
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2467

Introduction to Minimal Thinking Technique using an Extremely Fast

Implementation of a Rubik’s Cube Solver

Prakhar Gupta

Director of Science, FAIPS, DPS Society, New Delhi, India

---***--

Abstract - "Minimal Thinking" is a technique developed by
me that, as the name suggests, minimizes the thought process
behind solving any problem by recognizing the type of
problem and using a predetermined result to jump straight to
the solution. I have used this technique to develop an
extremely fast and efficient Python 3 implementation of a
solver for a Rubik's cube puzzle. At each step of solving a
puzzle, the solver recognizes the current arrangement and
orientation of the individual pieces of the puzzle, and
rearranges and reorients the pieces into the final state of the
puzzle that the corresponding algorithm would have resulted
in, had it been manually executed. This solver is not only faster
than every other Rubik’s cube solver to date but also a great
example of how the technique of “Minimal Thinking” can be
used in modern Artificial Intelligence.

Key Words: Rubik’s Cube, Speedcubing, Bi-Directional
Breadth First Search, Korf’s Algorithm, Kociemba's
algorithm, Minimal Thinking technique

1. INTRODUCTION

Modern speedcubers, or individuals who compete in
speedcubing (a sport involving solving a variety of
combination puzzles, the most famous being the 3x3x3
puzzle or Rubik's Cube, as quickly as possible (src:
en.wikipedia.org)) solve the Rubik’s cube quickly not by
sheer intuition, but with memorized sequences of moves,
called algorithms, which they deploy to solve the cube
section by section. Knowing which algorithm to use when
boils down to pattern recognition: Each algorithm
corresponds to a different arrangement of coloured squares
on the cube. When a speedcuber spots an arrangement they
recognize, they perform the corresponding algorithm,
bringing the cube one step closer to solved. Using these
algorithms, the most fleet-fingered cubers in the world
average between 50 and 60 moves per solve, which they can
execute almost without thinking. [1]

An important point to note is that the 3x3x3 Rubik’s cube is
essentially a 2x2x2 Rubik’s cube without the edge and center
pieces. Hence anybody who knows how to solve the 3x3x3
cube can also solve the 2x2x2 cube using the exact same
algorithms, ignoring those algorithms which are related to
permuting and orienting the edge pieces. In particular,
solving the 2x2x2 Rubik’s cube is just like solving the corners
pieces of the 3x3x3 cube and solving a 3x3x3 cube is exactly
the same as solving a 2x2x2 cube but with an added

complexity of solving the edge pieces. Similarly, solving the
4x4x4 cube is exactly the same as solving the 3x3x3 cube but
with an added complexity of completing the centers and
pairing up the edges at the beginning of the solve. However,
especially after the 4x4x4 Rubik’s cube, this difference
between the subsequent puzzles of the NxNxN category of
twisty puzzles (puzzles like the Rubik's Cube which are
manipulated by rotating a section of pieces (src:
en.wikipedia.org)) becomes more and more subtle. To a
cuber, there is almost no difference between solving a 5x5x5,
a 6x6x6 or a 7x7x7 Rubik’s cube because solving each one of
them involves the general steps of completing the centers,
pairing up the edges and then proceeding the complete the
puzzle just like a 3x3x3 cube. This general pattern of an
added complexity with increasing order of the puzzle can, in
fact, be seen not only in the NxNxN puzzle category but in
every category of twisty puzzles. For example, a 1x2x3
puzzle can be solved by first correctly positioning its corner
pieces as if it were a 1x2x2 puzzle. After this, only a single
algorithm is required to correctly orient the pieces in its
middle layer, which is absent in a 1x2x2 puzzle.

2. COMMON RUBIK’S CUBE SOLVERS AND THEIR
SOLVING METHODS

Rubik’s cube solving computer programs are pretty common
and have been created by many using many different
methods. The general approach of almost every one of these,
however, is to use complex graph search algorithms to find an
optimum solution that can solve the scrambled cube. Three of
the most common and fastest Rubik’s cube solving methods
are:

1) Two-way Breadth-first Search method: Rather than
building up a single BFS tree from the scrambled state and
searching until the solved state is found, two BFS trees are
built - one from the scrambled state and one from the solved
state.

