
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3801

Indexing Strategies for Performance Optimization of Relational

Databases

Praveena M.V.1, Dr. Ajeet A. Chikkamannur2

1Assistant Professor, Department of Computer Science & Engineering, Dr Ambedkar Institute of Technology,
Bangalore, VTU, Karnataka, India

 2Professor, Department of Computer Science & Engineering, R L Jalappa Institute of Technology,
Doddaballapur, Bangalore, VTU, Karnataka, India

---***---

Abstract: Databases and database management systems
have been the backbone of computing world for the past
many years. The enterprise, web and cloud computing
market is growing bigger in terms of size. It will definitely
continue to gain prominence in the coming years. With the
standardization and consolidation of information
technology systems in most enterprises, the demand for
highly scalable, reliable and faster relational database
systems is on the rise. The databases are crucial for any
enterprise operations and to ensure the operations go on
smoothly without any issues, database performance is highly
crucial. The high performance of the databases could be
very well managed by practicing and adopting
good database optimization strategies. Indexing is one of
the most important strategy to assure the optimal
performance of relational databases. To fix the problem of
poor database performance and improve the database
performance optimization, indexing strategies are essential.
Index is basically a data structure based on one or more
columns of the database. With faster data retrieval and
minimal disk accesses for each query, indexing strategies
emerge as powerful technique for performance optimization
of relational databases.

Key Words: Database, Enterprise, Performance,

Indexing, Query, Optimization

1. INTRODUCTION

In our everyday life in the modern society, people come
across databases and database systems quite frequently. In
current highly competitive marketplace, information is a
strategic weapon. Databases play an important role in
almost all areas where computers and mobiles are used.
Every day, the demand for good databases and database
management systems is exponentially increasing.
Enterprises need skilled database professionals to design
and manage their databases. The employees need to know
the database basics to analyse and use it for effective

decision making. Hence, the demand for professionals with
good database knowledge is increasing and will continue
to do so in future.

In the traditional database applications such as banking,
inventory, super market and reservation systems, most of
the information stored and retrieved is either text or
numeric in nature. In advanced database applications such
as multimedia databases, geographical information
systems, warehouse, mobile, web and spatial databases,
the information is mostly in the form of pictures, videos
and wave files. Hence, designing an appropriate access
plan and access strategy can be one of the more troubling
aspects of developing an efficient relational database
applications. In order to assure optimal performance when
accessing data in a relational database is to create the
correct indexes for tables based on the user queries.

Database design properly forms part of the broader
process of systems analysis and design. The Structured
Query Language (SQL) is one of the most important
elements of modern database technology. SQL is used
extensively by virtually all database systems and acts as a
major vehicle in facilitating inter database communication.
It is a comprehensive relational database language, used to
define and manipulate databases.

Indexing is used speed up the retrieval of data from the
databases. Indexes are an implementation requirements of
practical systems rather than a mere theoretical feature.
Availability of very efficient indexing system accounts for
the success of the relational databases. Major benefits of
indexing are faster access to individual rows and accessing
rows in a prescribed sequence.

Indexing a table is an access strategy that is a way to sort
and search in the table. Indexes are important to improve
the speed with which records in database table can be
located and retrieved. Basically an Index is an ordered list
of the contents of a column or a group of columns of a
table. Commonly used commercial database tools are

https://optimizdba.com/database-optimization-an-insight/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3802

generally based on a methodology that enables tables
indexing for independent SQL queries [1]. Indexes are
used in context like a phone contact list, where the contact
details may be physically stored in the order one add
people’s contact information, but it is easier to find
contact when listed out in some alphabetical order.

1.1 Data Structures for Indexing

An index is basically a data structure that holds the values
for a certain specific column of a table. Index helps us
avoid a full table scan while retrieving data from a table.

 B-trees are the most commonly used data
structures for indexes. A B-tree is a balanced tree,
yields a uniform search speed regardless of the
value of the search key. Insertion, deletion and
search operations are done using B-trees in
logarithmic time. B+ tree and B* tree are the
variants of B-trees.

 Hash tables referred as hash index used in queries
that looks for agile execution with exact matches.
Here key is the column value and the value in the
hash table is a pointer to the row in the table.

 R-trees are tree data structures commonly used
with spatial databases. It helps to answer queries
such as "find all the medical shops within 3
kilometres of my current location". R-tree main
idea is to group nearby objects and represent with
minimum bounding rectangles. Hence the “R” in R-
tree refer to Rectangle. Some of the variants of R-
trees are Priority R-tree, R+ Tree, R* Tree and
Hilbert R-tree.

