
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1287

Ant Colony Optimization Algorithm for Finding Paths in POX

Software Defined Networking Controller

Mahmoud Khatib1, Souheil Khawatmi2, Fadel Sukkar3

1Postgraduate Student (M.S), Systems and Computer Networks Department, University of Aleppo, Syria
 2Associative Professor, Systems and Computer Networks Department, University of Aleppo, Syria

3Professor, Artificial Intelligence and Natural Language Department, University of Aleppo, Syria
---***--

Abstract Software Defined Network (SDN) decouples
networks control plane and data plane, make the controller
gain the global network topology view which can be utilized
by the controller’s forwarding applications to forwards the
packets between hosts with the helping of OpenFlow protocol.
The POX controller and Mininet tool has been used to simulate
the underlying SDN infrastructure. This paper analyze a
different data forwarding components currently supported by
the POX controller and present a protection approach by
developing a new component (Ant_Pox), which implement Ant
Colony Algorithm (ACO) to find a backup paths in case of
failure occurs. Finally four components are compared, hub,
l2_learning, l2_multi and Ant_Pox, by measures the Round Trip
Time (RTT) and CPU usage.

Key Words: Software Defined Network (SDN), OpenFlow
Protocol, POX Controller, Mininet, Ant Colony Algorithm
(ACO), Round Trip Time (RTT), and CPU usage.

1.INTRODUCTION

The development of network technology has recently grown
rapidly, where its development has made it easier for us to
build, monitor or maintain a computer network. With the
rapid development of network technology, it has created a
new paradigm in network technology, namely software
defined network (SDN). SDN is a term that refers to a new

concept (paradigm) in designing, managing and
implementing networks, especially to support the needs and
innovations in this field, which are increasingly complex. In
conventional networks, the data plane and the control plan
are combined into one device, while in SDN networks, the
data plane and control plane are separated [1]. With the
separation between the control plane and the data plane on
the SDN, network makes it easy to build, monitor or maintain
a computer network with the provisions made. Many
advanced development of SDN has been emerged nowadays
[2][3]. The OpenFlow protocol, which allows the creation of
applications for Software Defined Networks, has been a new
standard to make a network programmable based on the
protocol specification[1]. To do the network programming,
an interface is needed. That interface is known as API
(Application Programming Interface). POX Controller is one
of the SDN controller which support the OpenFlow version
1.0 only. This is one of the first controller which developed
to support SDN network.

The main goal of this paper is to develop a new protection
component in POX controller The organization of this paper
is constructed as follows: Section two present the basic
concepts about SDN model. Section three discusses the
OpenFlow architecture, messages Section four explain the
matching process using OpenFlow. Section five introduce
POX controller. Section six explain the data forwarding
approaches. Section seven introduce the simulation tool that
used. Section eight Implementation the forwarding
Components. Section nine is reserved to the results. Section
ten is evaluation of Pox forwarding approaches. Finally,
conclusions is drawn in the section eleven

2. SOFTWARE DEFINED NETWORK (SDN)

The Open Networking Foundation (ONF) [3] defines the SDN
as follows: “ In the SDN architecture, the control and data
planes are decoupled, network intelligence and state are
logically centralized, and the underlying network
infrastructure is abstracted from the applications.”[4].
 The SDN is an emerging network architecture that allows a
centralized software program to control the behavior of an
entire network, which consist three layers, Fig.1 illustrates
the general SDN architecture, First layer (infrastructure
layer) consists of both physical and virtual network devices.
Second layer (control layer) involve of a centralized control
plane, and considered the mid-layer that connects the
application layer and infrastructure layer. It provides
centralized global view to entire network. Third layer
(application layer) contains of network services, application
that used to interact with control layer [5]. The control layer
bridges the application layer and the infrastructure layer, via
its two interfaces. For the upward interacting with the
application layer (i.e., the Nourthbound interface) or NBI, it
provide an abstract of network functions (optimal network
resources and paths) with a programmable interface for
applications to consume the network services and configure
the network dynamically. For the downward interacting
with the infrastructure layer (the Southbound interface) or
SBI, it allows a controller to define the behavior of the
hardware in the network. The standard and most common
Southbound API is OpenFlow.
Those interfaces are API is said to be used to define the
software interaction among systems [6]. In SDN, these
systems refer to network applications and hardware such as
routers, switches and so on. The programming part of the
API is what makes it necessary for SDN.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1288

