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Abstract – An optimal trainer for feedforward neural 
networks (FNNs) is presented. The trainer is an enhanced 
variant of the spider monkey optimization (SMO) algorithm. 
The enhanced variant has been named as modified local 
leader phase spider monkey optimization (MLLP-SMO). The 
enhancement of the SMO was done by modifying its local 
leader phase. The modification offers chances to each spider 
monkey that is selected for update, to update to a better 
position. The performance of the MLLP-SMO was assessed 
using six datasets. The datasets relate to fault detection, 
heart attack, iris species, breast cancer, diabetes and XOR 
function. The indicators used for the performance 
assessment are mean squared error (MSE) during training 
phase and classification accuracy of trained FNN. The 
MLLP-SMO trainer was compared with four other 
optimization algorithms. The four other optimization 
algorithms are the original SMO, particle swarm 
optimization (PSO), grey wolf optimization (GWO) and 
genetic algorithm (GA). The results obtained show that the 
MLLP-SMO performs better than the other algorithms. Its 
MSEs during training were largely lower than those of the 
other algorithms and the accuracy of its trained FNNs 
chiefly higher than the others. The MLLP-SMO is 
recommended for adoption as an optimal trainer for FNNs.  
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1. INTRODUCTION  
 

Artificial Neural Network (ANN) is a machine learning 
tool that models how the human brain processes, 
visualizes, and recognizes objects [1]. ANN has been used 
for different applications in diverse fields. In engineering, 
ANNs have been used in, for example, fault detection, 
classification and location, transient stability prediction, 
and load forecasting.  Different types of ANNs have been 
used in literature. Commonly used ones include 
feedforward neural network [2], recurrent neural network 
[3], radial basis function neural network [4], and Kohonen 
self-organizing maps [5].  

 
The performance of ANNs in applications depends on 
factors such as network architecture (i.e., number of 
neurons in the input, hidden and output layers), weights of 
connections between neurons, and biases of neurons. The 

weights and biases of neurons are determined in the 
learning (also known as training) process. Learning in 
ANNs is a process of using optimization algorithms to find 
a set of weights and biases that best map inputs to outputs 
[6]. In the learning process, a training algorithm (i.e., 
trainer) modifies the structural features (i.e., weights and 
biases) of the ANN for each training iteration to achieve a 
better performance. The trainer is removed once the ANN 
has finished learning and is ready to be used for an 
application such as prediction or classification.  
 
Broadly, there are two approaches to training ANNs. The 
approaches are supervised learning and unsupervised 
learning. The supervised learning process enables ANNs to 
learn the input and output relationships of a training data 
set while the unsupervised learning process learns from 
previously undetected patterns in a data set, with no 
initial outputs [7]. 

 
Classical learning methods for training neural networks 
are back-propagation [8] and Gradient Decent [9]. These 
methods, which are deterministic, make use of 
mathematical optimization models to train ANNs. These 
training methods are simple and fast [6]. However, their 
performances become poor when initial solutions are not 
carefully chosen. They also suffer from the problem of 
local optima entrapment.  To improve the classification 
accuracy of ANNs, high performing optimization 
techniques are required to produce optimal ANN weights 
and biases [10]. Accordingly, several optimization 
techniques have been proposed for enhanced ANN 
training [11].  
 
The optimization techniques for enhanced ANN training 
largely employ meta-heuristic optimization algorithms 
(MHOAs). Generally, the training process of a MHOA starts 
with an initial random solution which is improved as the 
training progresses. MHOAs that have been used to train 
neural networks are ant colony optimization, artificial bee 
colony optimization, bacterial foraging optimization, bat 
algorithm, biography-based optimization, bird mating 
optimization, genetic algorithm, and particle swarm 
optimization. Others are grey wolf optimization, chemical 
reaction optimization, cuckoo search optimization, firefly 
optimization, gravitational search algorithm, invasive 
weed optimization, krill herd optimization, moth-flame 
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optimization, social spider optimization and tabu search 
optimization [11].  
These metaheuristic methods largely perform better than 
deterministic training methods. However, the current 
performances of these algorithms still leave a lot of room 
for improvement in optimizing the performance of ANNs. 
This is because the existing MHOAs do not provide a good 
trade-off between exploration and exploitation in 
optimizing the performance of ANNs [11].  Exploration 
helps in the attainment of global optimum while 
exploitation aids in achieving local optimum. Therefore, 
there is the need to explore the use of hybrid approaches 
(i.e., combine two or more MHOAs) or come up with new 
MHOAs that have excellent exploitation and exploration 
attributes. This should provide greater improvement in 
ANN training [11]. 