 Bitmap index works for low-cardinality columns
that have many instances of values with low
selectivity. A column with Boolean values can use
Bitmap index.

1.2 Specifying Indexes

Consider the following SQL query statement:
SELECT empname, salary
FROM employee
WHERE empno = ‘00146’ AND deptno = ‘CS’;
Different types of indexes can be specified on the above
query. The possible indexes that could be created may
probably looks like this: Index1 on empno, Index2 on
deptno and Index3 on empno and deptno. This is a good
strategy, and Index3 is probably the best among the three
indexes specified. It enables the database system to use the
index to immediately look up the row or rows that satisfy
the two simple predicates in the WHERE clause. Likewise
varieties of indexes such as simple, composite, unique,

reverse, bitmap and compressed can created on a database
table.

2. RESEARCH APPROACH

A systematic literature review of Indexing Strategies for
Performance Optimization of Databases was conducted. An
Index in a databases works in the same way as the library
system catalog. A library will be having its books cataloged
in many ways such as author, course, title, and so on. When
one wants to look for book by an author, has to choose the
author catalog or the catalog where the books are sorted
using author names. The catalog will be having the book
information and helps to locate the book among of
thousands of books in the library setup. The problem with
the catalog appears when the number of books and the
size of the catalog grows. Managing multiple catalogs in a
library will become a tedious task. In the real world
commercial databases with the large number of records,
indexes with the book catalog will be too large to handle
efficiently. Hence the more sophisticated indexing
strategies for databases are necessary in order to optimize
database performance.

A database index works similar to a library index. Using
appropriate indexes in a large and complex database
tables is the most important aspect of database
optimization. In the Comparative Study of Indexing
Techniques in DBMS [2], the authors claims that the
indexing provides random lookups and efficient access of
ordered records in a database. Microsoft SQL Server uses
non-clustered indexes by default and Oracle database uses
B-Tree Indexing technique. Where ever selection queries
are frequent, then use Indexing for retrieval of data. While
testing relational database query optimization strategies
[3], the authors abstracted a language like SQL provides
the designer with a tool for specifying what the needed
results of the query are without the need to specify how
these results should be obtained. SQL Indexes exist to help
the faster execution of queries. Indexing is used to reduce
the computational and input output subsystem loads when
retrieving data [4]. The ubiquity of relational database
management systems produced a comprehensive set of
strategies to optimize the performance of database
queries. Using indexes in databases is the main task to
improve query performance, since the indexes are the
most used strategies to accelerate query response [5]. The
main purpose of using an index is to optimize speed and
performance in finding relevant results for a search query.
Without using an index, the search engine might scan
every data in the database, which consumes considerable
time and computing power. For example, using indexing,
10,000 records can be queried within milliseconds,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3803

whereas sequential scan of every record might take
minutes. Antonin Guttman [6] proposed dynamic index
structure called R-trees to handle spatial data with multi-
dimensional spaces. An R-tree is a height-balanced tree
similar to a B-tree, with index records in its leaf nodes
consists of pointers to data objects. The R-tree index is
completely dynamic in nature, and used to manipulate
spatial data.

3. INDEXING STRATEGIES

Indexing involves forming a two dimensional matrix
completely independent of the database table on which the
index has been created. Index consists of Search Key and a
Data Reference columns. One column holds the sorted data
extracted from the table column upon which the index is
created. Another column called the address field identifies
the respective disk block where the particular key value
can be found.

3.1 Clustered Indexes

Clustered indexes are the unique index per table and uses
the primary key to organize the data available within the
table. Clustered indexes can greatly increase overall speed
of retrieval, but usually only where the data is accessed
sequentially in the same or reverse order of the clustered
index, or when a range of items is selected. It is very
important to have a clustered index on every table. The
clustered index is automatically created when the primary
key is defined:
CREATE TABLE Customers (custid INT PRIMARY KEY,
custname VARCHAR2, city VARCHAR2);
The created table, “Customers”, will have a clustered index
automatically created, organized around the Primary Key
“custid” called “Customers_pkey”.

3.2 Non-Clustered Indexes

The non-clustered index contains the index keys in sorted
order, leaf level of the index contains the pointer to the
page and the row number in the data page. It is typically
created on column used in JOIN, WHERE, and ORDER BY
clauses. These indexes are good for tables whose values
need frequent modification. Microsoft SQL Server creates
non-clustered indexes by default when CREATE INDEX
command is given. To create an index to sort customer
names alphabetically:
CREATE INDEX Customers_custname_asc ON Customers
(custname ASC);
This will create a non-clustered index called
“Customers_custname_asc”, indicating that this index is

storing the customer names from “Customers” stored
alphabetically in ascending order.