Fig 1: SDN paradigm

3. OPENFLOW PROTOCOL

For the southbound interface of SDN, the OpenFlow protocol
is the most commonly used protocol which separates the
data plane from the control plane, is the network abstraction
layer which defines the standard protocol for
communication in the network, in other words, SDN uses the
OpenFlow protocol to allows the SDN controller to configure
switches, i.e. via the installation of packet forwarding rules
[7][8][9].The protocol also allows switches to notify the
controller about special events, e.g. the receipt of a packet
that does not match any installed rules. It allows both the
controller and all the switches to understand each other
[10].

4. OPENFLOW ARCHITIECTURE

An OpenFlow Switch consists of one or more flow tables and
a group table, which perform packet lookups and
forwarding, and an OpenFlow channel to an external
controller as shown in Fig 2. The switch communicates with
the controller and the controller manages the switch via the
OpenFlow protocol. By using the OpenFlow protocol, the
controller can add, update, and delete flow entries in flow
tables, both reactively and proactively. Each flow table in the
switch contains a set of flow entries, each flow entry consists
of match fields, counters, and a set of instructions to apply
for matching packets as shown in Fig.2 [11].

Fig 2: OpenFlow Architecture

5. POX CONTROLLER

POX is a software platform developed in Python, it is began
early as a controller for an OpenFlow protocol[12][13].

However, it can nowadays, act as an OpenFlow switch, and
can be used for developing networking software (i.e. Load
Balancing, Firewall). POX controller worked as publish-
subscribe model, There are some objects which generate
events and there are some subscribers which subscribe
event through event handler. The communication between
switch to controller is coordinated through events. There are
collections of events and each event will fired under certain
condition. POX uses OpenFlow Protocol for sounthbound
interface. OpenFlow has different events (Packet_In,
Packet_OUT,Port-status, Flow_Remove, connectionUp, etc).
POX work with Python 2.7 (it can also work fine with Python
2.6), and can run under Linux OS, Mac OS, and Windows. Pox
comes with a number of components called stock
components, some provide basic functionality, some provide
convenient features, and some are just examples, some of
which depend on each other to do the work

Fig 3: POX Architecture Component

Fig.3 shows the modular structure of the POX controller,

which is divided into four main components [12]:
 Py components: this component cause pox to start

the interactive python interpreter and can be useful
for debugging and interactive experiments.

 OpenFlow components: is used to discover
connections between OpenFlow switches by
periodically sending LLDP packets for link discovery.

 Topology components: is responsible for creating a
graph of the physical network and keeping it up to
date.

 Forwarding components: each switch object listens
for events related to the adjacent switch, this
components care about one event called “packet_in”,
when the switch receives a new packets and does
not find a match in the flow table, then a request is
sent to the controller which contain the packet
header. This event in turn indicates to the controller
that there is a new flow in the network. The process
of calculating the path occurs in one of the
forwarding components. After finding the path, the
controller assigns a flow by sending the appropriate
rules via Ofp_flow messages to the flow table in all
the switches on the path.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1289

6. POX FORWARDING APPROACHES

This section presents an overview of the three main
components of the forwarding functionality used in the
current POX [12]. The forwarding components requires one
specific event called "Packet In". Every time an edge switch
registers a new packet and does not have a matching table
entry for it, it sends a request to the controller, which
contains the packet header and a buffer ID. This event
indicates to the controller that there is a new flow in the
network. The path calculation can be done using any data
forwarding algorithm. It can be done in a reactive or a
proactive way. After the path had been found. The controller
assigns it to the flow, then installing table rules to match on
every switch on the path by sending a Packet_Out (hub) or
ofp_flow_mod (L2_learning, L2_multi) commands.
Additionally, the forwarding component is responsible to
track every new flow together with its route. It keeps
information locally about every flow until a "FlowRemoved"
event fires up. This happens when a switch removes a flow
entry from its table, because it was deleted or expired (idle
or hard time out).

