
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2931

Detection of Web Attacks using Ensemble Learning.

Ravi Pallam1, Sai Prasad Konda2, Lasya Manthripragada3, Ram Akhilesh Noone4

1Assistant Professor, Dept. of Computer Science and Engineering, Anurag University, Hyderabad, India
2,3,4Student, Dept. of Computer Science and Engineering, Anurag University, Hyderabad, India

---***--
Abstract - Web Applications are liable to information

security threats due to the compelling information it acquires

from the users. Possessing data is the most powerful thing in

this day and age. Wrongly acquired data can be used to exploit

a company- which can be devastating, both in financial and

reputational damage. The threats according to OWASP Top 10

include SQLi, Cross-Site Scripting (XSS), XXE, etc., In this paper,

we focus on building a tool- it uses ensemble learning

algorithms to train the payloads (SQLi and XSS) and detect

attacks when user gives input; if any such attacks are detected

the public Ip address of the user will be blocked.

Key Words: Web Security, Web application, Cross-Site

Scripting, Vulnerabilities, SQL injection, Machine learning.

1. INTRODUCTION

The Open Web Application Security Project (OWASP) is a

non-profit organisation dedicated to enhancing software

security. The OWASP TOP 10 [1] is a regular knowledge

document for web application protection and developers. It

reflects widespread agreement on the most serious security

threats to web applications.

The most pressing ones are SQLi and XSS attacks among the

Top 10 threats. Every minute, Cybercrime costs $2,900,000 a

minute, and top corporations pay $25 per minute for

security breaches [2]. The need to reduce the risk for data

breaches and attacks has been higher than ever. There is a

necessity to build an application that can control and/or

prevent unauthorized access to sensitive information.

Existing mechanisms to detect an attack are mostly static-

based approaches and a very limited area of research is

dedicated towards dynamic approaches using Machine

learning [3] [4] [5].

We introduce the background of attacks in question i.e., SQLi

and XSS in section 1.2 and 1.2, followed by a detailed

explanation of different approaches in section 2. The

proposed system and the evaluation of the results obtained

from the said system are discussed in sections 3 and 4

respectively. And finally, a demonstration of our tool.

1.1 SQLi Attacks

Most of the websites have a system of authorizing existing

users and registering new users. Every registered user has a

set of email addresses/user names and passwords. These

details are stored and managed in the server using a

software system known as Relational DBMS. To access and

manage the data stored in the RDBMS, a specific language

called SQL is used. SQL stands for Structured Query

Language. As defined, it uses queries structured in a specific

order to interact with the RDBMS.

When a user logs in to a website, they submit a set of user

names and passwords. These inputs are then checked with

data stored in the database and if the user entered a valid

user name and password, the user is authorized. A malicious

user can gain unauthorized access to an account/website by

entering malicious SQL statements instead of the user’s

name and password in a compromised web application. This

is called SQL Injection (SQLi) [13][15].

There are three categories of SQLi:

1. Error-based SQLi:

“1’UNION select 1,2,3--+” -> gives an error if the tables

have a smaller number of columns than mentioned in

the query.

2. Union-based SQLi:

“1’UNION select database(), version()--+”-> name of the

database and version are returned. Any information can

be retrieved by mentioning it in the query.

3. Blind SQLi:

a. Boolean: Attackers send a query which returns

either TRUE or FALSE; this information can be used

to infer what kind of data is stored.

b. Time-based: Depending upon the time database

takes to return a response, attackers designate

whether the result is TRUE or FALSE.

1.2 XSS Attacks
Before JavaScript was released, websites were just a

collection of static pages. The advent of JavaScript in the year

1995, brought forth a new level of interactivity of web pages.

JavaScript helps us to build what we call dynamic web pages.

It allows the developers to modify the web pages at the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2932

client's side without the need for sending a request to the

server.

A new case of a web application vulnerability known as

Cross-Site Scripting (XSS) was discovered as JavaScript

became more popular and was used more frequently. XSS is

a security vulnerability that allows a malicious user to alter

the code on a website such that when that website is opened

by a user that code is executed in the user's browser.

“The malicious script is delivered to the user's browser via

the web page or web application. Forums, message boards,

and web pages with commenting capabilities are popular

targets for Cross-site Scripting attacks” [14][16].

XSS attacks are classified into three types.

1. Reflected XSS: This can be as simple as writing a

JavaScript code for an alert. Cookies and other vulnerable

information can be obtained. It executes only once.

2. Stored XSS: Here the code written by the attacker is stored

in the database and it is executed whenever that

particular page is accessed.

3. DOM-based XSS: The attacker will inject malicious code in

the DOM that will be reflected on the web page.