 
Spider monkey optimization (SMO) is a recently 
introduced MHOA that has demonstrated enhanced 
exploration and exploitation ability [12]. The SMO was 
inspired by the foraging behaviour of spider monkeys 
[12]. The SMO has been successfully applied to solve 
complex problems in optimization. It has been shown to 
outperform artificial bee colony optimization and particle 
swarm optimization in terms of dependability, 
effectiveness, and precision [12].  Hence, in this work, the 
SMO has been explored to optimize the training of ANNs.  
First, the effectiveness of SMO is further enhanced through 
a modification of its local leader phase. Second, the 
enhanced SMO is used as an optimized trainer for a 
feedforward neural network (FNN). FNNs are one of the 
most widely used neural network models. The improved 
SMO is called modified local leader phase spider monkey 
optimization (MLLP-SMO).  The performance of the MLLP-
SMO is compared with the original SMO. The MLLP-SMO is 
further compared with the grey wolf optimizer, particle 
swarm optimization, and genetic algorithm which are high 
performing optimization algorithms [6, 11].   

 
The rest of the paper is structured as follows; Section 2 
gives a description of the Feedforward neural network 
(FNN) Section 3 presents the modified local leader phase 
spider monkey optimization (MLLP-SMO) algorithm. 
Section 4 presents the MLLP-SMO FNN trainer.  In Section 
5, the approach used to test the proposed MLLP-SMO 
trainer, including the datasets used for evaluating the 
performance of the MLLP-SMO trainer is presented. The 
evaluation results are presented and discussed in Section 
6. Conclusions drawn are presented in Section 7. 

 

2. FEEDFORWARD NEURAL NETWORK 
 
Feed-forward neural networks have been widely used for 

various studies. They are made up of interconnected 

neurons that are structured in parallel layers. The layers 

are classified into input layer, hidden layer, and output 

layer.  There are no feedbacks from one layer to another. 

Depending on the number of parallel layers that exist in 

the networks, FNNs can be classified as single or multi-

layered networks. Single-layered FNNs have only input, 

and output neurons interconnected together. Multi-

layered FNNs have input layer, single or multiple hidden 

layers, and an output layer [13]. A multi-layered FNN with 

a single hidden layer, inputs, outputs, biases, and 

interconnecting weights is illustrated in fig -1. 
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Fig -1: Architecture of FNN with one hidden layer 

 

In Fig -1,  nxxx ,...,, 21 are the input variables, ijw  is the 

input weights from the ith input neuron to the jth hidden 

neuron, jb  is the input bias of the jth hidden neuron, jkw  

is the connection weight of the jth  hidden neuron to the 

kth output neuron and kb is the bias of the kth output 

neuron.  In the working of the FNN, the weighted sums of 

the input data are propagated to the hidden layer neurons. 

The weighted sums of the outputs of the hidden layer 

neurons are then propagated to the neurons in the output 

layer. The outputs of the hidden layer neurons are 

obtained by taking the inputs to the neurons and their 

biases through an activation (or transfer) function. The 

weighted sums of the outputs of the hidden layer neurons 

are propagated to the inputs of the hidden layer neurons. 

The outputs of the output layer neurons, which are the 

outputs of the FNN are determined by also applying an 

activation function to the weighted inputs and biases [14]. 

Commonly used activation functions are tan-sigmoid 

(tansig) and log-sigmoid (logsig) transfer functions [15].  

The weighted sums of the input neurons, jS , are given by 

(1) where n is the number of input neurons and h is the 

number of hidden layer neurons. The outputs of the 
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hidden layer neurons, jH , for log-sigmoid activation 

functions, are given by (2). The weighted sums of the 

outputs of the hidden layer neurons, Yk, where m is the 

number of output layer neurons are given by (3). The final 

outputs of the network, kO , using a log-sigmoid activation 

functions, are given by (4) [6, 14].   
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It is noted from (4) that the output kO of the FNN highly 

depends on the weights and biases. Thus, the optimization 

of the weights and biases will yield highly accurate 

outputs. Hence, the focus of any FNN training algorithm 

should be to optimize the values of the weights and biases. 