In this Paper, four data forwarding components in POX
controller are discussed, Hub, L2_learning, and L2_multi are
built-in components in pox controller, and one has been
developed after modified L2_multi component, called
Ant_Pox. Hub and L2_learning components works like
traditional network devices. Fig.4, illustrate the steps that
L2_multi and Ant_Pox follow:

1- Host 1 generate a new request packet the to
destination (Host 2).

2- First of all, the Discovery Component its imported
in the POX controller, so that the L2_multi can
utilize the topology information.

3- The Controller’s data forwarding component use
the information topology to calculate the path for
entire underlying topology.

4- The controller insert the whole paths for the

packets in the network by modifying the flow tables

of all data plane switches on the path by sent

Flow_Mod messages, where each entry is contains

hard and idle timeout fields.

Fig 4: l2_multi and Ant_Pox Approach

7. MININET TOOL

Mininet [14] is an open source network emulator that
supports the OpenFlow protocol for SDN architecture. With
Python language, Mininet is simple to use and has a great
flexibility. It is very powerful LINUX based, uses
virtualization approach to create a realistic network of
virtual hosts, switches, controllers, and links, and uses
process-based virtualization to emulate entities on a single
OS kernel by running real code. Moreover, it is used by many
researchers because the design that works properly in the
Mininet can usually move directly to practical networks
composed of real hardware devices.

Mininet provide two ways to use:

 Commad Line Interface (CLI): To control and
manage the virtual network from a single console.

 Application programming Interface (API): The
Python API allows to createn custom topologies
based on scripts.

8 . IMPLEMENTATION

Firstly, the underlying topology that contain data plane
switches will simulate.

a. Implementation of the simulation scenario

Firstly, the underlying topology that contain data plane
switches will simulate, Mininet API was used to create the
topology by writing python script and calling the following
functions:
AddLink(): to add link between two switches or switch-host
connection.
AddHost(): to add host.
AddSwitch(): to add openflow switch.
The simulation scenario consists of a Five OpenFlow
switches connected to Two hosts (host1, host2) and to a
controller POX. This controller has four created components
called Hub and l2_learning, l2_milti, and Ant_Pox. Fig.5

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1290

shows the topology of implementation the simulation
scenario.

Fig 5: l2_Network Topology

Fig.6 shows the topology implementation using Mininet.

Fig 6: l2_Network Topology

To create the simulation scenario, two terminals are open,
one for Mininet and another for the POX. In the Mininet
terminal it was used the commands of Table 1 to build a
topology.

Table 1. Implementing the topology

sudo mn –custom topo.py –topo mytopo –
controller=remote, ip=127.0.0.1, port=6633

The parameters used in Table.2 are described in the table

below:
Table 2. Implementing the topology

description command
Run mininet mn
Create topology --topo
Run custom topology --custom
Use random mac addresses --mac
Identify the controller --controller=remote
Identify the controller’ ip --ip
Identify the controller’ port --port

b. Implementing of data forwarding components
Secondly, POX controller will run by implement the data
forwarding components.

I. Hub

In this section, a hub component has been present, its works
at reactive mode, where every packet come to a data plane,
i,e. Switch is sent to the controller by ConnectionUP event
that represent the a moment when connection between the

controller and switch was established after a handshake
process, At this point, the controller requests the switch to
egress this packet from all ports except the port where it was
received, it generate OpenFlow OFPT_PACKET_OUT message
on each received PacketIn event. Table 3 shows the hub
application code.

Table 3 . Hub Application Code In POX
from pox.core import core
import pox.openflow.libopenflow_01 as of
from pox.lib.util import dpidToStr
log = core.getLogger()
def _handle_ConnectionUp (event):
msg = of.ofp_flow_mod()
msg.actions.append(of.ofp_action_output(port
of.OFPP_FLOOD))
event.connection.send(msg)
log.info(“Hubifying %s", dpidToStr(event.dpid))
def launch ():
core.openflow.addListenerByName("ConnectionUp",
_handle_ConnectionUp)

log.info("Hub running.")

