
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 526

Comparative Study of Various Load Balancing Algorithms

Yash Verma1, Manvendra Singh Chhajerh2

1Student, Dept. of Information Science and Engineering, R.V. College of Engineering, Karnataka, India
2Student, Dept. of Information Science and Engineering, R.V. College of Engineering, Karnataka, India

---***---

Abstract - In today’s world all the customers want
instantaneous answers to their queries or services that they’ve
asked for and every other company is racing against time to
serve the customer request as soon as possible. Companies
have a set of servers to answer their queries but the problem is
how to assign these requests to servers in the most optimized
way. If we assign all the requests to one server then it might
crash and others might sit idle, hence to overcome all such
problems we need a balancer to balance the load in an
optimized way and this is done by a load balancer. Finding a
better algorithm for a load balancer is becoming a hot topic of
research and therefore a lot of such algorithms are available.
This paper evaluates and compares some most important
algorithms for load balancing.

Key Words: Load Balancing, Static Load Balancing,
Dynamic Load Balancing, Round Robin, MMLB,
Consistent Hashing, Join-the-Shortest-Queue, Join-the-
Idle-Queue,Power of d choices

1.INTRODUCTION

To provide a good user experience, the companies need to
reply back to customer actions on their website, online
applications, etc. and these actions or we say them as client
requests need to be served by a server. To balance the traffic
of these requests among all the servers a load balancer is
used. Load balancing refers to managing and distributing
these client requests among two or more servers. This is
essential to make sure that no server is overloaded with
requests and requests are distributed evenly such that the
overall responsive time for a customer is minimum.

Load balancing does not help in improving the performance
of a cluster of server but also helps when the company wants
to scale their business by adding more servers or when a
company’s server is down due to any reason, may it be
power failure or due to network card failure, load balancing
makes sure that the request of that server is re-assigned to
some another server. Some algorithms are very easy to
implement while other are very complex, some provides
high response time while others provide low overhead time,
some has high throughput while others are easy to scale.

Thus arises a need to analyse these algorithms based on such
factors, so that suitability of these algorithms under various
conditions can be established.

2. Load Balancing Techniques

Load balancing decisions taken by the load balancer are
driven through a number of factors. One of the most
important factor is the state of the system. Based on this,
whether the load balancing decision involves the state of the
system or not, load balancing techniques are classified into
two categories, namely Static load balancing and Dynamic
Load Balancing. Static load balancing does not account for the
current state of the system while making load balancing
decision, while dynamic load balancing considers the current
state of the system as a crucial factor and distributes the load
among server accordingly. [1]

2.1 Static Load Balancing

Static Load Balancing relies on a beforehand knowledge of
the application and uses this information to distribute the
load uniformly. It uses statistical information about the
system for load distribution among the servers. Static Load
balancing has low queuing delays as the the decision is not
based upon the current state of the system rather decided
using a set of rules independent of the state. The processing
power and speed of the servers are decided at the start and
remains invariable throughout [2]. Static Load balancing has
its shortcomings also. Since the current state of the system is
not considered and the processor performance is also
decided beforehand, the decision takens using static load
balancing can result in unbalanced load distribution and
result in overutilization of some servers while other remains
idle.[3]

2.1 Dynamic Load Balancing

Dynamic load balancing algorithms follow an approach to
forward the incoming task to the lightest server among all
the servers. The decision of determination of the lightest
server is the main task of any dynamic laid balancing server.
Dynamic Load balancing algorithms make smart decision
based on the current state of the system to equally distribute
load. The processes can be shifted to server with low load
from a server at high load at runtime. The Complexity of
these algorithms are relatively higher than static load
balancing algorithms, but they provide much better fault-
tolerance and performance than their counterpart. Dynamic
Load balancing algorithms are much preferred for systems
where behavior of the load can be predicted before and the
variations are high, while static load balancing algorithms

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 527

are preferred choice when the load is light and variations are
less.

