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Abstract –X-ray image inspection is an important 
part of medical diagnostics. However, because of the 
poor contrast and dynamic range of an X-ray, key 
features such as organs, bones, and nodules might be 
difficult to spot. As a result, contrast adjustment is 
crucial, particularly because it can enhance features 
in both bright and dark areas. As a result, we present 
a new approach based on component attenuation for 
X-ray picture enhancement. An X-ray image could be 
broken down into tissue components and important 
details. Because tissues aren't always the primary 
focus of an X-ray, we proposed using adaptive tissue 
attenuation and dynamic range stretching to improve 
visual contrast. A parametric correction approach 
was developed using component decomposition and 
tissue attenuation to provide several enhanced 
images at once. Finally, a framework for combining 
these augmented images and providing a high-
contrast output in both bright and dark regions was 
developed. 
 
Index Terms—X-ray image enhancement, component 
attenuation, parametric contrast adjustment model.  
 
1.INTRODUCTION  
  X-ray image inspection is a key stage in medical 
diagnosis. However, the low contrast and dynamic 
range of an X-ray image make it difficult to 
distinguish these anatomical parts immersed in the 
high and low contrast regions. The high contrast 
parts of an X-ray image are significant because they 
contain numerous vital organs and bones. Small but 
significant elements, such as nodules, on the other 
hand, are frequently visible dark areas. A higher 
dynamic range is required to properly distinguish 
both the bright and dark regions in order to identify 
organs and nodules at the same time. It's difficult to 
see features in a regular and low-dynamic range 
(LDR) X-ray image without augmentation . 

 Fig. 1 shows example of X-ray scans provided by a 
local hospital. These visuals have a low contrast and 
dynamic range, making it difficult to identify details 
and establish a precise diagnosis. To aid with this, we 

offer an ensemble framework for X-ray image 
enhancement that includes tissue attenuation, 
contrast control, and image fusion. 

Our technique seeks to vividly portray the features of 

LDR X-ray images by boosting the contrast in bright 

and dark regions. 

 

Fig -1:  Two typical X-ray images in our testing dataset. 

The images have low dynamic ranges. Their bright and 

dark regions also show low contrast. 

2.LITERATURE REVIEW 
   For increasing image contrast and details, a variety 
of image enhancement approaches have been 
developed. The global tone mapping methods use a 
mapping function to convert input intensity values 
into new values while increasing global contrast, 
however one disadvantage is that image details may 
be lost. 
Local adaptive tone mapping approaches, on the 

other hand, use spatially variable transfer functions 

to improve contrast details [3], [4].  The outcomes, 

on the other hand, may have unfavourable negative 

effects. As a result, preserving spatial consistency 

after local patch enhancement is critical. In order to 

improve local contrast, the Retinex theorem [5] 

advises suppressing illumination bias [6]–[8]. These 

Retinex-based approaches can improve results in 

low-light or gloomy environments. When working 
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with bright locations, however, the resultant contrast 

is usually low. Furthermore, the improved outcomes 

frequently have halo impacts and appear artificial. 

Transform-based approaches, on the other hand, add 

alterations to an image (for example, the DCT-

discrete cosine transform or the wavelet transform). 

The enhancement techniques are then used to 

modify the coefficients in a transform domain. 

Finally, an inverse transform is used to create a 

complete enhanced image. Despite the fact that 

transform-based approaches can provide global and 

local contrast augmentation, the end results may 

have halo effects. Several edge-preserving 

approaches, such as bilateral filtering [11], have 

subsequently been merged with transform-based 

techniques to eliminate halo effects. 

 We'll go through several relative and 

representational enhancement approaches to help 

you comprehend things better. Global tone mapping 

approaches include gamma correction [2], S-curve 

correction [12], and histogram equalisation [2]. 

Gamma correction methods can expand image 

contrast in either dark or bright places by manually 

setting the gamma parameter of the global mapping 

function. S-curve correction methods are based on 

the same principle as gamma correction. S-curve 

correction approaches, on the other hand, enable 

additional manual tuning settings, allowing a system 

to apply an S-shaped global mapping function to 

enhance both dark and bright regions 

simultaneously. Histogram equalisation (HE) [2] and 

multi-scale HE [13] on the other hand, strive to 

automatically determine   the global mapping 

function by maximising the augmented image's 

histogram entropy. When the histogram allocation 

has peaks, HE-based algorithms are efficient, but 

they like to unduly enhance an image and produce 

strange artefacts. Finally, current global tone 

mapping approaches are unable to enhance local 

image regions in an adaptable manner.  

2D-histogram-based mapping techniques [14]–[16] 

that use contexture information from nearby patches 

have recently been developed to improve local 

contrast. They are based on the premise that 

increasing the graylevel difference between a 

neighbouring pixels will boost image local contrast. 

