
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4047

Multi Mode IEEE 754 Floating Point Unit (FPU)

V M Ranjith1, Vithal Reddy2, Dhanush R3

1Dept. of Electronics and Communication, BMS College of Engineering
2Dept. of Electronics and Communication, BMS College of Engineering

3Dept. of Electronics and Communication, BMS College of Engineering, Bengaluru
---***--
Abstract - In this paper, the implementation of floating
point ALU is presented and designed. The Floating Point
Unit acts as a co-processor. It carries out arithmetic
operations of floating numbers. The design is made to
operate in 3 modes, 16-bit half-precision, 32-bit single
precision and 64-bit double precision ALU for better
precision and accuracy. The design is based on high
performance, and is done after functional and timing
simulation. The simulation tool used is Xilinx Vivado. The
tool for synthesis and implementation is Quartus.

Key Words: Floating point ALU, Adder, Subtractor,
Multiplier, Half precision, Single precision, Double
precision.

1.INTRODUCTION

Fig-1 Block diagram of Multi-Mode Floating Point Unit

 Half-precision floating numbers occupy 16-bits. The
IEEE 754 format specifies that 16 bits are divided into 3
parts

1) sign bit
2) exponent
3) mantissa

 The MSB represents a sign bit. If it is ‘1’ then it is
considered as a negative number. If it is ‘0’ then it is
considered as a positive number. Bits 14-10 represents
exponent. The exponent is in offset binary representation
with offset 15. Minimum exponent that can be represented
is -14. Maximum exponent that can be represented is 15.
So numbers with exponent part 2^-14 to 2^15 can be
represented through this IEEE 754 half precision floating

point representation. Bits 9-0 represents the fraction part.
As all the floating point fractions are in the form of 1+
fraction format, to save bits only the fraction part is saved.

Subnormal numbers: The numbers that are obtained
when the exponent part is 00000 but fraction part is non
zero these numbers are considered as subnormal
numbers.

The smallest subnormal number that can be represented
using half precision floating point representation is
0.000000059604645.[6] Largest number that can be
represented using half precision floating point
representation is 65504.[6]

Single precision floating point numbers are represented
using 32 bits. The MSB represents a sign bit. If it is ‘1’
then it is considered as a negative number. If it is ‘0’ then it
is considered as a positive number. The following 8 bits
represent exponent. Minimum exponent that can be
represented is -126. Maximum exponent that can be
represented is 127. So numbers with exponent part 2^-
126 to 2^127 can be represented through this IEEE 754
single precision floating point representation. The
remaining 23 bits represent a fraction.

The smallest subnormal number that can be represented
using half precision floating point representation is
1.4×1045. Largest number that can be represented using
single precision floating point representation is 3.4 x 1038[.

[1]

Double precision floating point numbers are represented
using 64 bits. The MSB represents a sign bit. If it is ‘1’
then it is considered as a negative number. If it is ‘0’ then it
is considered as a positive number. The following 11 bits
represent exponent. Minimum exponent that can be
represented is -1023. Maximum exponent that can be
represented is 1024. So numbers with exponent part 2^-
1023 to 2^1024 can be represented through this IEEE 754
single precision floating point representation. The
remaining 52 bits represent a fraction.

The smallest subnormal number that can be represented
using half precision floating point representation is
4.9×10−324. Largest number that can be represented using
double precision floating point representation is 1.8 x
10308[1].

a_short
b_short

a_singl
e b_singl
e

a_doub
le b
_doubl
e m

d
f
p
f

cl
k

res_sh
ort
res_sin
gle

res_do
uble

reset

Multi-
Mode

Floating
point unit

ov

1
6 1
6
3
2 3
2
6
4 6
4

3
2

6
4

12
8

2

2

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4048

2. Arithmetic Operations

2.1 Addition

The input fpf (floating point function) bits represent the
function to be performed. When the fps bits are set to 00
then the addition of two operands takes place. When the
fps is 01 subtraction takes place. The operands consist of a
sign bit which depicts whether the number is negative or
positive. The fraction part is set according to the
exponents of two operands by the comparator and shifting
module. When both the exponents are equal then the both
fractions are added and the result is normalized. When the
exponent of a_short is greater than the exponent of
b_short by value ‘e’, then the fraction part of b_short is
shifted right ‘e’ times by adding 1 to the MSB. Similarly
when the exponent of b_short is greater than the exponent
of a_short by value ‘e’, then the fraction of a right-shifted
by ‘I times by adding the value 1. The corrected fraction
parts of both the operands are added. Figure (2) shows a
block diagram of the adder/subtractor. m1, m2 represents
mantissa of operand 1,2. e1, e2 represents exponents of
operands 1,2. Where the difference of both exponents is
represented by e. The corrected mantissa are added to the
adder/ subtractor unit.

Fig-2 Block diagram of adder/subtractor

2.1.1 Addition of half-precision floating points

 When the mode bits are set to 00 the half-precision
floating-point unit is enabled. According to IEEE 754
format, it has 5 bits of exponent and 10 bits of the fraction
part
 The two operands are taken as a_short and b_short.
Which are 16 bits long. The exponents of both operands
are compared and shifted accordingly. The shifted inputs
are now either added or subtracted depending upon ‘fps’
bits. When the result exceeds the maximum value of
representation the overflow flag is set.

