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Abstract – In this paper, we explore the possibility of 

formulating the Gaussian mixture model (GMM) fitting 

problem as a linear regression problem based on the 

differential relationship in the GMM data points. This 

approach is not popular in the literature yet it is very 

powerful in simplifying and transforming many nonlinear 

regression problems into linear regression problems. We 

demonstrate here with fitting a dataset to a two-component 

GMM, something which would commonly be considered as a 

nonlinear regression problem. In this differential 

formulation, the approach is shown to be sensitive to noise 

and an autoregressive formulation approach is suggested to 

avoid noise amplification. 
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1. INTRODUCTION 
Parameter estimation problem often comes up whenever 

some experimental data has to be fitted to the model of 

choice. This could be for various reasons including system 

identification & characterization, behavioral analysis, 

model-based control & state estimation, as well as 

forecasting, smoothing, and filtering [1], [2], [3]. One of the 

models used to estimate almost any smooth continuous 

function is the Gaussian mixture model (GMM), composed 

of the weighted average of Gaussian functions [4]. Two 

examples of GMM applications are classification & 

clustering [5] and nonGaussian probability distribution 

estimation [6]. The properties of Gaussian functions 

(including self-conjugacy, stationarity, local support, etc) 

make them very attractive for Bayesian evolution [7], and 

as the finite basis set for estimating other complicated 

functions [8]. With GMM being a  nonlinear model, fitting 

data to such a model is often formulated as nonlinear 

regression. In this formulation there exists no closed-form 

solution to the problem hence the iterative optimization-

based algorithms are adopted to solve this problem [9]. 

In this paper, we adopt a differential formulation of the 

regression problem which allows the model parameter 

estimation problem to be transformed from a nonlinear 

regression to a linear regression problem. The approach is 

based on shifting the problem from how the model output 

is related to its independent variables to how it relates to 

its derivatives.  We consider a two-component GMM to 

demonstrate the differential-based linear regression 

formulation of the GMM fitting problem. 

The rest of this paper is organized as follows. Section 2 

presents a two-component GMM and the resulting 

differential linear regression problem formulation. Section 

3 presents model-fitting simulation results and discussion. 

Section 4 concludes this work with a summary of major 

findings and some remarks.   

2. LINEAR REGRESSION MODEL FOR GMM 
2.1 Gaussian Mixture Model 
A general one-dimensional  -component GMM      can 

be represented as follows,  

     ∑    
         

  
         (1) 

with    as the     component weight,    being inversely 

related to the     component variance and    being the 

mean of the     component. In this paper, we will restrict 

ourselves to     however, the same concept applies to 

higher values of  . With     we have the following 

model with six unknown parameters to be determined 

from the data, 

        
         

 
    

         
 
    (2) 

2.2 Gaussian Mixture Model In Differential Form 
Differentiating equation (2) twice and relating the 

equation (2) with its first two derivatives we obtain the 

following differential equation, 

      
         

               (3) 

with variable coefficients       given by, 

                   (4) 

         
              (5) 

         
     

             (6) 

where the constant coefficients    are given by, 
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In the next section, we show, without going into detail, the 
autoregressive representation of the differential model in 
equation (3). 
 
2.3 Gaussian Mixture Model In Autoregressive Form  
Equation (3) above can be discretized, with a 

discretization parameter (or sampling interval)   in  , to 

give the following difference equation (or an 

autoregressive model), 

     
                

              
    

              

              
         (16) 

with   indicating the     sample or discrete data point 
index. It was shown in [10], [11] that the autoregressive 
formulation is less prone to noise than the differential 
formulation due since the differential operation (i.e. 
equation (3)) amplifies high-frequency noise while the 
integration operation (i.e. equation (16)) is a low pass 
filter. From [10], [11] it is made clear how one can switch 
between the two representations when formulating the 
linear regression model hence in this paper, we will only 
focus on one representation and that being the linear 
regression formulation based on equation (3). In the next 
section, we present the linear regression problems based 
on a given data set and show the solution.  