Fig -1: Load Balancing Model

3. Load Balancing Techniques

3.1 Round Robin

It is a very simple algorithm that balances the load by
distributing the client request equally among the servers. It
iterates over all the servers in a circular fashion i.e., first it
distributes some defined load to servers one by one and once
it encounters the last server it goes back to the first server.
For example: If there are 3 servers, say X,Y & Z, then with
this algorithm the load balancer sends 1st client request to X,
then 2nd client request to Y ,then 3rd request to Z , then 4th
client request back to X and the cycle goes on.
Characteristics:
Implementation: This algorithm is simplest to implement.
Performance: It works good in an ideal environment but in
real life where the capacity of servers may differ, and any
server may go down it’s not good.
Throughput: is moderate in Round Robin
Scalability: Easy to scale. High

3.2 Weighted Round Robin

This algorithm is an efficient version of round robin. This
algorithm accounts for differences in efficiency or power of
servers. In this, each server is assigned some weight based
on its working capacity, higher the capacity more the weight.
Based on weight assigned, the servers are given a number of
client requests. This helps in better resource utilization. This
also leads to increase in throughput as compared to round
robin.

3.3 Opportunistic Load Balancing

It is a static load balancing algorithm that randomly
distributes the client requests to different servers. It doesn’t
account the present workload on the servers and distributes
randomly, which results in slow execution of the request and
since it hasn’t calculated the implementation time it
sometimes results in bottlenecks in spite of having some free
servers. All this leads to poor performance of load balancing

and therefore this algorithm is not used directly rather in a
hybrid way.

3.4 Min-Min Load Balancing

This algorithm is simple and effective. It first calculates the
execution time of all the requests and finds the minimum
execution time request. Based on this minimum execution
time it assigns this task to the server with minimum total
execution time. It then updates the total execution time of
that server by increasing it with the execution time of the
request assigned. This process continues till all the requests
are assigned to one or the other server.

3.5 Consistent Hashing

It is a static load balancing algorithm that distributes the
incoming requests based on some mathematical
computation known as hashing. The algorithm assigns some
unique values to the servers based on their name or ID, and
then assigns the incoming requests to the server with the
nearest hash value. The hash value of the incoming request is
calculated at the load balancer by using a mathematical
function known as hashing function. The incoming request
can be hashed for, or a combination of - Source IP, Source IP
and port, Uniform Resource Locator, Header value

Consistent Hashing is favorable for handling a dynamic
number of servers as it provides persistence in a way that
addition or removal of servers does not result in
recalculation of hash tables. But the major limitation of this
algorithm owing to the mathematical properties, comes
when a large number of requests are targeted for a specific
service, the consistent hashing algorithm will transfer the
request to the same subset of servers resulting in imbalance
of load. The algorithm is much more efficient at handling
uniform requests to a number of servers.[4][5][6]

3.6 Consistent Hashing with Bounder Load

Consistent hashing with bounded load is an upgraded
version of consistent hashing that tackles the imbalance that
occurs due to more requests for a specific server. This
algorithm introduces a constant ‘c’ called as balancing factor
whose value can go from 1 to infinity. At value 1 the
algorithm behaves as least connection algorithm while when
c tends to infinity it behaves as simple consistent hashing.
The balancing factor ‘c’ defines an upper bound on the load
that the server can accommodate. As an example. at a value
of c as 1.1 the maximum load that this server can handle is
110% of the average load of the system. If the server is
overloaded meaning the capacity is more than c times, the
requests get transferred to the nearest server with value
closest to the hash value of request. If the server is not
overloaded, then it behaves like a consistent hashing
algorithm.[7]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 528