In the terminal for the POX, previously opened, you must
access the directory/pox and run the Hub component, as
shown in Table 4. The file should be in the folder
/pox/forwarding/hub.py, and run the following instruction:

Table 4 . Implementation of Hub Component In POX
Sudo ~/pox/pox.py forwarding.hub
openflow.discovery

II. L2_learning
The L2_Learning component in POX acts as a layer 2 switch,
this means that it able to deals and learns the different
sources based on their MAC addresses and maps them to
their corresponding incoming port, thus it is learns the paths
to the hosts, checks the parameters and destination address
then forwards the packets accordingly, as well as its keeps
tracks of where the host with MAC address is located and
accordingly sends packets towards the destination and does
not flood it out through all ports.
The absorbing thing that must be noticed in this component
is how it work with Flow_Mod messages that inserts entries
to the flow table of an OpenFlow Switch, Table 5 shows the
L2_learning application code.
The first step is to update the address/port hash table (that
is self.macToPort[packet.src] = event.port). This will
associate the MAC address of the sender to the switch port
on which the packet has been received by the switch. Certain
types of the packets are dropped. Multicast traffic is properly
flooded. If the destination of the packet is not available in the
address/port hash table, the packet is also flooded. If the
input and output ports are the same, then the packet will be
dropped to avoid loop (if port==event.port:). Finally, a
proper flow table entry gets installed inside the flow table of
the OpenFlow switch. In summary, the l2_learning.py
program implements the required logic and algorithm to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1291

change the behavior of our OpenFlow switch to an Ethernet
learning switch one

Table 5 . l2_learning Application Code In POX
self.macToPort[packet.src] = event.port
if not self.transparent:
if packet.type == packet.LLDP_TYPE or
packet.dst.isBridgeFiltered():
drop()
return
if packet.dst.isMulticast():
flood()
else:
if packet.dst not in self.macToPort:
log.debug("Port for %s unknown -- flooding" %
(packet.dst,))
flood()
else:
port = self.macToPort[packet.dst]
if port == event.port:
log.warning("Same port for packet from %s -> %s on
%s.
Drop." %
(packet.src, packet.dst, port), dpidToStr(event.dpid))
drop(10)
return
log.debug("installing flow for %s.%i -> %s.%i" %
(packet.src, event.port, packet.dst, port))
msg = of.ofp_flow_mod()
msg.match = of.ofp_match.from_packet(packet)
msg.idle_timeout = 10
msg.hard_timeout = 30
msg.actions.append(of.ofp_action_output(port =
port))
msg.buffer_id = event.ofp.buffer_id
self.connection.send(msg)

The instruction of execution is the same of the Hub
component, in the terminal for the POX; you must access the
directory /pox and run the L2_learning component, as
shown in Table 6. The file should be in the folder
/pox/forwarding/l2_learning.py, and run the following
instruction:

Table. 6 Implementation of L2_learning Component In
POX

Sudo ~/pox/pox.py forwarding.L2_Learning
openflow.discovery

III. L2_mulity
The idea behind this module is to have a forwarding
Database (forwarding map) for a whole underlying topology.
In order to build that map, this module dependent on
Discovery module (openflow.discovery) to creates a full map
of all the network links (path_map). To avoid having to
rebuild the forwarding map on each time the link goes down;
L2_multi component does not creates any routes, and
openflow packet-forwarding rules are set up on demand,

when traffic between two hosts is first seen (not counting
LLDP packets). After learn the topology, the controller will
install openflow rules so that all the traffic is forward by
shortest path, by that point, the network is stable as well as
all the routes between each pair has been found.
L2_multi component uses The Floyd-Warshall to calculate
the shortest path between each pairs, which is a form of the
distance-vector algorithm optimized when a full network
map is available. The Floyd-Warshall is an algorithm for
calculating the shortest path where the algorithm can find all
the distances from each node (all pairs shortest path) which
means that it can be used to calculate the smallest weight of
all paths connecting a pair of points, and do it all at once for
all pairs of points. Table 8 shows the pseudo code for floyed-
warshall algorithm that finds the intermediate nodes such
that the distance between all the source–destination pairs is
minimized.

