
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1797

Use of Asynchronous Methods to Enhance Javascript Code

Siddhant Gupta1, Sagar D Padiya2

1B.E. in Information Technology, SSGMCE, Maharashtra, India
2Professor, Dept. of Information Technology, SSGMCE, Maharashtra, India

---***--
Abstract - Since 1996, when JavaScript and its features were
first released, there has been no stopping for it. Because of its
pace, JavaScript is used to implement some of the language's
features in almost all major technologies. Although the
development of JavaScript was initially guided solely by
implementation, the ECMA standardization process is now
gaining traction. The asynchronous function provided by
JavaScript is one such feature. Why use Asynchronous
JavaScript when you can do whatever you want with standard
JavaScript? In this article, we'll look at all of the benefits and
enhancements that Asynchronous JavaScript offers over
standard JavaScript. We'll look at how to make our web apps
load quickly and are easily readable. We will systematically
compare the old features such as callbacks, single threading
with promises, async await, and error handling.

Key Words: JavaScript, Asynchronous, async, await,
promise, Callback

1. INTRODUCTION

When we talk about making websites, the first thing that
comes to mind is probably HTML and CSS and we can build a
static website with HTML and CSS. For developers
developing cloud, web, or IoT applications, JavaScript code
running in the Node.js runtime is a big platform. The use of
asynchronous callbacks and event loops to provide highly
sensitive applications is a fundamental principle in Node.js
programming. This programming model, though
conceptually simple, contains several subtleties and
behaviors that are described implicitly by the current
Node.js implementation. We can include graphics, add colors
and static content, make animations (2D/3D) but the
websites will not be user responsive. User responsive means
that the dynamic nature of the website will be absent. We’ll
not be able to submit form data, respond with different data
every time a user clicks on a button. To make all of this
possible, we use JavaScript. JavaScript is a fully fledged
programming language capable of making websites, apps
and games etc. JavaScript abbreviated as JS uses scripts to
interact with the webpage.

Asynchronous JavaScript is a part of JavaScript and is
considered fairly advanced bit of JS Language. To get a good
grasp of Asynchronous JavaScript, we have to first
understand the Synchronous section of JavaScript. JS is
single threaded language and this means that only one
process at a time can be executed by JavaScript. It starts from
line one and executes all the lines of code one by one and all

the process are stopped until that line of code is fully
executed.

For example:

const button = document.querySelector('button');

button.addEventListener(“click”, () => {

 alert(“CLICKED”');

 let paragraph = document.createElement(“p”);

 paragraph.textContent = “New paragraph added.”;

 document.body.append(paragraph);

});

When we execute this bit of code, we will find that the alert
() will be executed first and until and unless we terminate
the alert, the paragraph element below the alert () will not
run or we can say that the rendering is paused. Browsers
allow us to run such operations asynchronously to solve
certain issues. Promises allow you to start an operation (for
example, fetching an image from the server) and then wait
until the result is returned before continuing with another
operation. Since the operation is happening somewhere else,
the main thread is not blocked while the async operation is
being processed. This was the problem that was faced by
programmers all around the world and hence Asynchronous
JavaScript was introduced. Asynchronous JavaScript has
made life easier for programmers who wanted to run some
kind of files from external resources such as fetching files
from server, using the database, accessing the webcam, etc.
Asynchronous means multiple things can be done at the
same time or multithreading. In this paper, we will dive into
the world of Asynchronous JavaScript and all the advantages
it has to the regular way of writing scripts in JS. We will take
a look at the traditional methodology of creating scripts and
how we can improve them by using asynchronous
methodology and how it improves the quality and
readability of the code.

2. PROBLEM STATEMENTS

2.1 The Call Stack

Call stack is the mechanism by which the JS interpreter
keeps track of its place in the script that calls multiple
functions. This is the way JavaScript knows where it currently

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1798

is in the code and if there are any functions called from that
running function or not.

When we talk about stack, we think of an array. In the
same way, when the script calls any function it adds the
function to the call stack and then starts carrying out the
operations. Any function that is called after the first one
automatically gets added to the call stack and this goes on.
When one function is finished, the interpreter removes it
from the call stack and continues to execute the function after
that. This goes on till all the function calls are addressed.
When the stack takes up more space rather than the allotted
space, then stack overflow error occurs. The Call stack has
one major drawback that once there are a lot of functions
waiting to be executed in the stack, it becomes difficult to
identify which steps are going wrong (if any) at a certain
point of time.