2) Korf’s Algorithm: This algorithm is iterative-deepening-
A* (IDA*), with a lower bound heuristic function based on
large memory-based lookup tables, or “pattern databases”.
These tables store the exact number of moves required to
solve various subsets of the individual movable cubies. [2]

3) Kociemba's algorithm: Kociemba’s algorithm identifies a
subset of 20 billion positions. Phase one finds a move
sequence that takes an arbitrary cube position to some
position in the subset, and phase two finds a move sequence
that takes this new position to the fully solved state. [3]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2468

3. STATISTICAL ANALYSIS OF THE SOLVERS

Since we have already established the similarity between
Rubik’s cubes of subsequent orders of the form NxNxN, let us
consider the case of a 2x2x2 Rubik’s cube for the sake of
simplicity and a better understanding of concepts. The 3x3x3
and 2x2x2 cube solvers for each of the above-mentioned
solvers are almost identical. In order to compare the speed
and efficiency of all these solving methods, I ran the 2x2x2
version of each of the three algorithms on CPython on my PC
and compared their mean solve times. To all three I gave the
same set of 10 random scrambles and the results are
summarized below:

1) Two-way Breadth-first Search method:

Source Code: “rubiks_cube_bfs” solver by Mayank Rawat
on GitHub (URL:
https://github.com/mayank18049/rubiks_cube_bfs)

Mean solve time: 0.5452627182006836 seconds per
solve.

2) Korf’s Algorithm:

 Source Code: “PocketCube” solver by Ivan Grudinin on
GitHub (URL: https://github.com/kuligram/PocketCube)

 Mean solve time: 0.9749078100377863 seconds per solve

The program also took an additional 38.04953694343567
seconds on average to generate the pattern database
heuristic before the very first solve.

3) Kociemba's algorithm:

 Source Code: “Rubiks2x2x2-OptimalSolver” by Herbert
Kociemba on GitHub (URL:
https://github.com/hkociemba/Rubiks2x2x2-OptimalSolver)

 Mean solve time: 0.021625208854675292 seconds per
solve

This makes Kociemba’s Algorithm the fastest among the
three. Kociemba’s Algorithm was in fact also used to calculate
the solution in the robot that holds the current Guinness
World Record for the fastest solve by a robot.

4. Pytwisty PACKAGE

“pytwisty” is an extremely fast and efficient Python 3
implementation of a solver for a number of twisty puzzles
including the 1x2x2, 1x2x3, and 2x2x2 Rubik's cube puzzles.
This MIT-Licensed package has been developed and owned
solely by me. Detailed instructions on the installation and
usage of this package can be found at the Python Package
Index (PyPI) repository of software for Python (URL:
https://pypi.org/project/pytwisty/) and on GitHub (URL:
https://github.com/prakharguptafaips/pytwisty) under the
project name “pytwisty”.

In comparison to the mean solve times of all the above-
mentioned solvers, my 2x2x2 Rubik’s cube solver produced
the following result:

 Mean solve time: 6.182333333413226e-05 seconds per
solve

This solve time of the order -5 makes this solver 350 times
faster than Kociemba’s algorithm!

4.1 Working Mechanism of My Solver

 Unlike the conventional computerized Rubik’s cube
solvers that look for an optimal solution from subsets of
billions of positions of the cube using complex search
techniques, my solver uses the “human approach” to solve the
puzzle. Specifically, it runs a combination of a slightly altered
version of the layer-by-layer (LBL) method and the CFOP
method of the 3x3x3 cube, which is heavily used and relied
upon by most of the top speedcubers. I am not the first one,
however, to adopt this “human way” of solving a Rubik’s cube
by a computer. But unexpectedly, all of such solvers are also
extremely slow and inefficient. An example for the same is
“rubik-cube” package by Paul Glass on PyPI (URL:
https://pypi.org/project/rubik-cube/) which uses the
Beginner’s method and takes about 3 times the time taken by
Kociemba's algorithm per solve on CPython.

4.2 Reason Behind the Unexpectedly High Speed
and Efficiency of My Solver

 One possible reason might be the way I stored and
maintained the scrambled state cube throughout the
program. Taking the example of the 2x2x2 Rubik’s cube, most
solvers maintain an array of the colors on all the 24 colored
stickers on the cube at all times. In contrast, I have
maintained an array of only 8 elements. Without going much
into the details, each of these 8 elements maintains the
appropriate position and orientation of the corresponding
pieces/cubies in the cube at all times during the solve. The
logic behind this is that the 2x2x2 Rubik’s cube essentially
consists of only 8 individual cubies which move about a
common center. Each of those 8 pieces comprises 3 stickers
that always remain together, no matter what. As a result, I
effectively broke down the main problem of solving the entire
collection of stickers into two subproblems namely,
permuting the locations of the pieces and orienting them.
This made my program comparatively easier to implement.
However, this is not the main reason behind the extremely
high speed and efficiency of my solver. The main reason is the
use of the “Minimal Thinking” technique developed by me.

Minimal Thinking technique:

In simplest terms, this is a technique that minimizes the
thought process behind solving any problem by recognizing the
type of problem and using a predetermined result to jump
straight to the solution.