3.7 Join-the-shortest-queue

Join the Shortest Queue (JSQ) algorithm is based on a greedy
policy. The environment consists of a single dispatcher or
load balancer and a number of servers. All the incoming
requests are handled by the dispatcher sent to a particular
server and the responses from the server are again handled
by the dispatcher. The dispatcher upon receiving a request
from the network, transfers it to the server with the shortest
queue i.e. with least number of jobs. This approach is greedy
from the perspective of the incoming request in the way that
the incoming request gets transferred to the server where it
can be processed fastest owing to the least number of jobs.
Since every request and response is handled by the
dispatcher, a communication overhead is involved since JSQ
requires the instantaneous length of the queue at each
server. The limitation comes with JSQ when a central
dispatcher is replaced by a distributed design to serve a very
large number of servers to avoid bottlenecks at the
dispatcher. Communication Overhead is increased
significantly resulting in traffic at critical path for request
processing which in turn reduce response time.[8]

3.8 Join-the-idle-queue

Join the Idle Queue (JIQ) algorithm is proposed for a system
of dynamically scalable web servers with distributed design
of load balancers. The distributed design of load balancers
proposes a challenge as each balancer tries to balance the
load independently of other dispatchers and since each
dispatcher processes a small part of the overall incoming
request it does not have the full knowledge about the
number of jobs at each server. The JIQ algorithm overcomes
this challenge by introducing a term called secondary load
balancing. Primary load balancing involves distribution of
incoming requests to the servers while secondary load
balancing involves informing the load balancers about the
idleness of the server. Secondary load balancing occurs in
the reverse direction irrespective of the job arrival requests
while results in offloading of the critical path of request
processing. Since in a distributed server farm it is
challenging to determine which dispatcher to select to
inform, the algorithm uses two techniques viz Random
sampling and the Power of d (SQ(d)) algorithm. The JIQ-
Random technique selects a dispatcher queue uniformly at
random while JIQ-SQ(d) selects d dispatchers at random and
sends the information to the dispatchers with least number
of informing queue length.[9]

3.9 Power of D choices

Power of d scheme is a generalized scheme of load balancing
algorithm. It assumes a system of N servers with a single
dispatcher that balances the load among the N servers. In
this, the dispatcher selects a random d number of servers
from N servers and transfers the requested to the one with
the shortest queue length similar in the way JSQ operates. It

is generalized on top of the JSQ algorithm and is given as the
term JSQ(d(N)) where d(N) represents a randomly selected
subset of d servers from N servers. The Join-the-shortest
queue and Join-the-idle queue are considered to be special
cases for the power of d scheme when assuming d(N) = N
and d(N) =1 respectively. The Power of D improves the
scalability of JSQ. Power of d choices are much more effective
in balancing load (balanced queue lengths) than the
algorithms that opt for a randomized selection of servers but
JSQ schemes outperforms JSQ(d(N)) in terms of delay for
reasons that JSQ has about all N servers and can select
optimally among those while JSQ(d(N)) can only at a time
select among d servers.[10][11]

Comparison

On the analysis of various load balancing algorithms few
metrics emerge out to basis of comparison among these
algorithms. We define these metrics as –

Throughput - throughput is a performance metric that
indicates the number of jobs that have successfully
completed their execution on the servers. A High throughput
value for a particular algorithm is preferred.

Response Time - response time can be defined as the time
interval between the arrival of the job on load balancer and
its subsequent forwarding to one of the servers. The value of
this metric should be low.

Overhead Communication - This involves the extra effort
or work that is required to achieve the load balancing
output. It can alternatively be defined as the number of
transactions between the load balancer and servers to
determine the forwarding of a single incoming packet. This
parameter should be kept low to improve the overall
efficiency of the system.

Complexity of Implementation - This parameter describes
the complexity of functioning of load balancing algorithms.
An algorithm with low complexity of implementation is
preferred.

Scalability - Scalability of the system can be defined as the
ability of the system to increase the number of servers as the
load increases. A high scalability is desired for load balancers
to manage the increasing load.