As a result, the author constructed a 2D histogram in 

[14] to track the incidence of    gray-level pairs within 

a small area. A mapping function could be created to 

equalise the 2D histogram in such a way that the 

intensity differences between surrounding pixel sets 

are spread equitably. CVC [15] is an enhanced 

version of [14]. In addition to needing a uniform 

target histogram, CVC incorporated a differential 

term to smoothing the target histogram. By mapping 

the diagonal components of the original 2D 

histogram of the input data to the diagonal 

components of the 2D target histogram, the final 

mapping function may be achieved. A more 

sophisticated objective function for estimating the 

target histogram was given in [16]. Aside from the 

requirement for a uniform distribution, higher level 

image factors have smoothness restrictions as well as 

smoothness constraints being considered at the same 

time.  These changes could be beneficial. Provide 

more satisfying outcomes. The calculation, on the 

other hand, the price is exorbitant. In contrast, [17] 

and [18] advocated a hybrid technique combining 

global mapping with transform-based augmentation. 

SECEDCT, a spatial entropy-based contrast 

enhancement technique in DCT, was introduced in 

[17]. The spatial entropy of various gray-level 

intensities was defined and calculated over an image. 

The global contrast enhancement function, which 

transfers the source intensity to an output value, was 

then derived using the spatial entropy function. 

Furthermore, 2D-DCT was employed to convert the 

global improved image into the frequency domain in 

order to accomplish local contrast augmentation. 

While SECEDCT can improve image contrast, it does 

not allow the system to manage global contrast or 

retain image brightness. The authors have offered a 

revised version [18] to address these concerns. 

Image sharpening and dynamic range compression 

can also be accomplished using Retinex-based 

algorithms. By estimating the intensity ratio between 

a pixel and its surroundings, Single-Scale Retinex 

(SSR) [8] increases visual contrast. The filter scale 

must be chosen through trial and error to achieve a 
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better outcome. Multi-Scale Retinex (MSR) [9] was 

also developed to combine numerous SSR-enhanced 

results created under different filter scales to balance 

dynamic compression and image rendering. 

Methods based on retinex and methods based on 

transform have a connection. An input image is 

decomposed into base layers (low-frequency 

components) and detail layers in both approaches 

(high-frequency components) .The image details can 

be recognised by attenuating the base layers or 

enhancing the detail layers. In the literature, 

different decomposition strategies have been 

discovered. Choi et al. [19], Durand and Dorsey [20] 

enhanced an image with only one base layer and one 

detail layer, whereas [21]–[24] examined numerous 

base and detail layers for enhancement. Linear 

functions were employed to compress the base 

layers in the original intensity domain [21], [22]. 

Instead, [23], [24] used nonlinear functions in the 

feature domain to condense the dynamic range. Some 

ensemble frameworks have recently been presented 

to increase image quality. An ensemble based 

technique, rather than enhancing an image with a 

single set of parameters, seeks to generate many 

enhanced versions in which certain image regions 

have a greater perceptual quality than the original 

input. The final enhanced result is created by 

smoothly combining the generated photos. 

The authors of [25] employed LLSURE filters to 

produce images with less noise. Average fusion was 

used to achieve the final de-noised output. Wang et 

al. [26], Huang et al. [27] suggested ways to synthesis 

numerous exposure images in order to create an 

HDR image and accomplish HDR compression. A 

weighted combination result, on the other hand, may 

result in intensity discrepancy between neighbouring 

pixels if it is not properly modified. Multi-resolution 

blending approaches based on a Laplacian pyramid 

[28]–[30] can be used to avoid inconsistency by 

preserving image contrast and ensuring local 

intensity constancy. Despite the success of ensemble-

based methods for HDR image compression, few 

ensemble-based methods for single image contrast 

enhancement, particularly for X-ray images, have 

been developed. 

 3. PROPOSED METHOD 
 
        A model for enhancing visual contrast has been 

proposed. An X-ray image may be made up of 

detachable and detail components, we reasoned. The 

term "removable components" refers to a portion of 

the body's tissue that can be removed. The detail 

components, on the other hand, are the important 

parts of the body, such as bones and organs. We 

attenuate the detachable components in an X-ray 

image to increase the dynamic range so that the 

detail components can be represented. To realize the 

concept, our image model is defined as: 

In (x) = I (x) /Imax = D (x) + R (x)              (1) 

where In (x) is the normalisation image, I (x) is the 

input X-ray picture, Imax is the image's maximum 

value, D (x) is the detail component, and R (x) is the 

removable part. In addition, x is a spatial index, and 

the values of In (x), D (x), and R (x) are all between 0 

and 1. 