For Example:

const multiplication = (a, b) => {

return a * b;

};

const squared = (a) => {

return multiplication(a, a);

};

const rightAngleTriangle = (x, y, z) => {

return square(x) + square(y) === square(z);

};

rightAngleTriangle(2, 3, 5);

In this above example, when rightAngleTriangle(2, 3, 5) is
called, rightAngleTriangle() function is called and the from
inside it, square() is called and from it, multiplication() is
called. These operations demonstrates call stack. The below
Diagram Demonstrates the flow of code in the example
stated.

Chart -1: Call Stack flow Chart

This is the flow of the code and it is from top to bottom.

2.2 Single Threaded

JavaScript is a single threaded language. It means that at any
point of time, only one particular line of code is running. In
other words, multitasking is not possible here. Even if the
computer having the JS interpreter has multiple cores, only
one thread at a time will be executed and that is called as
main thread. The best example of this is the alert () function
which was discussed in the introduction. Until and unless the
alert () function is executed, all the lines of code following the
alert () are halted.

2.3 Callbacks

When there are multiple options for users to click or interact
with the elements of webpage, it is hard for us to tell which
element will be used by the user so for that in JS, we define
callback functions which execute whenever any element in
the webpage is interacted with. A callback function is a
function that is passed as an argument to another function
and then invoked within the outer function to complete a
routine or operation. Callbacks are commonly used to create
rich interactive Web applications in JavaScript's
asynchronous programming. However, the lack of
dependencies between callbacks can make it difficult to
understand and maintain code, resulting in a mash-up of
concerns. Regrettably, current JavaScript solutions do not
adequately resolve this issue but this issue can be made
more concise with the introduction of promises and that we
will look further in this paper.

For example:

document.getElementById('button').addEventListener('click
',()=>

 {

 alert(“CLICKED!”)

 })

The second parameter in addEventListener() is the callback
function for anything with id button is clicked and when the
button is clicked, an alert will pop up stating that it’s clicked.

A callback is simply a function which is passed inside
another function as a value and it will only be executed when
the event happens. This is because JavaScript has a concept
of Higher-Order Functions which accepts other functions as
values in parameters.

The main problem with callbacks is that it adds a level of
nesting to functions. This is good when the nesting is just one
or two levels but when the nesting is increased, callbacks
substantially increases the amount of time needed to code
and increases complexity of code.

rightAngleTriangle()

squared()

multiplication()

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1799

For Example:

window.addEventListener('load',()=>{

document.getElementById('button').addEventListener('click
',()=>{

setTimeout(()=>{

items.forEach(item=>{

 //Function Body

 })

 }, 2000)

 })

})

To handle errors in callback functions, we pass the error
object as the first parameter in the arguments of the
function. If there is no error, the object will display the null
value but if there’s an error, the object will display the
information about error.

fs.readFile('/file.json', (error, data) => {

if (error !== null) {

 // error handling

 console.log(error)

 return

 }

// process data if no errors

 console.log(data)

})

So these were some of the problems faced by programmers
and to solve these problems, Modern JavaScript (ES6 or
ECMAScript 6 and onwards) introduced some asynchronous
features which will help us with these problems.

3. PROPOSED METHODOLOGY (SOLUTIONS)

3.1 Promise

A Promise is an entity that represents the successful or
unsuccessful completion of an asynchronous process.
Essentially, a promise is a returned object to which you
attach callbacks, instead of passing callbacks into a function.
Promises are a great way of not getting stuck in callbacks
every time when we are having multiple function calls
dependent on each other. It’s a way to deal with
asynchronous code. Programmers may prevent common

event-driven programming pitfalls including event races and
the highly nested counterintuitive control known as
"callback hell" by using promises.

They were introduced in JavaScript in ES6 or ECMAScript 6
(also known as Modern JavaScript).