3. PROPOSED MODIFIED LOCAL LEADER PHASE 
SPIDER MONKEY OPTIMIZATION (MLLP-SMO) 
ALGORITHM 

 
The SMO algorithm mimics the foraging behaviour of 

spider monkeys. It follows a fission-fusion concept. The 

foraging behaviour is basically based on food scarcity or 

availability which causes the spider monkeys to either 

split (fission) or combine (fusion). The SMO operates in 

seven phases. These are initialization, local leader phase, 

global leader phase, global leader learning phase, local 

leader learning phase, local leader decision phase and 

global leader decision phase [16]. 

In the local leader phase of the SMO algorithm, the update 

of a spider monkey ( ijSM ) is done by a greedy approach 

where the fitness of ijSM at a new position is accepted 

only when it is better than the fitness at the old position. 

The deficiency of this approach is that ijSM  with low 

fitness but near the global solution is deprived of a chance 

to update. The effect is that the algorithm could move in a 

non-optimal direction and skip the true solution. From (5), 

the update of an ijSM  position is highly dependent on β 

and the impact of a random spider ( rjSM ). β is a uniformly 

distributed random number in the range of (-1,1). α  is a 

random number generated in the range (0,1). 

 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝛼 ×  𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗  + 𝛽 × (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗 )  

                                (5) 

Due to the uneven opportunity given to each ijSM in the 

position update at this phase, there is the possibility that 

sSM ij with good fitness or all sSM ij  chosen by prα  will 

not update towards the global optima for a particular 

iteration. This will cause the algorithm to shift to produce 

non-optimal results. pr is the perturbation rate and 

normally ranges from 0.1 to 0.8. 

To enhance the SMO , each ijSM  chosen by prα   to 

update, is given a chance in the search space of the local 

leader phase, according to the fitness of their old position, 

to update to a better position. The number of chances 

offered to an ijSM
 

to update is defined according to a 

fitness proportionate selection in genetic algorithm [17] 

and the total number of sSM ij in the search space ( Y ). The 

number of chances given to each ijSM  for the next 

iteration is defined by (6).  
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Where  )(oldijSMfit  is the fitness of ijSM in its old position 

and N is the number of sSM ij . If after the number of 

chances, an ijSM  does not update to a better position, then 

it is set to its old position. The pseudocode for the 

proposed MLLP algorithm for the position update is 

presented as follows: 

for each member th
ij kSM  group 

       for each  Dj ,...2,1 do 

               if   prα 1,0 then  

    ijkjijij SMLLαSMf  1,0       

  ijrjij SMSMg            

  While (chances to update has not elapsed), do 

                         ijijijchances gβfSM  1,1)(  

   if )()( )( ijijchance SMfitSMfit   
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)()( ijchanceijnew SMSM   

                                    break 

                          else if (chances elapsed) 

ijijnew SMSM )(  

                               break 

           end if 

                  end while             

            end if 

        end for 

end for 

To use the MLLP algorithm to update the position of a 

spider monkey, ijSM , to obtain a new position, )(ijnewSM , a 

random number denoted by α  is generated within the 

limits of 0 and 1. This random number is then compared to 

the perturbation rate (pr). If α is greater than pr, the ijSM

is selected to update its position in the thj dimension. 

First, the effect of the local leader’s position ( kjLL ) on 

ijSM is checked by ijf , as defined in the pseudocode. The 

effect of the random spider ( rjSM ) on ijSM is also checked 

by ijg . The ijSM is then given some chances with a value 

defined according to (6) to update to a better position in 

the search space. For each position generated under the 

chances given ( )(ijchancesSM ), its fitness is checked and 

compared to the fitness of the old position ( ijSM ) of the 

spider monkey. The spider monkey is assigned the new 

position ( )(ijnewSM ) if the fitness value at the new position 

is better than the fitness at the old position. The position 

update is then completed irrespective of whether the 

number of chances is elapsed. On the other hand, if a 

better position is not found in the search space after the 

number of chances offered a spider monkey is elapsed, its 

position is not updated but set to the old position ( ijSM ). 

This process is repeated for all spider monkeys in the 

search space.   

In the proposed position update algorithm, ijf  checks for 

how far the ijSM  is drawn towards the local leader ( kjLL ) 

in the thj  dimension, whilst ijg  checks the influence of the 

random spider rjSM in the  thj  dimension. The number of 

chances as defined in (6) balances ijf  and ijg by giving 

proportionate opportunity to each ijSM to update by 

prα  , according to its old fitness value and maintains the 

stochastic nature of the local leader phase. Figure 1 is a 

flowchart that shows the implementation of the MLLP-

SMO. 