We created a constraint called "Local Contrast 

Maximization" to help us estimate T (x)(Tissue 

component). To stretch the local contrast, we can set 

R(x) = T (x), that is, 1 to get a very high contrast 

result. Stretching outcomes under R(x) = T (x) and 

R(x) = α 

The map T (x) could be determined using the “Local 

Contrast Maximization” constraint by finding the 

best removable component map that maximises the 

sum of local contrast over the final enhanced image 

E. 

  (2)   

In (2), Lx represents the local region around the pixel 

x, and y is a pixel inside Lx . Thus, the component 

map T (x) at pixel x can be estimated by finding the 

local minimum within a local region around x.  
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We established an attenuation factor  α, and defined 

R (x) = α .T (x) to manage the ratio for component 

removal in our method to estimate the attenuation 

component R(x). We can find R (x) to adequately 

enhance an X-ray image by estimating the maximum 

detachable tissue component map T (x) and 

regulating. Because the level of contrast 

enhancement is so closely related to the amount of 

tissue removed, it becomes the most important 

parameter in our parametric contrast adjustment 

model. Because the value of is invariant to pixel 

locations, we also treat as a global parameter in our 

parametric model. 

The second controllable term in our model is λ (x). 

By introducing λ (x), our model can be adjusted to 

satisfy preferred image constraints. Unlikeα, λ (x) 

changes locally. In our system, we locally adjust the 

value of λ (x) at different locations in order to keep 

the brightness consistent. Below, we illustrate the 

determination T (x) and the calculation of the term λ 

(x) 

However, if  λ(x) is not correctly set, the result may 

be poor. As a result, we'll need to find a good  λ (x) 

setting to maintain the image's local brightness 

consistent. After image enhancement, we require the 

maximum image value in a local area Lx to be 

maintained at the same level in our system. As a 

result, the brightness property can be preserved on a 

local level. As a result, we can define our brightness 

consistency requirement as follows: 

(3) 

Given a global attenuation ratio and the brightness of 

the scene, (3) restriction, the chosen parameter λ∗ 

(x) at 

equation (4) can be used to calculate pixel x: 

 

                                                                                             (4) 

Because the interval of  α is [0,1], equation (4) can be 

used to show that the interval of  λ∗ is also [0,1]. The 

brightness of the original X-ray image is sometimes 

compressed worldwide, making brightness 

consistency problematic. To address the issue, we 

included a preprocessing step based on histogram 

equalisation in our processing phase to stretch the 

image histogram worldwide before applying the 

proposed primary technique. 

A contrast enhancement function Ce (.) is applied to 

the detail component  D (x) to produce the final 

enhanced X-ray Image E(x) . 

E (x) = Ce (D (x)) = Ce (In (x) − R (x))            (5) 

After eliminating R (x) from In (x), we should have 

enough room to improve D (x) by increasing its 

dynamic range. Image enhancement becomes 

conceivable if we can build the enhancement 

function Ce (.) to use the free dynamic range. 

In our system, the designed enhancement function Ce 

(·) is    

(6) 

Here, I max n (x) = max y∈Lx I (y) is the local 

maximum of the local region, Lx ,around the image 

pixel x, and λ (x) is a controllable parameter. 

We join the K enhanced images based on local image 

quality to get the final output image. We adapted the 

concept from Exposure Fusion for efficiency (EF) 

That is, given K enhanced images {Ei (x)}i=1 K , our 

system generates the combined image F (x) by 

y F (x) = E F  {Ei (x), Wi (x)}i=1K       (7) 

The Exposure Fusion algorithm is represented by 

EF(.) in (7). The weight map for the ith improved 

image is Wi (x). The position of a pixel is represented 

by the letter x. In addition, the total of weights for 

one pixel over K photographs must equal one. 
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3.1 Ensemble Enhancement Procedure. 

Algorithm for preprocessing : Collect dataset of  

input image. Select 5 by 5 pixels from the input 

image. Apply adaptive histogramic equalization using 

CLAHE to improve intensity of image pixels. 

Normalize pixel matrix. Apply local minima for 

filtering out noise and local maxima for strengthen  

contrast both bright and dark regions. Attenuate 

component of local maximized image and enhance 

details. Do the same process for remaining pixels. 

Finally fuse the results.   

 

Fig -2:  Preprocessing Output 

4. CONCLUSION 
 
The energy recorded in an X-ray image can show a 
human body's interior status. As a result, X-ray 
imaging has become a common method of health 
inspection. The poor contrast of an X-ray image, on 
the other hand, makes it difficult to spot small and 
aberrant details. A new enhancement technique 
based on component attenuation, contrast 
modification, and picture fusion is proposed in this 
work. We may adaptively increase the crucial 
information in both the bright and dark parts by 
attenuating the tissues over the image. A new 
parametric adjustment model was developed based 
on this approach. Users can simply improve visual 
contrast by altering the attenuation scale in the 
model. 
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