They syntax of creating promises is,

new Promise((resolve,reject)=>{

 //Function code

})

Let us consider a function that returns the data of a file:

function successReading(result) {

 console.log("file ready: " + result);

}

function failureReading(error) {

console.log("Error reading file: " + error);

}

readingFileAsync(readingFile,successReading,
failureReading);

If readingFileAsync() was to return a promise, we would
follow the syntax:

readingFileAsync(readingFile).then(successReading,
failureReading)

Unlike callback functions nesting, promises give us some
advantages, the callbacks added with then() will never be
called until the current run of the JavaScript event loop is
concluded and if these callbacks were introduced after the
success or failure of the asynchronous process, they will be
invoked. Multiple callbacks can be added by calling then
many times and all of them will be invoked one after
another.

For Example:

firstFunction(function(firstResult) {

 secondFunction(result, function(secondResult) {

 thirdFunction(newResult, function(thirdResult) {

 console.log('Got the final result: ' + thirdResult);

 }, failureCallback);

 }, failureCallback);

}, failureCallback);

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1800

If we try to code the above example using promises then it
would look like this:

firstFunction()

.then(firstResult => secondFunction(firstResult))

.then(secondResult => thirdFunction(secondResult))

.then(thirdResult => {

 console.log(`Got the final result: ${thirdResult}`);

})

.catch(failureCallback);

The catch() function expects a function as an argument
which would be executed when the code is rejected and not
resolved in the code. Here failureCallback() is a function
which will run if the promise is rejected.

In short, Promise accepts two parameters, one is resolve and
another is rejecting. Resolve is executed when the request
made by promise is successfully dealt with while reject is
executed when the operation fails. When a Function uses a
promise to resolve or reject a request, it has to use a special
keyword called ‘then’ and ‘catch’ to execute the next line of
code after a resolved or rejected request.

3.2 The async and await keyword

An async function is one that is declared with the async
keyword and allows the use of the await keyword inside it.
The async and await keywords make it easier to write
asynchronous, commitment-based actions without having to
specifically configure promise chains. Async keyword is used
before a function to make a newer way of writing
asynchronous code using Promise. The async function lets us
use the await keyword for Promises. Await keyword is used
to let the executing function run until the promise is resolved
or rejected.

Syntax:

async function name([param[, param[, ...param]]]) {

 //statements

}

The params (parameters) of the async function are name of
the function, Name of argument passed to the function, the
function body (await keyword can be used).

A Promise that will either be resolved with the value
returned by the async function or refused with an exception
thrown by the async function or uncaught within it.

For Example:

const newAsyncFunc=()=>{

 return new Promise(resolve=>{

 setTimeout(()=>

 resolve('Promise Resolved')

 ,3000)

 })

}

This Function uses promise to resolve a request after a
timeout of 3 seconds but when we execute this program, we
find out that the code below this line gets executed even
before the promise is resolved and the function is executed
after 3 seconds. This caused lot of problems for
programmers who wanted their promise to be resolved or
rejected first.

Await solves this problem.

For Example:

const newResolve = async ()=>{

 console.log(await newAsyncFunc())

}

This newResolve() async function awaits for
newAsyncFunc() to get executed and after 3 seconds when
the request is resolved, the execution of code goes on.

There can be zero or more await expressions in async
functions. Await expressions simulate synchronous
behaviour in promise-returning functions by halting
execution before the returned promise is fulfilled or rejected.
The settled value of the promise is used as the await
expression's return value. The use of async and await allows
you to wrap asynchronous code in regular try/catch blocks
(Blocks of code used to handle errors).

One important thing to note here is that await keyword can
only be used with async functions. If we try to use the await
keyword outside the scope of async functions, it will give us
syntax error.

Now let us consider a code where we use promise with async
functions.

An API returning a promise will result in a promise chain
and the function is split into many parts.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1801

function getData(url) {

 return downloadData(url) // returns a promise

 .catch(error => {

 return downloadFallbackData(url) // returns promise

 })

 .then(x => {

 return processData(x) // returns a promise

 })

}

This code can be written using async function and await
keyword.

async function getData(url) {

 let x

 try {

 x = await downloadData(url)

 } catch(error) {

 x = await downloadFallbackData(url)

 }

 return processData(x)

}

3.3 Error Handling

Error handling comes into practice when the promise is
rejected instead of being resolved. As soon as the Promise is
rejected, we see that an error is thrown by our browser. So
code after that will never be executed. So the best way to
catch errors in async functions is to use the try and catch
block. Its syntax is:

try{

 //function code

} catch(e){

 // error catching code

}

When the function in try block is successfully executed, the
catch never runs and hence we will never find an error. In
the same way we can put our promises inside the try block
with resolve function and if the request is rejected, the catch

block will contain the code which will show the error. The
main advantage of try and catch block in async a function is
that the execution of script never stops. It will stop the
execution of the part of code which has an error but all the
correct code will continue to run.