The implementation of the MLLP-SMO algorithm is 

summarized as follows:  

Step 1:  Initialize population, local leader limit, global 

leader limit, maximum number of groups, and 

perturbation rate.  

Step 2:  Evaluate population. Here, the fitness of each 

spider monkey in the population is determined 

using their initial positions on the objective 

function of the problem being solved. 

Start

Initialize population, local leader limit, global leader 
limit, maximum number of groups and perturbation rate

Evaluate the population

Identify global and local leaders

Update the position of each local leader 
using MLLP algorithm

Update the position of global leader

Learn through global leader learning 
phase

Learn through local leader learning phase

Position update by local leader decision 
phase

Decide fission or fusion

Is termination condition 
satisfied?

No

Declare the global leader position as the 
optimal solution

Yes

 

Fig -2: Implementation of MLLP-SMO algorithm 

Step 3:  Identify local and global leaders. This involves the 

selection of spider monkeys with best fitness in 

each group as local leaders and the individual with 

best fitness amongst all the groups as global leader. 
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Step 4: Update the position of each spider monkey using 

the MLLP algorithm. Spider monkeys with α

greater than the perturbation rate update their thj

dimension position towards the positions of their 

local leaders and a random spider monkey’s 

position. 

Step 5: Update the position of global leader using global 

leader phase update rule. Spider monkeys with 

fitness probability greater than the perturbation 

rate update their positions in the thj  dimension. 

Step 6: Learn through global leader learning phase. Here, 

spider monkey with best fitness after global leader 

phase is selected as global leader and its update is 

checked against the global leader limit. 

Step 7: Learn through local leader learning phase. This 

entails selecting a spider monkey with the best 

fitness as the local leader and checking its update 

against the local leader limit count. 

Step 8:  Position update by local leader decision phase. For 

this, spider monkeys belonging to a particular local 

group whose local leader is not updating up to the 

local leader limit are given opportunity to update 

through random initialization. 

Step 9:  Decide fission or fusion using global leader 

decision phase. The global leader either divides the 

spider monkeys into groups if the stopping criteria 

(i.e., maximum number of groups) is not met or 

fuse them into a single group if otherwise. 

Step 10:  If termination condition (i.e., maximum number 

of groups is reached or minimum error specified is 

attained) is satisfied, declare the global leader 

position as the optimal solution. Otherwise, go 

back to Step 4. 

 

4. PROPOSED MLLP-SMO TRAINER 
 
The training of neural networks entails the continuous 

mapping of input datasets to the output datasets to find 

the optimal set of weights and biases within a minimum 

number of iterations. The determination of optimal 

weights and biases produces trained ANNs with high 

classification accuracy [18].   

 

Performances of trainers, during and after training, are 

assessed using error functions. The lower the error, the 

better the performance. Commonly used error functions 

are mean square error (MSE), sum of squared error (SSE) 

and root mean square error (RMSE). In this work, the 

mean square error function was used to assess the 

training performance. Consequently, the objective function 

for training the FNN with the MLLP-SMO is to minimize 

the MSE of each training iteration. The MSE is given by (7).   
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where n is the total number of training samples, m is the 

number of output samples, j
ia  is the actual output of the 

𝑖 input data point from the j training sample and j
id  is the 

desired output of the i input data point from the j training 

sample. The weights (w) and biases (b) supplied to the 

MLLP-SMO as variables to be optimized.  

 

Fig -3 is a flowchart that summarizes the training process 

of the FNN using the proposed MLLP-SMO trainer. The 

process is further outlined as follows: 

1. Divide input and output datasets into training, 
validation, and testing data. 

2. Supply the training and validation datasets to the feed-
forward neural network (FNN). 

3. Initialize population size (i.e., number of spider 
monkeys), local leader limit, global leader limit, 
maximum group, and perturbation rate of the MLLP-
SMO. 

4. Generate initial weights and biases using the MLLP-
SMO and supply to feed-forward neural network to 
begin the search and training process. 

5. Train the FNN network with the received weights and 
biases on the training and validation datasets. 

6. Check the mean square error (MSE) between each 
input training sets and respective output training sets.  

7. If stopping criteria or minimum MSE is not attained, 
search through solution space of MLLP-SMO for better 
weights and biases for further training. 

8. If stopping criteria or minimum MSE is attained, output 
the FNN with the optimal weights and biases. 
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Input dataset

Start

Training and 
validation datasets

Generate weights and 
biases

Train FNN

Compute MSE of 
training sets

Initialize parameters 
of MLLP-SMO

Is minimum MSE or 
maximum number of 
iterations attained?

