated by the Taylor 
series expansion of the function FS retaining only the linear 
terms. The general expression for the σ(FS)is given by:where,  

n = number of uncertain soil parameter 

σ(Xi)= Standard deviation of Xi 

CV(Xi, Xj) = Covariance between Xi and Xj.. 

The procedure adopted to calculate the standard deviation  at 
each α-level is as given below: 

Each parameter is sequentially set at bVi  with the remaining 
parameters at their respective expected values. Each 
parameter combination gives one critical surface with FSi . 
Hence, a total of 2n values of FS are obtained at each α- level. 

Now, standard deviation for uncorrelated variables is given 
by 

σ( FSαi ) = 
√∑i= 1

n

(
∂ FSαi

∂ Xi
)
2

σ
2
(Xi)

 ………… 2.19 

Using Central difference approximation 

∂ FSαi
∂X i

=
FSαi

+
− FSαi

−

2V at α= 0.5     
      ………… 2.20 

substituting the above equation in equation, we get 
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σ2( FSαi )=∑
i= 1

n

(FSαi
+− FSαi

−

2kat α= 0.5
)
2

 ………… 2.21 

The overall estimated values of standard deviation of FS is 
evaluated using  

E(σ( FS))=
1

N [∑i= 1

N

.σ(FSαi )]
 ………… 2.22 

Knowing the expected value and the standard deviation of the 
performance function one can calculate the probability of 
failure after assuming a suitable distribution for the 
performance function and the reliability index. Furthermore, 
with the FSmax and FSmin values at each α -level, the FS fuzzy 
set can be constructed. 

3.0 Results and Discussions 

Table 3.1 Results of FOSM Method for Various Load 
Combinations 

Load 
Combination 

β Probability of 
failure pf 

B 2.17 0.015 

C 2.17 0.015 

D 3.406 0.003 

E 2.07 0.0192 

F 1.97 0.0224 

G 1.86 0.0314 

Table 3.2: Results of FOSM Different Water levels – Drains 
Operative and No seismic Load 

Water Level H 
in m 

β Probability of 
failure pf 

75 2.381 0.0087 

76 2.23 0.0129 

77 2.261 0.0119 

78 2.29 0.011 

79 2.202 0.0139 

80 2.23 0.0129 

 

 

Table 3.3: Results of FOSM for shear failure for Different 
waterlevels with Seismic Loads – Drainage gallery Operative 

Water Level 
in m 

β Probability of 
failure pf 

75 2.064 0.0197 

76 1.914 0.0281 

77 1.939 0.0262 

78 1.965 0.025 

79 1.873 0.0307 

80 1.897 0.0294 

Table 3.4:  Results of FOSM method for different water levels 
– Drainage gallery Inoperative 

Water Level H 
in m 

β Probability of 
failure pf 

75 1.974 0.0244 

76 1.83 0.0336 

77 1.855 0.0322 

78 1.879 0.0307 

79 1.778 0.0384 

80 1.801 0.0359 

Table 3.5: Results of FFOSM method for sliding failure for 
different IS load combinations 

Load Combination β Probability of 

failure pf 

B 1.782 0.0375 

C 1.838 0.0336 

D 3.23 0.0006 

E 1.129 0.1292 

F 0.273 0.3947 

G 0.81 0.2090 
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Table 3.6   : Results of FFOSM Method for Sliding failure 
Different Water levels without considering seismic load and 

Drainage effective. 

Water 
Levels (m) 

β Probability of 
failure pf 

70 1.159 0.123 

72 1.008 0.1587 

75 0.719 0.2389 

78 0.53 0.3015 

80 0.361 0.3594 

Table 3.7   : Results of FFOSM method for Sliding failure 
Different Water levels without considering seismic load and 

Drainage Ineffective. 

Water Levels 

(m) 
β Probability of 

failure pf 

70 0.715 0.2450 

72 0.749 0.2266 

75 0.783 0.2177 

78 0.502 0.3085 

80 0.252 0.4013 

Table 3.8 : Results of FFOSM for Sliding failure Different 
Water levels considering seismic load and Drainage effective. 

Water Levels 

(m) 
β Probability of 

failure pf 

70 1.159 0.1230 

72 1.008 0.1587 

75 0.774 0.2206 

78 0.53 0.3015 

80 0.575 0.2860 

 

 

 

 

Table 3.9  : Results of FFOSM for Sliding failure Different 
Water levels considering seismic load and Drainage 

Ineffective. 

Water 
Levels 

(m) 

β Probability of failure 
pf 

70 0.782 0.2177 

72 0.618 0.2723 

75 0.363 0..3594 

78 0.099 0.46 

80 -0.083 0.5319 

 
4. CONCLUSIONS 
 
From the Above Tables, it can be seen that the Reliability index 
and the corresponding Probability of failure pf for different 
load combinations for the dam section taken. It is observed 
that as the reliability index increases, the probability of failure 
β decreases and vice versa.  

 
A Comparision is made between the Probabilistic first order 
Second Moment method and fuzzy first order second moment 
method for different water levels and and IS Load 
combinations. The probabilistic FOSM method gives a higher 
value of Reliability index as compared to the FFOSM method. 
Further It is seen that the value of reliability index is lesser in 
case of Load Combination G in the hypothetical dam section 
as well as the dam section of the study area which is the 
combination of seismic load with the drainage being 
inoperative. It is also seen that the value of reliability index 
decreases as the water level in the dam increases. The highest 
value of the reliability index was obtained in case of Load 
combination D which is the case of empty reservoir with 
earthquake forces 
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