2. LITERATURE SURVEY

One of the most famous tools in detecting SQLi attacks is

considered to be AMNESIA. “[…] presented AMNESIA, a

prototype tool that implements our technique for Java-based

web applications, and an empirical evaluation of the

technique. The empirical evaluation of the technique was

performed on a set of seven web applications that consisted

of two applications developed by a student team, but also

used by other researchers, and five real applications.

AMNESIA was able to stop all of the 1,470 attacks that we

performed on the considered applications without producing

any false positive for the 3,500 legitimate accesses to the

applications. Furthermore, AMNESIA proved to be quite

efficient in practice, at least for the cases considered—the

overhead imposed by the technique on the web application

was barely measurable.” [6]

CANDID -“We have presented a novel technique to

dynamically deduce the programmer intended structure of

SQL queries and used it to effectively transform applications

so that they guard themselves against SQL injection attacks.

[…] At a more abstract level, the idea of computing the

symbolic query on sample inputs in order to deduce the

intentions of the programmer seems a powerful idea that

probably has more applications in systems security.” [7]

Buehrer et al. used a similar approach of comparing the

generated queries with the ones that should have been

generated (programmer intended) [17]. Other approaches

include using random numerals or strings of characters for

detection [21], SQL guard is also another where it uses

parsing mechanisms [22]. Dynamic training is similar to

pattern matching [23]. Another detection method is

proposed by Fonseca et al, “this paper analyses 715

vulnerabilities and 121 exploits of 17 web applications using

field data on past security fixes. Some web apps were written

in a weakly typed language, while others were written in a

strongly typed language. Results suggest that applications

written with strong typed languages have a smaller number

of reported vulnerabilities and exploits.” [30]

With the evolution of Machine Learning, Komiya et al

proposed detecting both SQLi and XSS attacks using different

classifier algorithms [5]. They implemented two different

feature extraction techniques. One was blank separation and

other was tokenization. Tokenization method was

considered to be more efficient. To succeed [5], Sonali

Mishra [3] did similar work but by using regular expressions.

They inferred that naïve bayes [10] is not as efficient as

gradient boosting algorithms. They concluded with

significant difference in accuracies between gradient

boosting and naïve bayes. The former having more accuracy.

However, very limited research has been done on XSS

attacks. Komiya et al [5] implemented a Machine Learning

algorithm on SQLi as well as XSS data. Because of the

restricted availability of datasets, XSS has not been delved

into much. Our paper discusses training XSS and SQLi data

using ensemble learning techniques- GBM, Light GBM,

XGBoost, and AdaBoost.

3. PROPOSED SYSTEMS

In this section, we introduce our proposed methodology. It

will help detect malicious code by training the available data

using machine learning algorithms. This approach was first

proposed by Komiya et al [5]. We decided to implement and

evaluate Naïve Bayes [27], SVM using a linear kernel

[11][18][31] (results are not included since they’re already

implemented) and Boosting [19][12][32][42] algorithms.

For data cleaning we considered two approaches –

tokenization (1) and also further cleaning the data by

removing stop words, stemming (2)—they're discussed

deeper in section 3.1.

3.1 Datasets

We trained machine learning algorithms using data obtained

from Kaggle [8][9]. The data is first subjected to pre-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2933

processing. This will help in the classification algorithms

producing better results.

As part of the pre-processing of data, it removes all the blank

rows (If any) [26]. And it will change all the text to lower

case. This is an essential step as python is case sensitive. The

third most important step is the tokenization-each entry in

the data will be broken into a set of words [24]. The data

pre-processed until here is fit into the models, the accuracies

were noted, which we consider (1). Further, we removed

Stop words, non-numeric and performed word-stemming

[25] (2).

After final processing (1) and (2), the end output is stored

and is split into training and test data sets. The target

variable is label encoded-this will transform classes into

numerical values. Finally, we vectorized the words [28]

using TF-IDF vectorizer. Now, we ran different algorithms to

classify and check for accuracy. Fig-1 and Fig-2 show a step-

wise pre-processing of the dataset for (1) and (2) techniques.

Figure-1 Flow of the proposed system (1)

Figure-2 Flow of the proposed system (2)

4. RESULT ANALYSIS

We applied and assessed three ensemble learning

approaches apart from Gradient Boosting- AdaBoost,

XGBoost, and LightGBM. Gradient boosting algorithm has the

high computational time. Adaboost suits well for a binary

classification of data. LightGBM and XGboost are almost

similar- very fast computational time and uses less memory

as it uses histograms. LightGBM uses leaf-wise code splitting

where as XGboost and the other algorithms use Level-wise

node splitting. Two data-processing techniques are valuated

and the results for each technique is shown in Tables, Table

1-4. Payloads available for SQLi are immensely larger than

that of XSS payloads However, the XSS attacks datasets were

more refined than SQLi attacks payload. The classification

results of each machine learning approach are analysed by

Precision, and Recall [20][29].

