
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3298

Analysis of Timing and Synchronization Algorithms in Distributed

Systems

Jennifer Mento Clemens1, Sourab A.2

1Student, Dept. of Computer Science and Engineering, Vellore Institute of Technology (VIT) Chennai, TamilNadu,
India

2Student, Dept. of Computer Science and Engineering, VIT Chennai, TamilNadu, India
---***--
Abstract - Distributed systems have become an ever-
growing domain in today’s life. New and upcoming
technologies are making use of Distributed Systems.
However, they come with their own challenges. Each node in
a Distributed System has its own internal clock. There would
be no problem in synchronizing these nodes if each of their
clocks maintained its frequency and all started together at
the exact same time. However, this is not the case in real life.
In real life, a clock may tend to slow down or speed up as
time goes by. This is known as drift. To overcome this drift,
there exist several algorithms and protocols. Each of these
algorithms have its own pros and cons. Some may be more
suitable than others in certain scenarios. In this paper we
analyze the different algorithms and protocols proposed for
implementing timing and synchronization in Distributed
Systems. Finally, the analysis of our research describe which
algorithms and protocols are suitable in which cases.

Key Words: Distributed Systems, Clock
Synchronization, Mutual Exclusion algorithm,
Lamport’s algorithm, Cristian’s algorithm, Berkeley’s
algorithm, PCS Algorithm

1.INTRODUCTION

 What is it about Distributed operating systems that is
making it the current trend among various technologies?
There are many obvious advantages to the use of these
systems. When one node fails, the rest of the network is
unaffected. Another advantage is that the scalability of the
network becomes much simpler. Addition and removal of
computers in the network is possible without much
disturbance to the rest of the network. In contrast to
distributed systems, centralized systems may get
overwhelmed when too many nodes are connected to it.

This does not mean that there are no challenges when it
comes to a distributed system. In fact, there are plenty.
These include distribution transparency, i.e., the extent to
which a system appears as a whole, monitoring user
behaviour without being intrusive, etc. [1]. One challenge
of utmost importance which is discussed in this paper is
the clock synchronization of every node in a distributed
system. When talking about clock synchronization in a
Distributed System, one must understand the certain
concepts.

First, we have logical and physical clocks. Every computer
has its own internal crystal clock that does not require
electricity to work. This clock is always ticking and
keeping track of time. This is how the time in our
computers is always running whether or not it is
connected to the Internet. This internal crystal clock is the
physical clock of the system. On the other hand, the logical
clock of a computer is the maintenance of the order of
processes taken place in it. It allows the processor to
understand which process happened before which.

Now, it may seem obvious that we can start all the physical
clocks in a distributed system at the same exact time. This
way all the clocks are always in sync. However, the
physical clocks in each system undergo a phenomenon
called ‘drift’. Drift is the gradual change in speed of the
physical clock in a system with respect to time. The clocks
may go slower or they may go faster. Either case results in
unsynchronized clocks.

There are two types of synchronizations – external and
internal synchronization. External synchronization is
where an external entity looks over the clocks of the
system and make sure they are in sync. In internal
synchronization, the nodes of the distributed system
themselves keep a regular check with the other systems to
make sure its own clock is in sync.

There is the clear solution of allowing all computers to use
a network time source (for getting the UTC time) to allow
all the nodes on a distributed system to synchronize their
clocks. This way the distributed system allows the use of
an external synchronization of each node’s physical clocks.
However, the problem with this is that the clocks will be in
sync only when connected to the Internet. Since, a stable
and noiseless Internet connection cannot be promised
forever, using UTC time is not an efficient solution.

Having made clear the need of synchronization in a
Distributed System, in the following sections of this paper,
we have studied the various algorithms that have been
proposed for synchronising the clocks in a distributed
system for each node. Each algorithm has its pros and
cons. This paper gives an in-detail explanation of
Lamport’s algorithm using Lamport’s mutual exclusion,
Berkeley’ algorithm, Cristian’s algorithm, and finally the
PCS algorithm.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3299

2. Lamport’s Algorithm

Leslie Lamport had introduced the idea of mutual
exclusion in 1987[2].