No

End

Yes

 
Fig -3: Flowchart for FNN training with MLLP-SMO 

 

5. APPROACH USED TO TEST PROPOSED 
TRAINER 

 
The performance of the proposed MLLP-SMO trainer was 

evaluated using widely used datasets. The performance of 

the MLLP-SMO was then compared with the original SMO 

and some good performing trainers in literature. The 

other trainers that the MLLP-SMO was compared with are 

particle-swarm optimization (PSO), grey wolf optimizer 

(GWO), and genetic algorithm (GA). The same datasets 

were used for all the trainers in both the training and 

testing phases. All training and testing were done using a 

windows operating system-based computer having the 

following specifications: Intel (R) Core TM i7-10750H with 

CPU of 2.60 GHz and 16.0GB RAM. Sub-section 5.1 

presents the parameters used for the MLLP-SMO, GWO, 

PSO, GA and SMO. The datasets used for training and 

testing are presented in sub-section 5.2.  

5.1 Parameters used for trainers 
 
Table -1 presents the parameters used for the MLLP-SMO, 
SMO, GWO, GA and PSO trainers. The parameters for GWO, 
GA and PSO were taken from [6]. For each trainer, the 
initial weights and biases for the FNN were randomized in 
the range of (-10,10). Due to the randomized selection of 
weights and biases, each algorithm was run five separate 
times. For each trainer, the weights and biases for the run 
that produced the least MSE become the optimized 
weights and biases for the associated FNN. 
 

5.2 Datasets for FNN training and testing 
 
The trainers (i.e., MLLP-SMO, SMO, GWO, GA and PSO) 
trained the FNN using 6 detection/classification datasets 
from the Kaggle repository [19]. The datasets are fault 
detection dataset [20] heart attack analysis and prediction 
dataset [21], iris species dataset [22], Pima Indians 
diabetes dataset [23], breast cancer Wisconsin 
(diagnostic) data set [24], and 4-bit XOR.  The dataset for 
fault detection has 6 input variables and 2 output classes. 
The 6 input variables are three-phase currents and 
voltages. The 2 classes of outputs are no-fault condition 
and fault condition. The heart attack analysis and 
prediction datasets contain 13 input variables (or 
attributes) and two output classes. The input variables are 
age, sex, constrictive pericarditis, chest pain type, resting 
blood pressure, serum cholestoral, fasting blood sugar, 
resting electrocardiographic results, maximum heart rate 
achieved, exercise induced angina, ST depression induced 
by exercise relative to rest, slope of the peak exercise ST 
segment, number of major vessels colored by flourosopy, 
and Thallium Stress. The two output classes which give a 
diagnosis of heart disease (i.e., angiographic disease 
status) are: less than 50% diameter narrowing and greater 
than 50% diameter narrowing. The iris dataset is an  
 

Table -1: Parameters used for trainers. 
Algorithm Parameter Value 

MLLP-

SMO 

Maximum number of groups 

Number of spider monkeys  

Local leader limit  

Global leader limit  

Perturbation rate 

Max. no. of iterations  

5 

100 

50 

150 

0.1 

250 

SMO Maximum number of groups 

Number of spider monkeys  

Local leader limit  

Global leader limit  

Perturbation rate 

Max. no. of iterations  

5 

100 

50 

150 

0.1 

250 

GWO α 

 

Population size  

Linearly 

decreased from 2 

to 0 
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Max. no. of generations 200 

250 

GA Type 

Selection  

Crossover 

 

Mutation  

 

Population size  

Max. no. of generations 

MATLAB 

optimizer 

Roulette wheel 

Single point 

(probability=1) 

Uniform 

(probability=0.01) 