2.4 Differential Linear Regression Model  
Given a data        of size   (i.e.            ) to fit a 

GMM, we can formulate the linear regression problem 

using equations (3-15) as shown in the cost function 

below,  

      ∑ (
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    (17) 

with        
  . The resulting solution to this linear 

regression problem is given by the following matrix 

equation, 
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from which the parameters of interest    ,   ,     and    

are obtained using the following relations, 
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Given the solutions of these four parameters, we continue 

to solve for the weights    and    from the following linear 

regression constructed based on equation (2), 

      ∑ (   
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which leads to the following solution for two weights    

and      

        [
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The next section presents simulation results for fitting this 
GMM using this linear regression approach. 
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4. SIMULATION RESULTS & DISCUSSION 
This section presents the simulation of the proposed linear 
regression model for a case of noiseless data. The data 
points were generated by a two-component GMM shown 
in equation (2) with parameters        ,         , 
       ,        ,        ,         and 
discretization parameter       . We then subjected this 
generated data to the linear regression outlined in the 
previous section to obtain the parameter estimates. Fig. 1 
below shows the plot of the generated data and the GMM 
model estimation based on the linear regression. 

 

Fig. 1 GMM fitting when discretization is       . 

The parameters estimated from this data using the linear 

regression model when the discretization parameter is set 

to        are shown in Table 1 below. 

Table 1: Estimated parameters for discretization       . 

Parameter Exact Value EstimatedValue % Error 

               0.47% 

                 0.22% 

               0.09% 

               0.09% 

               1.52% 

               0.67% 

 

These errors are mostly due to discretization as will be 

shown from Fig. 3 how discretization parameter size 

affects the estimation. Fig. 2 below shows the squared 

error between the data points and the model-generated 

points based on these estimated parameters.  

Fig. 2 Error between data and model when         

Overall the errors seem acceptable for practical estimation 

purposes. In [10], [11] it was shown that this differential 

formulation of the linear regression is sensitive to noise. 

Here we wish to show that this formulation is also 

sensitive to discretization parameter size  . Fig. 3 below 

shows the same generated data plotted together with the 

model estimate when the discretization parameter   has 

been increased by a factor of    to        . 

Fig. 3 GMM fitting when discretization is       . 

Table 2 below shows the parameters estimated when the 

discretization parameter is set to       . 

Table 2: Estimated parameters for discretization       . 

Parameter Exact Value Estimated Value % 

Error 

               29.28% 

                 8.70% 

               1.25% 

               1.12% 

               17.79% 

               7.12% 
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Comparing the errors from Table 1 with those in Table 2, 

it is evident that the differential linear regression 

formulation is sensitive to discretization size. Fig. 2 below 

shows the squared error between the data points the 

graph points generated based on these estimated 

parameters.  

Fig. 4 Error between data and model when         

Discretization size and noise aside, the differential linear 

regression formulation is a promising alternative to the 

nonlinear regression formulation for the same underlying 

parameter estimation problem. As shown in [10], [11] that 

one way to improve the differential linear regression 

model against noise is to adopt the autoregressive 

formulation approach, it would be interesting to 

investigate if the autoregressive formulation approach can 

also be more robust than the differential formulation 

against discretization parameter size. 

5. CONCLUSIONS 
 
In this work, we have successfully shown how the two-

component GMM data-fitting problem can be presented as 

a linear regression problem with a closed-form form 

solution. The formulation gave good results, however, it 

was observed that the formulation is sensitive to the 

discretization size (or sampling frequency).  The 

autoregressive formulation of the same problem was 

presented as an alternative in theory but not tested 

experimentally with simulated data. As part of future 

work, this autoregressive formulation can be explored and 

applied to other interesting nonlinear regression 

problems other than the ones involving GMMs. 
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