Resource Utilization - This metric is defined as the total
load on the system by the total working capacity of the
system. High value of resource utilization is preferred to
increase the value invested in the system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 529

Table -1: Comparison of load balancing algorithms

Parameters

Algorithms

T
y

p
e

T
h

ro
u

g
h

p
u

t

R
e

sp
o

n
se

T

im
e

O
v

e
rh

e
a

d

C
o

m
m

u
n

ic
a

ti
o

n

C
o

m
p

le
x

it
y

 S

ca
la

b
il

it
y

R
e

so
u

rc
e

U

ti
li

za
ti

o
n

Round
Robin

S M L L E H L

Weighted
R R

S M L L E H M

OLB

S L L L E H L

MMLB

S M M M C M H

CH

S H M L H H L

CHBL

D H L L H H L

JIQ

D H L M M M H

JSQ

D H H H M L H

Power of d

D H L H M H M

4. CONCLUSIONS

In today’s world, where the internet plays a very important
role, the number of users are increasing at a very high rate
and to serve those requests efficiently among servers, we
need load balancers. This paper gives a brief introduction
about what is load balancing and its importance, static load
balancing algorithms, dynamic load balancing algorithms,
different types of algorithms followed by metrics on which
we can compare these algorithms. This paper highlights the
pros and cons of various load balancing algorithms. This
paper shows a comparative analysis of various load
balancing algorithms, which can help in building a hybrid
algorithm to counter the problems of the algorithm.

REFERENCES

[1] N. J. Kansal and I. Chana, "Existing Load Balancing

Techniques in Cloud Computing: A Systematic Review,"
vol. 3, issue. 1, pp. 87-91, 2012.

[2] Y. Sahu and R. K. Pateriya, "Cloud Computing Overview
with Load Balancing Techniques," vol. 65, no. 24, pp. 40-
44, 2013.

[3] Nadeem Shah, Mohammed Farik, “Static Load Balancing

Algorithms In Cloud Computing: Challenges & Solutions”
,International Journal of Scientific & Technology
Research, Vol 4, pp 353-355

[4] Load Balancing Algorithms. (n.d.). Retrieved May 18,

2021, from https://avinetworks.com/docs/17.2/load-
balancing-algorithms/#consistent-hash

[5] Karger, D. R., & Ruhl, M. (2004). Simple efficient load

balancing algorithms for peer-to-peer systems.
Proceedings of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures - SPAA ’04.
doi:10.1145/1007912.1007919

[6] Li, J., Nie, Y., & Zhou, S. (2018). A Dynamic Load

Balancing Algorithm Based on Consistent Hash. 2018 2nd
IEEE Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC).
doi:10.1109/imcec.2018.8469341

[7] Mirrokni, V., Thorup, M., & Zadimoghaddam, M. (2018).
Consistent Hashing with Bounded Loads. Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, 587–604.
doi:10.1137/1.9781611975031.39

[8] Gupta, V., Harchol Balter, M., Sigman, K., & Whitt, W.
(2007). Analysis of join-the-shortest-queue routing for
web server farms. Performance Evaluation, 64(9-12),
1062–1081. doi:10.1016/j.peva.2007.06.012

[9] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J. R., & Greenberg,
A. (2011). Join-Idle-Queue: A novel load balancing
algorithm for dynamically scalable web services.
Performance Evaluation, 68(11), 1056–1071.
doi:10.1016/j.peva.2011.07.015

[10] Mukherjee, Debankur & Borst, Sem & Leeuwaarden,
Johan & Whiting, Philip. (2016). Universality of Power-
of-d Load Balancing in Many-Server Systems. arXiv. 8.
10.1287/stsy.2018.0016

[11] Vignesh Joshi. Load Balancing Algorithms in Cloud
Computing. International Journal of Research in
Engineering and Innovation, 2019, 3, pp.530 - 532. ffhal-
02884073

https://avinetworks.com/docs/17.2/load-balancing-algorithms/#consistent-hash
https://avinetworks.com/docs/17.2/load-balancing-algorithms/#consistent-hash