200 

250 

PSO Topology 

Cognitive constant 

Social constant 

Population size  

Inertia constant  

Maximum number of 

iterations  

Fully-connected  

1 

1 

200 

0.3 

250 

 
example of discriminant analysis and classification.  The 
dataset has 4 input variables namely sepal length, sepal 
width, petal length and petal width, all in centimeters. The 
dataset classifies iris plants into 3 species namely, setosa, 
versicolor and verginica. The breast cancer dataset 
contains 30 input variables and two output classes. The 
output classes are benign and malignant. The 30 input 
variables were assessed to be excessive so the ‘ranksearch’ 
tool in Weka software (a machine learning tool) was used 
to select the features (variables) whose usage will give the 
best performance [25]. Consequently, the following five 
attributes were selected as input variables: radius mean, 
texture mean, perimeter mean, area mean, and 
smoothness mean.  The XOR was selected to represent a 
non-linear dataset. It has four attributes with two outputs 
classes of 0 and 1. The last dataset is the Pima Indians 
diabetes dataset.  This dataset 
has 8 input variables and 2 output classes. The input 
variables are number of pregnancies had, glucose level, 
blood pressure, skin thickness, insulin level, body mass 
index, diabetes pedigree function and age. The two output 
classes are “patient does not have diabetes” and “patient 
has diabetes”. Each of these datasets provided a unique 
level of difficulty for the classification. 
 

5.3 Architecture of FNN 
For each FNN, the number of neurons in the input layer 
equaled the number of input variables (i.e., attributes) for 
each dataset. With regards to the number of neurons in 
the hidden layer, the optimal number is determined on a 
trial-and-error basis using varied number of neurons.  
However, a number that is equal to 2N+1, where N is the 
number of neurons in the input layer, is commonly used in 
literature [6]. Each FNN had 1 neuron in the output layer 
which outputted the varied classifications of outputs of the 
datasets.  
 

The structure of the FNN for each dataset is shown in 
Table -2. The FNN for fault prediction had 6 neurons (1 
each for the 6 input variables) in the input layer, 10 
neurons in the hidden layer and 1 neuron in the output 
layer. The FNN for indicating potential heart attack had 13 
neurons (1 each for the 13 input variables) in the input 
layer, 27 neurons in the hidden layer, and 1 neuron in the 
output layer. The FNN for identifying iris species had 4 
neurons (1 each for the 4 input variables) in the input 
layer, 9 neurons in the input layer and 1 neuron in the 
input layer. The FNN for breast cancer detection had 5 
neurons (1 each for the 5 input variables) in the input 
layer, 11 neurons in the hidden layer and 1 neuron in the 
output layer. The FNN for XOR classification had 4 neurons 
(1 each for the 4 input variables) in the input layer, 9 
neurons in the hidden layer and 1 neuron in the output 
layer. The FNN for detecting diabetes in Pima Indians had 
8 neurons in the input layer, 17 neurons in the hidden 
layer and 1 neuron in the output layer.  
 
The FNN for fault detection was trained such that the 
output neuron produced an output of either 0 or 1.  An 
output of 0 indicated a no-fault condition whereas an 
output of 1 communicated the presence of a fault.  The 
FNN for classifying heart attack datasets, was trained to 
produce an output of 0 if there is less than 50% diameter 
narrowing and 1 if there is greater than 50% diameter 
narrowing.  The FNN for the iris species classification was 
trained to give outputs of 1, 2 and 3 for setosa species, 
versicolor species and verginica species, respectively. 
Regarding the breast cancer status classification, the FNN 
was trained to output 0 for a benign condition and 1 for a 
malignant cancer. For the FNN that will serve as an XOR 
classifier, the FNN was trained to produce outputs of 0s’ 
and 1s in line with XOR outputs.  
 
The following divisions of the datasets were used for 
training, validation, and testing. For the dataset on fault 
detection, 700 sets were used for training, 300 for 
validation and 633 for testing.  Regarding the heart attack 
dataset, 162 was used for training, 50 for validation and 
91 for testing. As regards the iris species dataset, 100 was 
used for training, 50 for validation and 150 for testing. For 
the breast cancer dataset, 298 was used for training, 100 
for validation and 171 for testing. Relating to the XOR 
dataset, 10 was used for training, 4 for validation and 16 
for testing. Lastly, for the Pima Indians diabetes dataset, 
438 was used for training, 100 for validation and 230 for 
testing. 
 

Table -2: Architecture of FNN for datasets 
Datasets No. of input 

variables 

FNN architecture 

Fault detection 6 6-10-1 

Heart attack 13 13-27-1 
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Iris species 4 4-9-1 

Breast cancer  5 5-11-1 

4-bits XOR 4 4-9-1 

Pima Indians diabetes 8 8-17-1 

 

6. RESULTS AND ANALYSIS 
 
This section presents the performance of the modified 
local leader phase -spider monkey optimization (MLLP-
SMO) trainer and compares it with the performances of 
the spider monkey optimization (SMO) trainer, the genetic 
algorithm (GA) trainer, the grey wolf optimizer (GWO) 
trainer, and the particle swarm optimization (PSO) trainer. 
The performances were assessed using the mean squared 
error (MSE), percentage classification accuracy and 
boxplots (i.e. data fitting). The results have been presented 
under 6 sub-sections in line with the datasets used.  
 