4. CONCLUSION

We have concluded that, the Asynchronous JavaScript which
was introduced in ES6 or the Modern JavaScript has
significantly improved the life of programmers all around
the globe with its newer syntax and new way of writing
callbacks in form of promises and async functions.
Asynchronous programming, which allows programmers to
do more than one thing at a time, is becoming more common
in modern software design. As you use more efficient APIs,
you'll find more cases where asynchronous execution is the
only alternative. This reduces the lines of code needed to be
written before and thus reducing the time of execution
making our web apps fast and more efficient. This becomes
useful when script is very big and minor changes like these
can make a very big difference in speed of the web app.

REFERENCES

[1] https://nodejs.dev/learn/javascript-asynchronous-
programming-and-callbacks - Blog on JavaScript
and Node.js

[2] https://developer.mozilla.org/en/US/docs/Learn/J
avaScript/Asynchronous - Mozilla Developer
Network Documentation on JavaScript.

[3] Gábor Antal, Péter Hegedus, Zoltán Tóth, Rudolf
Ferenc, Tibor Gyimóthy in 2018 IEEE 18th
International Working Conference on Source Code
Analysis and Manipulation (SCAM), September
2018.

[4] Saba Alimadadi, Di Zhong, Magnus Madsen, Frank
Tip in Proceedings of the ACM on Programming
Languages, October 2018, Article 162.

[5] Saba Alimadadi in FSE 2016: Proceedings of the
2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, November
2016, pages 1076-1078.

[6] Martin Bodin, Arthur Chargueraud, Daniele Filaretti,
Philippa Gardner, Sergio Maffeis, Daiva
Naudziuniene, Alan Schmitt, Gareth Smith in POPL
'14: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages, January 2014, pages 87-100.

[7] Matthew C. Loring, Mark Marron, Daan Leijen in
DLS 2017: Proceedings of the 13th ACM SIGPLAN
International Symposium on on Dynamic
Languages, October 2017, Pages 51-62.

[8] Paul Leger, Hiroaki Fukada in MODULARITY
Companion 2016: Companion Proceedings of the
15th International Conference on Modularity, March
2016, Pages 79-82

https://nodejs.dev/learn/javascript-asynchronous-programming-and-callbacks%20-
https://nodejs.dev/learn/javascript-asynchronous-programming-and-callbacks%20-
https://developer.mozilla.org/en/US/docs/Learn/JavaScript/Asynchronous
https://developer.mozilla.org/en/US/docs/Learn/JavaScript/Asynchronous
https://ieeexplore.ieee.org/author/37085463950
https://ieeexplore.ieee.org/author/38629278300
https://ieeexplore.ieee.org/author/37323891100
https://ieeexplore.ieee.org/author/37264904100
https://ieeexplore.ieee.org/author/37264904100
https://ieeexplore.ieee.org/author/37264905300
https://ieeexplore.ieee.org/xpl/conhome/8528960/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8528960/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8528960/proceeding
https://dl.acm.org/doi/proceedings/10.1145/2950290
https://dl.acm.org/doi/proceedings/10.1145/2950290
https://dl.acm.org/doi/proceedings/10.1145/2950290
https://dl.acm.org/doi/proceedings/10.1145/2535838
https://dl.acm.org/doi/proceedings/10.1145/2535838
https://dl.acm.org/doi/proceedings/10.1145/2535838
https://dl.acm.org/doi/proceedings/10.1145/2535838
https://dl.acm.org/doi/proceedings/10.1145/3133841
https://dl.acm.org/doi/proceedings/10.1145/3133841
https://dl.acm.org/doi/proceedings/10.1145/3133841
https://dl.acm.org/doi/proceedings/10.1145/2892664
https://dl.acm.org/doi/proceedings/10.1145/2892664
https://dl.acm.org/doi/proceedings/10.1145/2892664

