
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2939

Automated Software Testing: An Overview

Rishab V Arun1, Ganashree K. C.2

1B. E. student, Department of Computer Science and Engineering, R.V. College of Engineering,
Bengaluru, Karnataka, India

2Assistant Professor, Department of Computer Science and Engineering, R.V. College of Engineering,
Bengaluru, Karnataka, India

---***--

Abstract - Before a software product is made available for a
client to use, it must undergo thorough testing. Software
testing ensures that all the features of the software product
are working fine and there are no anomalies. Software testing
not only checks for errors but also makes sure that the
software meets the requirements that were laid out
before/during its development process. Software quality is one
of the most important factors that have to be met in software
development. In most companies, software builds are released
regularly in a short span and it is necessary that the issues in
the software product are identified and fixed early in order to
reduce the development cost. Software’s that undergo a proper
testing process ensure that the maintenance cost is reduced,
time is saved and the customer is satisfied. Catching a bug and
fixing it in the early phases of development ensures reduced
cost as one bug can cause a chain of bugs in the software.

The software testing process can be conducted either
manually or, the process can be automated. In manual
software testing, no automation tools are used, and each test
case is executed manually by a person. The test cases are
designed to meet the software requirements and ensure the
features are working as it was mentioned in the software
requirement documents. However, there is a chance of human
error in manual testing. There is no guarantee that in manual
testing all the features are tested. The features that are tested
depends on the tester. And testing of all the features of a
software is a time-consuming and human resource-intensive
process. In large organizations which have regular build
releases, it is necessary that a large amount of testing is
automated in order to ensure faster releases and reduced
costs. This paper gives an overview of the testing automation
process followed in software companies to test their software
product.

Key Words: Automation testing, Device under test
(DUT), Testbed, Test suite, Test script

1. INTRODUCTION

Software testing is one of the most important parts of the
software development life cycle. A proper testing process
ensures reduced cost, faster releases, and customer
satisfaction. Software testing in most large companies is
automated. Although all features that need to be tested in a
software product cannot be automated, a large set of these
features need to be automated. Software testing automation

ensures the faster release of new software builds and
reduces the human resources spent on the testing process.

Testing automation is carried with test scripts that are run
on the software product. The test script needs to be designed
according to a test case specification. Scripting languages like
Python or Pearl are often used to develop test scripts.
Usually, organizations have an automated test framework
that runs the test scripts on different environments and
records the results in a log file for analysis. The test scripts
are designed to test the software in different environments.
Automated testing often involves the use of test automation
tools to help in the testing process. Selenium is one such test
automation tool that is widely used for the automation of
web-based tasks.

Consider a company that develops a software product that
runs on a web browser. The product needs to undergo
testing in different environments. It needs to be tested on
popular web browsers like Mozilla Firefox, Google Chrome,
Internet Explorer and the product should also be tested
under different operating systems like Microsoft Windows,
mac-OS, Linux. The manual testing of the software on each of
these environments after the release of every build will
consume a lot of human resources and time. Manual testing
does not scale well. Testers can become fatigued after testing
a large number of features which diminishes their ability to
accurately identify bugs. Therefore it would be better if the
company chose to automate the testing process for the
software product. However, there are some disadvantages
associated with automation testing. Whenever there is a
major change in the third-party software like the OS or the
web browser on which the software is run, the test scripts
need to be updated accordingly to accommodate the change.
Even when there is a change in the new build of the software
being tested, there might be changes that need to be done in
the test script that was working well with the previous
versions of the software. Sometimes the test scripts need to
be changed entirely and coded from scratch when the
changes are major. For these reasons, the test scripts must
be modularized to reduce the amount of code that needs to
be changed and also to easily identify the scripts that need to
be changed. In large organizations, there will be separate
testing and development teams. It is necessary that the
changes in the developed software are communicated well
by the development team to the testing team so that the test
scripts can be changed accordingly.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2940

This paper talks about the automated testing process that is
followed by an organization. The organization has a software
product that has a regular release of new builds, hence most
of the software testing process is automated. The software
product is used by clients in different environments, and
whenever a customer experiences an issue the software is
tested under the required environment to identify the issue.
Due to this tests need to be conducted frequently on the
product therefore automated testing is preferred. The use of
automation testing has ensured the faster release of new
builds and customer satisfaction due to the reduced time
taken to resolve the issue.