6.1 Fault detection dataset 
 
Table -3 presents the MSEs obtained during training and 
the classification accuracies during testing, with regards to 
the dataset for fault detection. It is noted from the Table -3 
that the proposed MLLP-SMO produced the least MSE 
during training. The FNNs trained by the MLLP-SMO and 
the GWO were the best performing classifiers, with 100% 
accuracy. These were followed by the GA and SMO trained 
FNNs. The FNN trained by the PSO exhibited the least 
classification accuracy. The boxplots for the classifications 
are shown in Fig -4. It is noted from the figure that the 
boxplots for the MLLP-SMO and GWO trained FNNs do not 
have any outliers  
  

Table -3: Performance of trainers for fault detection 
dataset 

Algorithm MSE 

(Training) 

Accuracy (%) 

(Testing) 

SMO 0.1633 76 

MLLP-SMO 0.0125 100 

GA 0.1670 80 

GWO 0.0182 100 

PSO 0.1951 75 

whereas the plots for the GA and SMO trained FNNs, which 
did not perform well, have several outliers. For the PSO 
trained FNN, which performed poorly, the first quartile 
(1Q), third quartile (3Q), mean and median were each 
0.6298 giving an inter-quartile range (IQR) of 0. 
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Fig -4: Boxplots of FNN outputs for fault detection dataset 

 

6.2 Iris species dataset 
 
The MSEs obtained during training and the percentage 

accuracies of the trained classifies during testing, for the 

iris species dataset are presented in Table -4. It is noted 

from the Table that the MLLP-SMO trainer had the least 

MSE of 0.0103 during training. The SMO trainer had the 

highest MSE of 0.5578. With regards to the classification 

accuracy during testing, all the FNNs performed very well. 

The MLLP-SMO and the GWO equally had the highest 

classification accuracy of 99%. The SMO had the lowest 

performance accuracy.  Further details of the classification 

accuracy are presented in the boxplots shown as fig -5. It 

is observed from fig -5 that the boxplots for the various 

FNNs closely matche that for the dataset. Although none of 

the classifiers produced outputs that were outliers, none 

of them achieved 100% accuracy because, for example, 

some outputs that were expected to be 1s were 

misclassified as 2s.   

 

Table -4: Performance of trainers for Iris species dataset 
Algorithm MSE 

(Training) 

Accuracy (%) 

(Testing) 

SMO 0.5578 94 

MLLP-SMO 0.0103 99 

GA 0.1030 95 

GWO 0.0271 99 

PSO 0.0361 97 
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Fig -5: Box plot for Iris datasets 

 

6.3 Breast cancer dataset 
 
For the breast cancer dataset, the MSEs obtained during 
training and the classification accuracies are presented in 
Table -5.  

 
Table -5: Performance of trainers for breast cancer 

dataset 
Algorithm MSE 

(Training) 

Accuracy (%) 

(Testing) 

SMO 0.6940 89 

MLLP-SMO 0.2041 94 

GA 0.7582 84 

GWO 0.2169 93 

PSO 0.1942 95 

 

It can be observed from the Table that the PSO had the 

least MSE during training followed by the MLLP-SMO. The 

trainer that had the highest MSE was the GA.  With regards 

to the accuracies of the trained FNNs, the FNN trained by 

the PSO had the highest accuracy of 95%. This was 

followed by the FNN trained by the MLLP-SMO with an 

accuracy of 94%. The FNN trained by the GA was the least 

performing classifier, with an accuracy of 84%. The 

boxplots for the outputs of the classifiers are shown in fig -

6.  It is noted from fig. -6 that the FNNs trained by the GA 

and SMO had several outliers, which accounted for their 

rather poor performances. The plots for the high 

performing FNNs which were trained by the PSO, MLLP-

SMO and GWO closely matches that of the dataset. 
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Fig -6: Boxplot for breast cancer datasets 

6.4 XOR dataset 
 
Table -6 shows the MSEs computed for the trainers during 

the FNN training. The Table also shows the classification 

accuracies of the FNNs trained by the various trainers. The 

MLLP-SMO had an exceptionally low MSE of 0.004 and was 

followed by the GWO with a low MSE of 0.0812.  The PSO 

had the highest MSE of 0.6475. Both the FNNs trained by 

the MLLP-SMO and GWO had classification accuracies of 

100% and were therefore the best performing classifiers. 