Table 8. Floyed-Warshall algorithm

Floyd-Warshall
SWs = switches.values()
Path_map= D
initialization
for k = 1 to SWs
for i = 1 to SWs
for j = 1 to SWs
if dij > dik + dkj
then dij = dik + dkj
return D

L2_multi component contains several dictionaries that
handle work, Firstly, store the topology in multi dimension
Dictionary (adjacency):

))None:lambda(defaultdict:lambda(defaultdict = adjacency

secondly, store data plane switches in dictionary (switches),
which we can get the topology size

{} = switches
thirdly, store the connections between each switch and its
ports in dictionary (switches), which we can get the topology
size.
Mac_map = {}
Finally, after apply the Floyd-Warshall algorithm, it will store
the routes between all switches in the topology in multi
dimension dictionary, as shown in table 7:
path_map=
defaultdict(lambda:defaultdict(lambda:(None,None)))
Fig.7 illustrate the flowchart for L2_multi component.

dictionaryPath_map Table 7.

Switch 2 Switch 1

intermediate] [distance, intermediate] [distance, Switch 1

intermediate] [distance, intermediate] [distance, Switch 2

The previous dictionary structure is an example of a
topology composed of two switches, we note that it is three-
dimensional, the first dimension represents the source
switch and the second dimension represents the target
switch, and the third dimension is a tuple composed of two
elements, the first element represents the distance between
the source and target switch and the second element
represents a list of switches or intermediate nodes that exist

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1292

between the source and target switch. The Path_map is
populated by applying the Floyed-Warshall algorithm,
caching distances and intermediate nodes, so in the event of
a topology failure, the Path_map dictionary is recalculated
again as we explained earlier. This is where the ant colony
algorithm comes into play by proactively calculating
additional paths, thus improving network stability if the
failure occurs.
To implements the L2_multi component:

Table 9 . Implementation of L2_multi Component In POX
Sudo ~/pox/pox.py forwarding.L2_multi
openflow.discovery

Fig 7:L2_multi Component Flowchart

IV. Ant_Pox component:

The problem appears in the previous component when a
link goes down in the network topology and then the
network will becomes unstable, in this case the controller
deletes all the paths stored in the path_map dictionary and
re-calculates the paths between each pair of switches again
and all the packets that sent in the network would not reach
its destination and will be dropped, therefore from the
previous explanation we conclude that if we can add
mechanism to prevent the process of re-calculating the paths
from the beginning when the link failure happens, and thus
we can reduce the stability time of the network as well as
there will be less computation overhead. In this component,
the floyed_warshall will be applied first to calculate the
shortest paths between each pair of switches, and then the
ACO algorithm [15] will be applied, which takes the output of

the first algorithm as its input, instead of assigning random
values at the beginning. Therefore we will assigns number of
ants equals to the numbers of switches in the topology and
calculate the backup path for each switch.

In order to clarify the concept of the ACO algorithm, the
topology that build is shown in figure(5), the network
topology (switches, and links) has been represented by a
diagram compose links and edges, every ant in the real
world is a packet in Graph. The algorithm is start randomly
from any node in the topology, let suppose that the variables
m and n are represents the number of switches and the
number of ants respectively , and bi(t) is a function
represents the number of ants on the switch(i), so:

 (1)

 Each ant has a list of previously visited switches in order to
avoid adding them again. The probability of the state
transition between two switches is calculated based on the
remaining pheromone on each path, and the next switch is
chosen according to the probability equation in the ACO
algorithm, which expresses the probability of the ant
choosing (k) the next node from node (i) to node (j), where
the node represents OpenFlow switch and edges are links.