Figures from Figure 7 to Figure 16 are evaluation results-

they’re graphs plotted between precision and recall by (1).

The first (1) data pre-processing technique and the (2) had a

drastic difference in their computational time, which was

expected as the data cleaning has cut down to one step i.e.,

tokenization. The former had higher accuracy than the latter.

The in the latter technique, word stemming is performed

which can be efficient only with data with no jargons.

Removing stop words also can cause damage as query

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2934

language has stop words as it’s point of execution. Hence, (1)

technique is considered to be more efficient, [5] and [1] also

suggested the same technique. The accuracies are compared

for the former and latter techniques in the figures- Fig- 7 and

Fig-8. These evaluation results lead us to believe that (1)

process can yield higher accuracies. Establishing that, Light

GBM algorithm has shown a whooping accuracy of 99.5%.

Since it is faster and utilizes lower memory, it implied that it

was the best model to use.

Figure 3- Accuracies by (1) and (2) on SQLi attacks

Figure 4- Accuracies by (1) and (2) on XSS attacks

 Accuracy Avg.

Precision

Recall

Gradient Boosting 99.23% 0.99

0.99

AdaBoost 99.50%

0.99

0.99

XGBoost 99.39% 0.99 0.99

Light GBM 99.51% 0.99 0.99

Table-1 SQLi attacks (1)

 Accuracy Avg.

Precision

Recall

Gradient Boosting 93.71% 0.89 0.92

AdaBoost 94.45% 0.89 0.92

XGBoost 94.33% 0.89 0.92

Light GBM 94.22% 0.89 0.92

Table-2 SQLi attacks (2)

 Accuracy Avg. Precision Recall

Gradient Boosting 99.50% 1.0 1.0

AdaBoost 99.56% 1.0 1.0

XGBoost 99.54% 1.0 1.0

Light GBM 99.59% 1.0 1.0

Table-3 XSS attacks (1)

 Accuracy Avg.

Precision

Recall

Gradient Boosting 89.25% 0.90 0.89

AdaBoost 87.78%

0.89 0.89

XGBoost 96.01% 0.96 0.96

Light GBM 95.54% 0.96 0.96

Table-4 XSS attacks (2)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2935

Figure-9 The Recall-Precision graph of Adaboost in XSS

Figure-10 The Recall-Precision graph of XGBoost in XSS

Figure-11 The Recall-Precision graph of Gradient boosting

in XSS

Figure-12 The Recall-Precision graph of Light GBM in XSS

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2936

Figure-13 The Recall-Precision graph of Adaboost in SQLi

Figure-14 The Recall-Precision graph of XGBoost in SQLi

Figure -15 The Recall-Precision graph of Gradient boosting

in SQLi

Figure -16 The Recall-Precision graph of Light GBM in

SQLi

5. IMPLMENTATION

After developing the model to detect and prevent SQLi and

XSS attacks, we deployed the model onto a CRUD application

developed using flask [33] and the database we utilized was

MySQL [34]. Whenever a user provides dynamic input, the

model sanitizes the input to determine whether or not

malicious code is there before committing to the database. If

the model detects any suspicious activity, it will prompt an

error saying there has been an attempt to breach. Figures,

Fig-17-Fig 20 display a sample demonstration of how our

experimental website works when a malicious code is given

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2937

as input. The data for the models used to deploy in this

specific website was pre-processed by (1) technique since it

showed significant results.

When any attack is detected instead of just giving a warning

to the client or in this case an attacker, we built a tool which

will sanitize the input using technique (1) before passing it

through the database, but if any malicious activity is found,

the public IP address of that particular user is stored.

Whenever said user tries to access the website again at a

later time, our tool will find that the public IP address is

already in the ban list and will not grant access to the user.

Figure-20 gives a simple demonstration of the tool. The

machine learning algorithm with which the pre-processed

data is predicting is Light GBM as it gave significant

accuracies, when compared with other boosting algorithms.