2. Methodology

This section talks about the process of automation testing.
Automated testing is carried by a testing framework which
runs the test scripts. The testing framework will run the test
scripts on the software product in different environments.
The results of the test will be stored in a result/log file for
analysis. For better analysis of the result, the testing
framework will have a GUI to display the result/log file. The
management of the testing resources and the conduction of
the test can be done with the GUI/CLI. Fig -1 shows the
testing process flow on a high level. The test script is run by
the test automation framework on a test machine which
contains the software product being tested. After the
completion of the test the test results are available in a
result/log file.

Fig -1: Test automation process

2.1 Components of an automated test system

An automated test system involves many components like the
test script, suite file, etc. These components are described
below:

1. Test Script: A Test Script can run a single test case or set of
test cases for a particular feature. Each of these test cases is
usually coded as a single function. These test cases may have
iterations that represent different cases of the same test case.
To automate the testing of a software, a collection of scripts
that test its different features are compiled into a suite. The
test suite is run by the automated test system on the testbed.

A test script is usually written in Perl/Python. Every script is
associated with a unique script ID which is used to identify
the script. A test script may be associated with a
configuration file to run the test case on devices with
different configuration. The configuration file is used to

configure the device under test (DUT) before the test cases
are run on it. It is associated with a .cfg extension.

A testbed is a set of variables associated with test scripts that
are different for each test run. For example, a testbed could
include a variable set of domain names, IP addresses,
usernames, passwords, etc. To write a script that is
independent of a testbed, the variables used are replaced by
values that are specific to a testbed such as the IP address
when the script is parsed. These are generic variables. As the
parser provides the abstraction layer which allows you to
abstractly reference variables that are specific to a testbed,
the same script can be run on different testbeds.

2. Test suite: A suite file contains a list of scripts that test
various product features of a testbed. A suite file is created by
selecting scripts listed under different features. For example,
a suite file may contain scripts that test the server-side
features of the software. It has a .stf extension and contains a
list of scripts that need to run together. An example of a suite
file is shown in Fig -2. It contains a set of scripts related to
software plugin testing.

Fig -2: A sample test suite file

3. Test Instance: When a Test Suite is executed, a test
instance ID is created for that test instance. A test instance ID
is a timestamp. Each test instance possesses a unique test
instance ID which is generated when the test suite is run.
This ID is necessary to identify a test job that has been
executed and to obtain the result and logs of the test. For
example, Test-2021-01-04-17-02-54-97 is a test instance ID
that was generated by the automated test system. It includes
the details of the year, month, day and the time at which the
test execution started. A test job is referenced by its test
instance ID. The automated test system allocates a directory
to each test instance to store files like results file, log file,
script files, configuration file, etc.

4. Result and log files: These files are created after a test run
is initiated. They provide details of the execution of the test
process. They are the final output of a test run.

A. Result file: A result file is created after the execution of a
test script. A test suite consists of many scripts. Hence, the
result file for each of the scripts of the test suite is stored in
their respective test instance directories when a test suite is
run. It provides details of the number of test cases that have
passed and the number of test cases that have failed. It also

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2941

includes information on the reason for failure or the
outcome of a test case. They have a .res extension.

B. Log file: A log file is created during the execution of a test
script. The log file contains the information on how the test
script was run on the DUT. The log files for each of the test
scripts in a test suite are stored in their respective test
instance directories that are created when a test suite is run.
They have a .log extension.

2.2 Automated Testing process

The automated test is triggered via CLI/GLI against a test
suite and a testbed. The testbed needs to be free and
shouldn't be allocated to some other test run. The user
should also make sure the DUT is free and not running some
other test. When a test run is started, the test instance and
test instance directory are created. The timestamp when the
test starts is used to name the test instance. The automated
test system gets the suite file and the scripts within the suite
file. A copy of these scripts is created in the test instance
directory. The system then checks whether the DUT is
reachable and the testbed is available if they aren't, then the
test ends with test status as "Testbed busy" and "Testbed
down", respectively. If the resources needed are available
then the first script in the suite file is parsed. The resources
are allocated to run that script, and the resources are
mapped to the variables in the script, which may be IP
addresses, domain names. While parsing the script if it is
found that the resources mentioned aren't available then the
test status is updated as "Parse error".