The inspiration for this technique came from one of the most
crucial principles of speedcubing, the fact that “each
algorithm corresponds to a different arrangement of colored
squares on the cube and that when a speedcuber spots an
arrangement they recognize, they perform the corresponding

https://github.com/mayank18049/rubiks_cube_bfs
https://github.com/kuligram/PocketCube
https://github.com/hkociemba/Rubiks2x2x2-OptimalSolver
https://pypi.org/project/pytwisty/
https://github.com/prakharguptafaips/pytwisty
https://pypi.org/project/rubik-cube/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2469

algorithm, bringing the cube one step closer to solved.” And I
successfully used this to create my solver. At each step of
solving the puzzle, the solver recognizes the current
arrangement and orientation of the individual pieces of the
puzzle, and rearranges and reorients the pieces into the final
state that the corresponding algorithm would have resulted
in, had it been manually executed. This is just like how
speedcubers, at each level of solving the Rubik’s cube, look at
the arrangement of the cube and execute the corresponding
algorithm, all without thinking. To better understand this
concept, consider this simple math problem:

Calculate the numerical value of 252 – 52.

Whenever someone sees this mathematical expression, the
very first thing that will come to his mind is the identity a2
– b2 = (a + b) * (a – b). And without thinking further, he will
immediately rewrite the expression as (25 + 5) * (25 – 5)
which will give him 600 as the final answer.

However, someone unaware of this identity would have
proceeded as follows:

252 – 52
= 252 – 52 + 25 * 5 – 25 * 5
= 25 * (25 + 5) – 5 * (25 + 5)
= (25 + 5) * (25 – 5)
= 600

While solving a Rubik’s cube, each of the algorithms plays
precisely the role the identity a2 – b2 = (a + b) * (a – b) plays in
this math problem. What my solver does is that it first looks
at the current arrangement of this cube at every stage and
using a few conditional statements, it determines which
algorithm is to be used (This is equivalent to us looking at the
mathematical problem given in the example, recognizing that
it is of the form a2 – b2 and thus concluding that the identity
a2 – b2 = (a + b) * (a – b) is to be used). Now just like how we,
without thinking anything, directly rearrange the given
expression to the form (25 + 5) * (25 – 5), the solver also
simply rearranges the cube pieces into the final arrangement
that would have resulted had it actually followed each of the
steps of the algorithm. It does not really execute that
algorithm itself but simply adds the steps of that algorithm to
the final solution.

In fact, the main reason why I employed the CFOP method in
my solver is because of CFOP’s heavy reliance on algorithms,
pattern recognition, and muscle memory, as opposed to more
intuitive methods such as the Roux or Petrus methods.
Therefore, it is also heavily used and relied upon by many
speedcubers, including Max Park and Feliks Zemdegs (src:
en.wikipedia.org).

7. CONCLUSIONS

The Rubik’s cube solver is just one of the several applications
that the Minimal Thinking technique can potentially have in
modern Artificial Intelligence. This technique can be used to
ease the problem-solving part of every program by training
the program to use results that have already been established
by both human or artificial intelligence and directly jump to
the solution without solving the entire problem on its own.

The result is a boost in the performance of the program both
in terms of memory and speed.

I have thus not only developed the fastest Rubik’s cube
solving method to date but also a new idea that in my opinion
can revolutionize the field of AI to a great extent. Although
the “human method” of solving the Rubik’s cube comes with
the disadvantage of not always providing the optimal
solution, the 350x boost in program efficiency effectively
outweighs any such potential disadvantages in the long run.
With modern robots that can execute each move in as less as
10 milliseconds, executing a handful of extra moves is an
almost negligible task. In most real-life problems, an optimal
solution may not always prove to be the best solution,
especially when it is generated at the cost of an extremely
slow and excessively memory-consuming program.
Moreover, bringing down this move time to 5 milliseconds is
a more achievable task in near future than developing faster
and better search algorithms and reprogramming the other
existing solvers to execute them. Regardless of how modern
AI has advanced to a point where robots tend to have the
potential to “think” on their own, even a small human
interaction in a completely autonomous program can make a
huge difference in the efficiency of the program, as made
evident in this example of a Rubik’s cube solver.

Another significant takeaway from this particular solver is
the fact that such a solver for a puzzle of a particular order
can be built by adding on to the solvers of lower orders of the
same category of puzzles, without having to start from
scratch. This is precisely how I had built my solver for the
1x2x3 Rubik’s puzzle from my 1x2x2 puzzle solver by adding
a few extra lines of code that correctly orient the middle layer
pieces which are absent from a 1x2x2 puzzle.

REFERENCES

[1] R. Gonzalez, “How to Solve a Rubik's Cube in 5

Seconds—or Less,” Wired (www.wired.com), 24 May
2019.

[2] R. Korf, “Finding Optimal Solutions to Rubik’s Cube
Using Pattern Databases,” AAAI-97 Proceedings,
American Association for Artificial Intelligence
(www.aaai.org), 1997, pp. 700-705

[3] T. Rokicki, “Twenty-Five Moves Suffice for Rubik’s
Cube,” Symbolic Computation, Computer Science,
Cornell University, arXiv:0803.3435v1 [cs.SC], 24 Mar.
2008, pp. 3-5.

http://www.wired.com/
http://www.aaai.org/