(Table 1 and Table 3)

Figure-17 A Website built to demonstrate working of SQLi

and XSS models

Figure-18 Deliberately giving an SQL query to prompt an

attack

Figure-19 Deliberately giving malicious code to prompt

XSS attack

Figure-20 Denying access if there is an attack

6. CONCLUSION

Web applications are exploited on a day-to-day basis as they

contain sensitive information. Two of the most common

exploitation techniques are SQLi and XSS. Our project

attempts to solve these perpetual attacks by building

classifiers on payloads of both SQLi and XSS. Gathering from

our analysis, tokenization of data is the best technique for

pre-processing (1), and also the computational time was

significantly lesser for (1). After Evaluating the results, Light

GBM clearly stood out from the rest of the boosting

algorithms with 99.51% and 99.59% accuracies for SQLi and

XSS respectively. For further enhancement- investigation on

malicious code i.e., curating a more efficient and specific

dataset is recommended as the payloads are very limited.

7. REFERENCES

[1] The Open Web Application Security Project (OWASP).

The Ten Most Critical Web Application Security Risks

2017. https://owasp.org/www-project-top-

ten/2017/Top_10.html

https://owasp.org/www-project-top-ten/2017/Top_10.html
https://owasp.org/www-project-top-ten/2017/Top_10.html

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2938

[2] The Evil Internet Minute 2019, RiskIQ.

https://www.riskiq.com/resources/infographic/evil-

internet-minute-2019/

[3] Mishra, Sonali, "SQL Injection Detection Using Machine

Learning" (2019). Master's Projects. 727.DOI:

https://doi.org/10.31979/etd.j5dj-ngvb

https://scholarworks.sjsu.edu/etd_projects/727

[4] Tajpour, Atefeh & Ibrahim, Suhaimi & Masrom, Maslin.

(2011). SQL Injection Detection and Prevention

Techniques. International Journal of Advancements in

Computing Technology. 3. 82-91.

10.4156/ijact.vol3.issue7.11.

[5] R. Komiya, I. Paik and M. Hisada, "Classification of

malicious web code by machine learning," 2011 3rd

International Conference on Awareness Science and

Technology (iCAST), 2011, pp. 406-411, doi:

10.1109/ICAwST.2011.6163109.

[6] William G. J. Halfond , Alessandro Orso, "AMNESIA:

analysis and monitoring for NEutralizing SQL-injection

attacks", Proceedings of the 20th IEEE/ACM

international Conference on Automated software

engineering, November 07-11, 2005.

[7] Prithvi Bisht, P. Madhusudan, and V. N.

Venkatakrishnan, “CANDID: Dynamic candidate

evaluations for automatic prevention of SQL injection

attacks”, ACM Transactions on Information and System

Security (TISSEC), v.13 n.2, p.1-39, February 2010.

[8] Kaggle SQL injection dataset--

https://www.kaggle.com/syedsaqlainhussain/sql-

injection-dataset?select=sqli.csv

[9] Kaggle XSS dataset for deep learning--

https://www.kaggle.com/syedsaqlainhussain/cross-

site-scripting-xss-dataset-for-deep-learning

[10] A. Joshi and V. Geetha, "SQL Injection detection using

machine learning," 2014 International Conference on

Control, Instrumentation, Communication and

Computational Technologies (ICCICCT), Kanyakumari,

2014, pp. 1111-1115.

[11] Understanding Support Vector Machine(SVM) algorithm from

examples--

https://www.analyticsvidhya.com/blog/2017/09/understai

ng-support-vector-machine-example-code/

[12] Chapter 12- Gradient Boosting--

https://bradleyboehmke.github.io/HOML/gbm.html

[13] Jianwei Hu, Wei Zhao, and Yanpeng Cui. 2020. A Survey

on SQL Injection Attacks, Detection and Prevention. In

<i>Proceedings of the 2020 12th International

Conference on Machine Learning and Computing</i>

(<i>ICMLC 2020</i>). Association for Computing

Machinery, New York, NY, USA, 483–488.

DOI:https://doi.org/10.1145/3383972.3384028

[14] Garcia-Alfaro, Joaquin & Navarro-Arribas, Guillermo.

(2009). A Survey on Cross-Site Scripting Attacks.

[15] J. Abirami, R. Devakunchari and C. Valliyammai, "A top

web security vulnerability SQL injection attack —

Survey," 2015 Seventh International Conference on

Advanced Computing (ICoAC), Chennai, 2015, pp. 1-9.

[16] S. K. Mahmoud, M. Alfonse, M. I. Roushdy and A. M.

Salem, "A comparative analysis of Cross Site Scripting

(XSS) detecting and defensive techniques," 2017 Eighth

International Conference on Intelligent Computing and

Information Systems (ICICIS), 2017, pp. 36-42, doi:

10.1109/INTELCIS.2017.8260024.