These were followed by the FNN trained by the GA which 

had a classification accuracy of 87%. The classifiers 

trained by the SMO and the PSO were equally poor 

performing with each having an accuracy of 75%. The 

boxplots of the various classifiers are presented in fig -7.   

Table -6: Performance of trainers for XOR dataset 
Algorithm MSE 

(Training) 

Accuracy (%) 

(Testing) 

SMO 0.5830 75 

MLLP-SMO 0.0004 100 

GA 0.4733 87 

GWO 0.0812 100 

PSO 0.6475 75 
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Fig -7: Boxplot for XOR datasets 

6.5 Pima Indians diabetes dataset 
 
The MSEs obtained during the trainings are presented in 

Table -7. The Table also shows the classification 

accuracies of the FNNs trained by the various algorithms. 

From Table -7, the MSEs are generally high. This is due to 

the complex nature of the dataset. The MLLP-SMO trainer 

however had the lowest MSE of 0.6023 and was followed 

by the GWO with an MSE of 0.7571. The PSO had the 

highest MSE of 1.3525. The generally high MSEs translated 

into poor performing FNNs. All the classifiers had equally 

poor accuracies of 65%.  The boxplots for the outputs of 

the classifiers are shown in fig -8. The plots show several 

outliers for the classifiers trained by the SMO, GA and PSO. 

The MLLP-SMO had the least number of outliers with the 

GWO producing no outlier. Although the GWO produced 

no outlier classification, that did not translate into higher 

classification accuracy. This was because several of the 

outputs were misclassified.  Some desired outputs of 1 

were misclassified as 0. Similar misclassifications were 

recorded for all the other classifiers.  

Table -7: Performance of trainers for Pima Indians dataset 
Algorithm MSE 

(Training) 

Accuracy (%) 

(Testing) 

SMO 1.1037 65 

MLLP-SMO 0.6023 65 

GA 1.0640 65 

GWO 0.7571 65 

PSO 1.3525 65 
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Fig -8: Boxplot for Pima datasets 

 

6.6 Heart attack dataset 
 
Table -8 shows the MSEs obtained during training and the 

accuracies of the classifiers during testing, for the heart 

attack dataset. It is noted from the Table that the MLLP-

SMO had the least MSE, followed by the GWO. The trainer 

that had the highest MSE was the GA. With regards to the 

classification accuracy, none of the classifiers could attain 

100% accuracy. 

Table -8: Performance of trainers for heart attack dataset 
Algorithm MSE 

(Training) 

Accuracy (%) 

(Testing) 

SMO 0.5257 84 

MLLP-SMO 0.3399 89 

GA 0.9709 67 

GWO 0.3790 87 

PSO 0.4805 85 

 

This is due to the complex nature of the heart attack 

dataset. Notwithstanding this, the MLLP-SMO trained FNN 

produced the best performance, with a percentage 

accuracy of 89%. The FNN trained using GWO followed 

with a classification accuracy of 87% and then the FNN 

trained by the PSO which had a classification accuracy of 

85%. The GA trained FNN had the lowest accuracy of 67%. 

7. CONCLUSIONS 
 
The training of feedforward neural networks (FNN) has 
been enhanced using a modified local leader phase spider 
monkey optimization (MLLP-SMO) algorithm.  The MLLP-
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SMO has been compared with four other algorithms. The 
MLLP-SMO trainer had the least MSE in 5 out of the 6 
datasets used for performance assessment. It shared the 
top spot with the GWO, on trained FNN classifier accuracy, 
in 3 out of the 6 datasets. The MLLP-SMO classifier was the 
best performing classifier in 1 out of the 6 datasets. Its 
classifier performed equally with the other classifiers in 1 
out of the 6 datasets. The classifier trained by the MLLP-
SMO was however the second best performing, after the 
PSO, in 1 out of the 6 datasets. Thus, the MLLP-SMO 
outperformed all the other optimization algorithms as a 
trainer for feedforward neural networks.  The best 
performance of the MLLP-SMO is due to its higher ability 
to avoid local optima entrapment in training of the FNN to 
produce optimal weights and biases. Thus, compared with 
the other algorithms, the MLLP-SMO has better 
exploitation and exploration abilities.  The use of the 
proposed MLLP-SMO trainer for training FNNs will yield 
higher classification accuracies than the other algorithms. 
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