 (2)

The function indicates the probability of the ant visiting the
path K from the switch Si to Sj. Where:

 : represents the switches available to be visited when

the Ak ant is in the Sj switch.
Tij(t): represents the total pheromone present in the path
between Si-Sj, where tij(0) denotes the initial amount of
pheromone.
α and β represent the weight for the pheromone remaining
in the path and the path distance in the nezt switch selection
process respectively. While the indicative function is
represented as follows:

 1/ = ij (3)

represents the distance between Si, Sj and thus the

probability of visiting the switch Si to Sj is directly
proportional to the value of dij. In our case, the distance
(metric) was represented by the bandwidth by the shortest
path algorithm[15], the link cost is inversely proportional to
the bandwidth of the link (the higher the bath)

 C(u،v) = (4)

Where c(u,v) is the cost between the switch u and the switch
v, and BW(u.v) is the bandwidth value on the link. Two
issues must be discussed in the current Ant algorithm, first
the selection of the following switch: in the case of a small
value of α , the selection of the next switch is mainly based on
the value of dij. And second the case of a small value of β ,
the next switch is chosen randomly. The pheromone on the
path will be updated when the ant bypasses a switch (partial

 

   
   















 
otherwise

aji
t

t

tp
k

ak

ijij

ijij

k

ij

0

f
)(

)(








 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1293

update) or when visit an entire path (global update), the
pheromone update equation is:

 (5)(t) ij Δ(t)+ ij p)* -t+n)=(1)ij

Δ






otherwise0

S_j toS_i from movesA_k Lk /1

 (6)

P represents the pheromone evaporation rate on the track
while (1-p) represents the remaining pheromone fraction.
The evaporation rate factor in the equation affects the search
ability, if the value of p is large then the pheromone
evaporation rate will be high, leading to the random
selection of the next switch, while if it is a small value, the
evaporation rate will be low, which results in an optimal
local solution.

Δ (t) represents the value of the pheromone that added

by the ant on the path in one cycle

Δ (0) represents the initial state of all the paths before

runs the algorithm. Each ant in the searching process for the
optimal path will use the ACO algorithm to determines the
next switch based on the equation (2), and at the same time
the positive feeding mechanism is adopted to add more
weight to the current optimal path, in other words, the
information on the path that has been passed it means giving

more weight after each repetition.

Ant_Pox application steps:
Ant is placed on each of the openflow switches.
1- Initialization parameters.

2- Ant k calculate
k

ijp ,then:

2-1- select the next openflow switch.
3- If no reach to destination openflow switch, then repeat

step2.
4- When cycle path is completed, update pheromone.
5- According to number of iteration end the cycle and

complete the routing process.

L2_multi component has been modified to develop ACO
algorithm, therefore additional dictionary has been added:
Dictionary for fitness function, dictionary for store the
probabilities of the ants, and dictionary for the pheromone
values which is equal to 1 for all edges at first, then it will be
updated at each generation.
Fit_map=
defaultdict(lambda:defaultdict(lambda:(None,None))
pher_map=
defaultdict(lambda:defaultdict(lambda:(None,None)))
prob_map=
defaultdict(lambda:defaultdict(lambda:(None,None)))
Table 10 shows the pseudo code that added to L2_mutli
component to implements ACO algorithm.

Table 10. Floyed_Warshall algorithm
//Floyed_Warshall algorithm
For k in sws:

 For i in sws:
 For j in sws:
 If path_map [i][k][0] is not none:
 If path_map [k][j][0] is not none:
 Ikj_dist =path_map [i][k][0] + path_map [k][j][0]
 If path_map [i][j][0] is none or Ikj_dist < path_map
[i][j][0]
 Path_map [i][j] = (ikj_dist,k) // calculate the paths
 Fit_map[i][j]= 1/path_map[i][j][0] // fitness fun
 Pher_map[i][j]=1.0 // assigns initial pheromone to
edges

Table 11 shows the pseudo code for equation (2) to calculate
the probabilities for each ant.

Table 11. ACO Algorithm
// calculate the probabilities matrix based on pheromone
Def calc_prop():
 L=[]
 Sws-switches.values()
 Prop_sum={}
 For i in sws:
 Prop_sum[i]=0
 For j in sws:
 Prop_sum[i]= prop_sum[i]+fit_map[i][j]*pher_map[i][j]
 For I in sws:
 For j in sws:
 Pro[i][j]= fit_map[i][j]*pher_map[i][j] / prop_sum[i]

// print probabilities map
Calc_prob()
For i in sws:
 For j in sws:
 Print i,j,prop[i][j]

In order to run the Ant_Pox application in the controller, the

following instruction is executed:

Table 12 . Implementation of Hub Component In POX

Sudo ~/pox/pox.py forwarding.AntPOX.Py
openflow.discovery

9. RESULTS AND DISCUSSION

In Ant_Pox Component we developed a protection approach
which does not require controller-switch communications
when the failure occurs. The Ant_Pox component pre-
establish backup paths as well as the paths that already has
been stored in Path_Map dictionary. In this case the network
resilience has improved. This mechanism allows the
restoration of traffic without sending the messages at the
time of failure.
After running the Ant_Pox Component, the controller will
discover the topology, we can notice that every switch has
its own DPID, Fig.8 shows the detected topology which
contain five switches:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1294

Fig 8: Discovered Topology using Discovery component

Fig.9 illustrate the discovered links between switches in the
topology and it ports, where they are stored in the mac_map
dictionary.

Fig 9: Discovered links using Discovery component

ACO algorithm is implemented with the following
parameters:

Table 13. ACO parameters
Parameter value

Number of ants 30
Number of Generations 10

Alpha value 0.5
Beta value 0.01

Initial pheromone 1

Fig.10 shows the implementation of the ACO algorithm and
the probabilities (according to the equation (2)) of each ant
to move from a switch to all switches in the topology, where
a number of ants is equal to the number of switches. First
line means that the probabilities from switch1 to switch1 is
zero while the second line means that the probabilities from
switch 1 to switch 2 is equal to 3.529, and so on.

Fig 10: probabilities calculations

In this evaluation, host h1 which is connected to switch S1
ping to reach the target host h2 which is connected to switch
S5. Accoutering to the Ant_Pox application the minimum
path is s1-s2-s4-s5 as shown in Fig.11.

Fig 11: the primary path between h1 and h2

the Fig.12 shows The Alternative path.

Fig 12: the backup path between h1 and h2

10. Evaluation of POX forwarding Approaches

For performance evaluation and comparison of different
forwarding algorithms depicted in section 8, a topology as
shown in Fig.5 is selected. All the forwarding algorithms
presented in Section 8 have been evaluated with Discovery
Component. For comparison of different algorithms,
different attributes or metrics are identified. These
attributes are Round Trip Time (RTT) and CPU usage for
initial flow setup.

 CPU usage of forwarding algorithm
The CPU usage is measured using Linux top command for the
entire forwarding algorithm to find the computational
overhead of different algorithms. As we can see in Fig.13,
hub and L2_learning have lower overhead than that of the
other algorithms, this deviation is caused by the way they
find the paths, when L2_multi and Ant_Pox algorithms is
started, it requires more overhead due to more initial
processing. After finding the paths, they have normal
overhead, that because they do no needs run any
calculations.

Fig 13: CPU usage when component launched

 CPU usage for initial flow setup
When a switch receives a packet from any source the first
time it will install the flow entry in the flow table. Thus after
learning all the nodes in the network, the complete flow
establishment has taken place. The pingall command in
mininet is used to check the connectivity of the entire
network. The pingall command is sent from every host to all
the other hosts. The CPU usage is measured for the initial
flow establishment. Fig.14 shows that Hub and L2_learning
have higher CPU usage than the other. The reason is that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1295

L2_multi and Ant_Pox calculate the paths and store them in
Path_Map dictionary once the links and nodes are detected,
thus when runs the pingall command these two algorithms
requires less packets to find the destination, instead of just
flooding the packets, for that they have low CPU usage.

Fig 14: CPU usage for flow setup

 Round Trip Time
Ping tool was used to measure the RTT for the first packet,
which can indicate the delay that each component takes to
find the path. Fig.15 shows the RTT time for first packet,
where we can notice that the time that L2_multi and Ant_Pox
component takes more than the other, in spite of the
flooding that happens in hub and L2_leaning, that due to
L2_multi and Ant_Pox implements more complex
calculations at first to find and store the paths at Path_Map
dictionary, Ant_Pox component will have the higher time for
first packet because it finds the backup paths and store them
too in case of the failure happens.