3.3 Covering Indexes

Covering Indexes contains all required information to
resolve the query. It includes all the columns, the query
refers to in the SELECT, JOIN, and WHERE clauses. The
performance benefit gained by using covering indexes is
typically great for database queries that return a large
number of rows.

3.4 Filtered Indexes

Filtered index is an optimized non-
clustered index especially suited to cover database queries
that select from a well-defined subset of data. It uses
a filter predicate to index a portion of rows in the database
table.

3.5 Index Selectivity and Index Density

Index selectivity represents the number of distinct key
values in the database table. The perfectly selective keys
are UNIQUE KEY and PRIMARY KEY. Index Density
represents number of duplicate key values in the database
table. Hence, more selective indexes will have lower
density and the best indexes will be ones with highest
selectivity.

3.6 Best practices for creating indexes

 Create the clustered index on every table in the
database.

 Keep indexes lean with one or few columns.
 Create the clustered index on the column with

high selectivity.
 Try to eliminate duplicate indexes such as

multiple indexes created on the same set of
columns in a table.

 Create Non-clustered indexes in different file
groups which can reside on separate disk drives to
improve the data access.

3.7 Improving indexing strategies

Indexing is too often overlooked during the design and
development process.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3804

Figure 1: Structuring queries with indexing strategies

A good indexing strategy is the best tool for tuning and
optimizing the database performance. Adopting indexes in
queries usually does not require much coding, but it does
take a bit of thought and creativity. Figure 1 outlines the
best practices for structuring queries with indexing
strategies during database development process.

Indexes should be built to optimize the access of database
queries. The optimal set of index creation requires a list of
the SQL statement to be used, an estimate of the frequency
that each statement will be executed, and the importance
of each query. Only then the task of creating the right
indexes to optimize the right queries can be achieved.
Sometimes there is an advantage to include additional
columns in an index to increase the chances of index-only
access. There is no arbitrary limit on the number if indexes
specified for a particular database table. Hence creating
and adopting indexing strategies is necessary to support
the database queries.

4. CONCLUSIONS

Indexing strategies could be very fruitful in optimizing the
database when used carefully. A well indexed database
strategy can be very efficient and high performing with a
quick turnaround time of data access. These strategies
could play an important role in making the database
operations seamless with quick database access. Hence
these proposed indexing strategies are helpful in
performance optimization of relational databases.

Indexing is very helpful in database optimization as it
minimizes the number of data access for processing a
database query. Indexing strategies could drastically
improve the query execution plan and the query runtime.

REFERENCES

1. Radoslaw Boronski and Grzegorz Bocewicz,

“Relational Database Index Selection Algorithm ”,
Springer International Publishing Switzerland
2014, CCIS 431, pp. 338–347, 2014.

2. Manoj Kumar Gupta and Dr. Dharmendra Badal,
“Comparative Study of Indexing Techniques in
DBMS “, Business Intelligence and Data
Warehousing Conference, USMS, Delhi, India,
March 2012.

3. Vlad Diaconita, Ion Lungu, Iuliana Botha ,“Testing
relational database query optimization strategies”,
ITCN 12, Vienna, Austria, pp. 152 – 157, November
2012.

4. Derek Colley, Dr Clare Stanier, “Identifying New
Directions in Database Performance Tuning”,
Elsevier, Procedia Computer Science 121 (2017),
pp. 260–265, 2017.

5. Alberto Arteta Albert, Nuria Gómez Blas, Luis
Fernando de Mingo López, “Intelligent Indexing—
Boosting Performance in Database Applications by
Recognizing Index Patterns”, Electronics 2020,
MDPI, Basel, Switzerland, 20 August 2020.

6. Antonin Guttman, “R-Trees: A Dynamic Index
Structure for Spatial Searching”, SIGMOD 1984.

7. Ramez Elmasri, Shamkant B. Navathe,
Fundamentals of database systems, 6th ed,
Addison-Wesley Publishing House, 2011, ISBN 13:
978-0-136-08620-8.

8. Yannis E. Ioannidis, Query Optimization,
Computer Sciences Department, University of
Wisconsin.

9. Jonathan Lewis, Cost-Based Oracle Fundamentals,
Apress, ISBN (pbk): 1-59059-636- 6, 2006.

10. Kimberly Floss, Understanding Optimization,
Oracle Magazine, 2005.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3805

11. Oracle® Database Administrator's Guide 11g
Release 1 (11.1).

12. Michelle Malcher, Oracle Database Administration
for Microsoft® SQL Server® DBAs, The McGraw-
Hill Companies, ISBN: 978-0-07- 174430-0, 2011.