2.1.2 Addition of Single precision floating points

 When the mode bits are set to 01 the single-precision
floating point unit is enabled. IEEE 754 format has 8 bits
of exponent and 23 bits of the fraction part

 The two operands are taken as a_single and b_single.
Which are 32 bits long. The exponents of both operands
are compared and shifted accordingly. The shifted inputs
are now either added or subtracted depending upon ‘fps’
bits. When the result exceeds the maximum value of
representation the overflow flag is set.

2.1.3 Addition of Double precision floating points

 When the mode bits are set to 11 the single-precision
floating point unit is enabled. IEEE 754 format has 11 bits
of exponent and 52 bits of the fraction part

 The two operands are taken as a_single and b_single.
Which are 64 bits long. The exponents of both operands
are compared and shifted accordingly. The shifted inputs
are now either added or subtracted depending upon ‘fps’
bits. When the result exceeds the maximum value of
representation the overflow flag is set.

2.2 Multiplication

Multiplication of IEEE 754 floating-point numbers can be
computed by multiplying the normalized mantissa(24-bit
mantissa in Full-Precision and 11-bit mantissa in Half-
precision), adding the biased bit exponent(8-bit mantissa
in Full-Precision and 5-bit mantissa in Half-precision) and
calculated the sign by XOR the input sign bits [4].

The multiplier for the IEEE 754 floating-point numbers
can be divided into four sections:

 1.Sign extraction

 2.Addition of Exponent

 3.Multiplication of Mantissa

 4. Flag

Extract the sign bit of inputs and XORed to get the result
sign bit. Add the exponents of input and subtract the
bias(bias=[2(n-1)-1] where n is the number of exponent
bits) component from the summation.

Multiply the mantissa of 2 inputs, if the resulting
intermediate does not have a single ‘1’ at MSB, then right-
shift results so till we have ‘1’ at MSB and the final output
is truncated(LSB bits). Now Normalizing the mantissa by
eliminating the most significant 1 and the value of the
exponent is incremented corresponding to a right shift.

Flags are raised when Infinity, Zero, Underflow and
Overflow cases are detected. The Infinity flag is raised if
any exponent of inputs has all 1’s and mantissa has all 0’s.
Zero flags are raised if the exponent is 0 and mantissa is 0.
Underflow flag when the sum of both the exponent is less
than bias. Overflow is raised when the exponent is beyond
the range[5].

 compar
ator

 Shift
er

e1 e
2 m1 m2

e

Correct
ed
mantes
sa 1

Correct
ed
mantes
sa 2 Adder

/subtractor fpf

o
v

resu
lt

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4049

The general flowchart of multiplication is shown in Fig-3.
where Sa and Sb are sign bits, Ea and Eb are Exponent bits,
Ma and Mb are Mantissa of 2 inputs respectively. S, E, M
are the sign, exponent, mantissa bits of the result
respectively.

Fig -3 Block diagram of Multiplier.

3. CONCLUSIONS

 The floating-point unit is considered a mathematical co-
processing unit. Many programs use all short, single,
double precision so there is a requirement of hardware
that can perform all 3 modes of floating-point operations.
The three mode floating-point units enable the option of
choosing one of the three modes according to the program.
It decreases hardware complexity. It uses simple but
effective addition and multiplication algorithms. The
experimental results show the functional and timing
analysis for all the modules carried out using Intel Quartus
Prime.

REFERENCES

[1] Pratik Singh & Kalyani Bhole, ‘Optimized floating-

point arithmetic unit’. 2014 Annual IEEE India
Conference (INDICON). 05 February 2015, ISSN:
2325-9418.

[2] Nielsen, Asger & Matula, David & Lyu, C.N. & Even,
Guy. (2000). An IEEE compliant floating-point adder
that conforms with the pipeline packet-forwarding
paradigm. Computers, IEEE Transactions on. 49. 33 -
47. 10.1109/12.822562.

[3] Thesis ‘THE DESIGN OF AN IC HALF PRECISION
FLOATING POINT ARITHMETIC LOGIC UNIT’ by ‘Balaji
Navalpakkam Kannan’ presented to ‘The Graduate
School of Clemson University

[4] Prachi Agrawal, Prof. Shravan Sable, Dr Rita Jain.A
“Review on IEEE-754 Floating Point Multiplier Using
Verilog”, Volume-08, Number-03, 2015, ISSN: 2349-
4689

[5] Aniruddha Kanhe, Shishir Kumar Ankit Kumar Singh
“Design and Implementation of Floating Point
Multiplier based on Vedic Multiplication Technique”
Oct. 19-20

[6] https://en.wikipedia.org/wiki/IEEE_754

BIOGRAPHIES

V M Ranjith
Dept of Electronics and
Communication, BMS College of
Engineering, Bengaluru,
Karnataka 560019

Vithal Reddy
Dept of Electronics and
Communication, BMS College of
Engineering, Bengaluru,
Karnataka 560019

Dhanush R
Dept of Electronics and
Communication, BMS College of
Engineering, Bengaluru,
Karnataka 560019

XO a

 a

 a

 a

1 1

bi
a
s

0
1

 S
b

S
a

E
a

E
b

M
b

M
a

E

M

MS
B of
P

Normali
zation

 0
1

S

https://en.wikipedia.org/wiki/IEEE_754