Fig 15: RTT time for first packet

Table 14. illustrate the main characteristic for POX
Forwarding algoritms, Failure detection is facilitated by the
Discovery component as it triggers the link events, the first
two algorithm, eg., hub, L2_leaening do not react against the
failure, they simply repeat its processes and eventually
establish the new flow, while both L2_multi and Ant_Pox
immediately react to the failure. complex configuration
computation is initially performed using approaches
L2_mulit, Ant_Pox, they both calculate the shortest paths, but
the different is that the developed Ant_Pox component is
calculates backup paths, while L2_multi it will wipes out the
entire stored paths (Path_map) and starts the process of
calculation paths again in case the failure happens, therefore
we added mechanism to pre-calculate the paths for all the
sources and destinations.

Table 14. summary of main characteristic for POX forwarding
algorithms

Feature Hub
component

L2_learning
component

L2_multi
component

Ant_POX
component

Failure
Detection

   

Failure
Recovery

   

Initial
configuration
computation

   

Shortest Path
calculation

   

Backup path    

11. CONCLUSION

 In this paper, a new protection approach has been
introduced by modifying the L2_multi component, and
develop ACO algorithm to find backup paths in case the
failure occurs. Four data forwarding algorithm in POX
controller components has been investigated and compared.
This comparison helps better understand the forwarding
approaches in POX and future enhancement.

12. REFERENCES

[1] Mulyana, E. SDN-RG Community Books. Bandung:

GitBook, 2014.

[2] Marcel Caria, Admela Jukan, and Marco Hoffman,” A
performance study of network migration to SDN-
enabled Traffic Engineering “, Globecom 2013-
Communication Qos, Reliability and Modeling
Symposium 2012.

[3] Heleno Isolani p, “Interactive Monitoring, Visualization,
and Configuration of OpenFlow-based SDN” IEEE
International Symposium on Integrated Network
Management, 2015.

[4] Open Networking Foundation. Available from:
https://www.opennetworking.org/, last online :
2019/3/4.

[5] Azodolmolky S. Software defined networking with
OpenFlow: Packt Pub, Birmingham, UK . 2013

[6] Fishnet Security, “SDN APIs: A New Vocabulary for
Network
Engineers”,https://www.fishnetsecurity.com/6labs/blo
g/sdn-apis-new-vocabulary-network-engineers

[7] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, S. Uhlig, Softwaredefined networking: A
comprehensive survey, Proc. of the IEEE 103 (1) (2015)
14-76.

[8] H. Kim, N. Feamster, Improving network management
with software defined networking, IEEE
Communications Magazine 51 (2) (2013) 114-119.

[9] F. Hu, Q. Hao, K. Bao, A survey on software-defined
network and openflow: From concept to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1296

implementation, IEEE Communications Surveys &
Tutorials 16 (4) (2014) 2181-2206

[10] Sumanth B. Designing an Openflow Controller for data
delivery with end-to-end QoS over Software Defined
Networks: Computer Science and Engineering;
Conference in Hollywood, CA, USA 2016.

[11] Lara, A.; Kolasani, A.; Ramamurthy, B. Network
Innovation Using OpenFlow: A Survey.IEEE Commun.
Surv. Tutor. 2013,16, 1–20.

[12] POX, “Pox openflow controller,” 2014, Accessed:
Sept.2014.[Online].Available

[13] Python Software Foundation, “Python language
reference, version

[14] Mininet. An Instant Virtual Network on your
Laptop.2014, Accessed: Sept. 2014[Online]Available:
http://mininet.org.

[15] M. Dorigo, and C. Blum, “Ant colony optimization theory:
a survey”, in Theoretical. Computer Science, vol. 344, no.
2-3, pp. 243-278, 2005.

BIOGRAPHIES

Dr.Eng. Souheil Khawatmi
Associative Professor,
Computer Networks Department,
Faculty of Informatics Engineering
University of Aleppo, Syria.

Dr.Eng. Fadel Sukkar
 Professor, Artificial Intelligence
and Natural Language Department,
University of Aleppo, Syria

Eng. Mahmoud Khatib
Postgraduate Student (M.S),
Computer Networks Department,
Faculty of Informatics Engineering
University of Aleppo, Syria.