After this, if all the requirements are met then the test status
is changed to running. When the test is running, it can be
terminated from the CLI/GUI. A timer is started at this time
to measure the time taken for the script to run. It also serves
as a means to terminate the test when it takes too long to
run. Before executing the script, it is first checked for syntax
errors. If there are any syntax errors then that script cannot
be executed. The test status is set as "Syntax error". If the
syntax is correct, then the script is executed. The script may
call several other scripts or libraries. When the test script
starts executing, a log and a result file for this test are
created in the test instance directory. The log file is updated
as the test is being executed. The log file provides all the
details of the test run process, which can be used to debug
the test upon failure. The details include the functions called,
networking packets sent, the status of resources, and all
details which help the reader understand the process flow of
the test case. The result file has details of the success or
failure of each step of a test case. The result file is filled after
the execution of the test script with the details from the log
file.

Fig -3: Flow chart of automated testing process

If the script takes more time than expected, it needs to be
terminated to avoid the system being stuck on a single script.
For this reason, a maximum time for each script is assigned;
this time varies for each script. If the script execution time
exceeds this time then the test status is set as "Timeout".

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2942

After the successful execution of the script and the result file
is updated, the final result table is updated. The final result
table is displayed in the GUI and includes all the details of the
test run which includes test instance ID, test execution start
and end times, script files, result and log files, etc. After this,
if there are more scripts to be executed in the test suite then
the next script is parsed, else the test ends. Fig -3 depicts the
flow chart of the automated testing process which includes
all the steps taken and decisions made in the process.

ACKNOWLEDGEMENT

I would like to extend my gratitude towards my guide Prof.
Ganashree K. C. for her continued support and guidance
towards my work in this paper. I would also like to extend
my gratitude to the Department of Computer Science and
Engineering, R.V. College of Engineering for giving me the
opportunity to write a paper on this topic.

REFERENCES

[1] I. Dobles, A. Martínez and C. Quesada-López, "Comparing

the effort and effectiveness of automated and manual
tests," 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI), Coimbra, Portugal,
2019, pp. 1-6, doi: 10.23919/CISTI.2019.8760848.

[2] E. H. Kim, J. C. Na and S. M. Ryoo, "Implementing an
Effective Test Automation Framework," 2009 Annual
IEEE International Computer Software and Applications
Conference, Seattle, WA, USA, 2009, pp. 534-538, doi:
10.1109/COMPSAC.2009.188.

[3] C. Klammer and R. Ramler, "A Journey from Manual
Testing to Automated Test Generation in an Industry
Project," 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion
(QRS-C), Prague, Czech Republic, 2017, pp. 591-592, doi:
10.1109/QRS-C.2017.108.

[4] K. Sneha and G. M. Malle, "Research on software testing
techniques and software automation testing tools," 2017
International Conference on Energy, Communication,
Data Analytics and Soft Computing (ICECDS), Chennai,
India, 2017, pp. 77-81, doi: 10.1109/ICECDS.
2017.8389562.

[5] Kassab, Mohamad and DeFranco, Joanna and Laplante,
Phillip. (2016). Software Testing Practices in Industry:
The State of the Practice. IEEE Software. PP.
10.1109/MS.2016.87.

[6] M. Böhme and S. Paul, "A Probabilistic Analysis of the
Efficiency of Automated Software Testing," in IEEE
Transactions on Software Engineering, vol. 42, no. 4, pp.
345-360, 1 April 2016, doi: 10.1109/TSE.2015.2487274.

[7] J. Gmeiner, R. Ramler and J. Haslinger, "Automated
testing in the continuous delivery pipeline: A case study
of an online company," 2015 IEEE Eighth International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Graz, Austria, 2015, pp.
1-6, doi: 10.1109/ICSTW.2015.7107423.

[8] C. Klammer, R. Ramler and H. Stummer, "Harnessing
Automated Test Case Generators for GUI Testing in
Industry," 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA),

Limassol, Cyprus, 2016, pp. 227-234, doi:
10.1109/SEAA.2016.60.

[9] S. Demeyer, A. Causevic, K. Wiklund and P. Potena, "The
Next Level of Test Automation (NEXTA 2020)," 2020
IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Porto,
Portugal, 2020, pp. xxii-xxii, doi:
10.1109/ICSTW50294.2020.00013.

[10] Umar, Mubarak Albarka and Chen, Zhanfang. (2019). ‘A
Study of Automated Software Testing: Automation Tools
and Frameworks’. 8. 217-225.
10.5281/zenodo.3924795.