This kind of algorithm was proposed by Lamport as an

illustration of his synchronization scheme for distributed
systems. It is based on permission.

In these permission-based algorithms, timestamp is

used to resolve the conflicts between requests and for
ordering critical section requests. The critical section
request executed by timestamp is done in the increasing
order of the timestamps. Hence a request with smaller
timestamp will be executing critical section first rather
than a request with higher timestamp.

2.1 Algorithm

This algorithm consists of 3 kinds of
messages:(REQUEST, REPLY, and RELEASE). The
communication channels are considered to follow First In
First Out (FIFO) order. A given site (S1) will send a
REQUEST to all the other sites to get their permission to
enter the critical section. Then one of the other sites (S2)
sends a REPLY to the requested site (S1) to grant that
site’s permission to enter critical section. The allowed site
then RELEASES a message to all the sites after they have
exited from the critical section.

The critical section requests are stored by each site in a

queue.
 Ex: request_queue(i) = queue of site(i)

 Using Lamport's logical clock a timestamp is given to

each critical section. As said earlier the requests are
accepted in the increasing order of timestamps.

Fig -1: Demonstration of Lamport’s algorithm.

2.1.1 Entering the critical section

When a site s(i) wants to enter a critical section, it sends
a request message request(ts(i),i) to all the sites. Here,
ts(i) refers to the timestamp of s(i). If the site s(j) receives
this request message request(ts(i),i), it returns a
timestamped reply to s(i) and places that on the
request_queue(j).

2.1.1 Executing the critical section

The site s(i) can enter the critical section if its own
request is at the top of the request_queue(i) and if it has
received the message with timestamp larger than (ts(i),i).

2.1.1 Leaving from critical section

The site s(i) removes its own request from its request
queue and sends a timestamped release message to all
other sites. Hence after receiving this release message
from s(i), the site s(j) also removes the request of s(i) from
its queue.

2.2 Drawbacks of Lamport’s algorithm

One of the main disadvantages is its high message
complexity. The algorithm requires invocation of 3(n-1)
messages per critical section execution. Progress of the
entire system will be stopped if any one of the processes
fails.

3. Cristian’s Algorithm

Round-trip time is an important concept in Cristian’s
algorithm. In simple words, round-trip time is the time
duration between the start of a request and end of that
same request. Clock synchronization which is used to
synchronize time with a time server by client process is
called Cristian's algorithm. Low latency networks go well
with these algorithms where round-trip time is short in
context of accuracy.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3300

Fig -2: Demonstration of Cristian’s algorithm

3.1 Algorithm

The process on the clock machine sends a request to the

clock server shown above at T(0) for getting the time at

server. Hence the clock server returns the clock server

time as response to the process. Then the client process

receives this clock server time at T1 and hence the

synchronized client clock time is calculated.

T(client) = T(server) + (T1 – T0)/2

T(client) = synchronized clock time

T(server) = server returned clock time

 T1 – T0 refers to the time taken by the network and

server to transfer request, process and returning to the

client. Network latency T0 and T1 are almost equal. To

define a minimum transfer time using which we can

formulate an improved synchronization clock time, using

iterative testing over the network.

Defining a minimum transfer time, we can say the server

time will be generated after T0 + T(min) and T(server)

will be generated before T1 – T(min), here T(min) is

minimum transfer time which is the minimum value of

T(request) and T(response) during iterative tests.

Synchronization error = [-((T1 – T0)/2-T(min)), ((T1 –

T0)/2 – T(min))]

If T(request) and T(response) differ by a considerable

amount of time, substitute T(min) by T(min1) and

T(min2), where T(min1) is the minimum observed request

time and T(min2) refers to the minimum observed

response time over the network.

Synchronized clock time:

T(client) = T(server) + (T1 – T0)/2 + (T(min2) –

T(min1))/2

Hence just by keeping response and request time as

separate time latencies, we can improve clock

synchronization time and eventually decrease the total

synchronization error.

4. Berkeley’s Algorithm

This clock synchronization technique used in distributed

systems. In this algorithm each machine node in the

network either do not have an accurate time source or an

UTC server.