[17] Gregory Buehrer , Bruce W. Weide , Paolo A. G. Sivilotti,

"Using parse tree validation to prevent SQL injection

attacks", Proceedings of the 5th international workshop

on Software engineering and middleware, September

05-06, 2005

[18] N.Cristianini and J.Shawe-Taylor, "An Introduction to

Support Vector Machine and Other Kernel-based

Learning Methods," Cambridge University Press, 2000.

[19] Natekin, Alexey & Knoll, Alois. (2013). Gradient Boosting

Machines, A Tutorial. Frontiers in neurorobotics. 7. 21.

10.3389/fnbot.2013.00021.

[20] David L.Olson and D.Delen, "Advanced Data Mining

Techniques," Springer; I edition, pp. 138, Feb 2008.

[21] S.W.Boyd and AD.Keromytis, "SQLrand: Preventing SQL

Injection Attacks," Proc. the 2nd Applied Cryptography

and Network Security (ACNS) Conference, pp. 292-302,

Jun 2004.

[22] G.T.Buehrer, RW.Weide, and P.AG.Sivilotti, "Using Parse

Tree Validation to Prevent SQL Injection Attacks,"

International Workshop on Software Engineering and

Middleware (SEM), 2005.

[23] V.Haldar, D.Chandra, and M.Franz, "Dynamic Taint

Propagation for Java," Proc. 21 st Annual Computer

Security Applications Conference, Dec 2005.

[24] Rai A., Borah S. (2021) Study of Various Methods for

Tokenization. In: Mandal J., Mukhopadhyay S., Roy A.

(eds) Applications of Internet of Things. Lecture

Notes in Networks and Systems, vol 137. Springer,

Singapore. https://doi.org/10.1007/978-981-15-

6198-6_18.

[25] Pradana, Aditya & Hayati, Mardhiya. (2019). The Effect

of Stemming and Removal of Stopwords on the Accuracy

of Sentiment Analysis on Indonesian-language Texts.

https://www.riskiq.com/resources/infographic/evil-internet-minute-2019/
https://www.riskiq.com/resources/infographic/evil-internet-minute-2019/
https://doi.org/10.31979/etd.j5dj-ngvb
https://scholarworks.sjsu.edu/etd_projects/727
https://www.kaggle.com/syedsaqlainhussain/sql-injection-dataset?select=sqli.csv
https://www.kaggle.com/syedsaqlainhussain/sql-injection-dataset?select=sqli.csv
https://www.kaggle.com/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deep-learning
https://www.kaggle.com/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deep-learning
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://bradleyboehmke.github.io/HOML/gbm.html
https://doi.org/10.1007/978-981-15-6198-6_18
https://doi.org/10.1007/978-981-15-6198-6_18

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2939

Kinetik: Game Technology, Information System,

Computer Network, Computing, Electronics, and

Control. 4. 10.22219/kinetik.v4i4.912.

[26] Imputation of missing values- https://scikit-

learn.org/stable/modules/impute.html

[27] Kaviani, Pouria & Dhotre, Sunita. (2017). Short Survey

on Naive Bayes Algorithm. International Journal of

Advance Research in Computer Science and

Management. 04.

[28] Kumari, Anita & Shashi, M.. (2019). Vectorization of Text

Documents for Identifying Unifiable News Articles.

International Journal of Advanced Computer Science and

Applications. 10. 305. 10.14569/IJACSA.2019.0100742.

[29] Goutte, Cyril & Gaussier, Eric. (2005). A Probabilistic

Interpretation of Precision, Recall and F-Score, with

Implication for Evaluation. Lecture Notes in Computer

Science. 3408. 345-359. 10.1007/978-3-540-31865-

1_25.

[30] J. Fonseca, N. Seixas, M. Vieira and H. Madeira, "Analysis

of Field Data on Web Security Vulnerabilities," in IEEE

Transactions on Dependable and Secure Computing, vol.

11, no. 2, pp. 89-100, March-April 2014, doi:

10.1109/TDSC.2013.37.

[31] Sklearn- SVM classifiers- https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.h

tml

[32] Sklearn- gradient boosting-

https://scikitlearn.org/stable/modules/generated/skle

arn.ensemble.GradientBoostingClassifier.html

[33] Flask web development, one drop at a time-

https://flask.palletsprojects.com/en/2.0.x/

[34] MySQL, PHPMyAdmin-

https://www.phpmyadmin.net/docs/

[35] F. Huang, G. Xie and R. Xiao, "Research on Ensemble

Learning," 2009 International Conference on Artificial

Intelligence and Computational Intelligence, 2009, pp.

249-252, doi: 10.1109/AICI.2009.235.

https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://flask.palletsprojects.com/en/2.0.x/
https://www.phpmyadmin.net/docs/