A node is taken as the master node from the collection of

nodes. This node acts as the main node of the network and

acts as the master and the rest acts as the slaves. The

master node in this case is taken by a leader election

algorithm. The master node fetches the clock time by

periodically pinging slave nodes using the help of

Christian’s algorithm.

Fig –1: Sending request to salve nodes

Fig –1: Slave nodes send back time from their system

clock

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3301

Average time difference between all the clock times

received and the master’s system clock is calculated by the

master node. This average time is added to current time in

the master's clock and hence broadcasted over the

network.

4.1 Pseudocode

#Receiving time from all slave nodes

repeat_for_all_slaves:

time_at_slave_node = receive_time_at_slave()

#Calculating time difference

 time_difference = time_at_master_node -

time_at_slave_node

5. PCS algorithm

This algorithm is based on TTP i.e., time transmission

protocol. Each node in this algorithm uses time

transmission protocol to transfer the time on its

clock to a target node. TTP uses timestamped

messages for the transmission of messages to the

target node. The time stamps on the messages and as

well as the message delay statics are the factors that

help in estimating the time on the transmitting clocks

node by the target node.

When a node S wants to transfer its time on its clock

to a target node M, it sends n synchronization

messages to target node. The (i)th message msg(i)

sent at time T(i) on S clock is = “Time is T(i).” One of

the main parameters of TTP is the separation

between successive messages. The target node M

records time R according to what time it receives the

message on its own clock. After all the n messages

from S has reaches M, it calculates the current time

on S’s clock.

T(est) = R(n) – R1(n) + T1(n) + d1

T1(n)= 1/n(sum of all T(i))

R1(n)= 1/n(sum of all R(i))

d1 = estimated value of message delay

To derive the clock synchronization algorithm PCS,

the TTP can be incorporated into a master slave

scheme. One node will be taken as the master node

and the rest are synchronized to the master node as

slaves.

Here also the master node communicates the time on

its clock with the slave node with the help of TTP.

The slave estimates the time on master clock in the

same way as mentioned previously. It finds out the

difference between estimated and the current time

on its own clock. Then it adjusts its time to match it

up with that of the master clock time. This

synchronization procedure is periodically repeated.

The duration of the interval between successive

repetitions of synchronization procedure is called

resynchronization interval (R(sync)).

The code for master nodes has 2 timers in it. The first

one is resynchronization timer used for the

resynchronizing at each interval. The second one is

message timer used to separate successive messages

by a specified interval. The interval is chosen large

for independence of synchronization message delays.

If there are many slaves, the master makes sure that

each slave’s time is synchronized with its time. This

eventually makes the clock time of the slaves are

mutually synchronized. The skew between any 2

clocks is less than or equal to twice the maximum

skew between master's clock and any of the slaves’

clock.

The master needs to transmit only a single set of

messages per synchronization interval if the system

is based on any broadcast network such as ethernet,

even if there are multiple slaves. Hence no of

messages will be independent of the nodes in the

system.

5.1 Clock synchronization Process at the Master
node

PROCESS Master(% W, R(synch)

/* n = Number of messages; W = Interval between

messages, R(synch) = R(synch) interval */

BEGIN

Set the resynch. timer to time-out immediately;

LOOP FOREVER

Wait for a time-out event to occur;

IF time-out went is due to the resynch. timer

THEN

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3302

ENDIF

Set the resynch. timer to time-out after R(synch)

seconds;

ENDIF

Transmit time stamped message to slave;

IF fewer than n messages have been transmitted in

the current resynch. interval

THEN

Set the message timer to time-out after W seconds;

ENDIF

END LOOP

End

Clock Synchronization process at slave node:

PROCESS Slave(n)

BEGIN

I <- 0 /* initialize message sequence number */,

LOOP FOREVER

Wait for the arrival of a synch message from the

master;

Record the time-stamp on the message m T(i);

Record time of receipt of the message in R(i);

IF (1 = n)

THEN /* compute estimate */

T(est) <- R(n), -1/n (R(i)) + 1/n(T(i)) + d;

Adjust clock based on the estimate;

i <- 0. /* rest sequence number */

ENDIF

END LOOP

END

#Average time difference calculation

average_time_difference = sum(all_time_differences)

/ number_of_slaves

synchronized_time = current_master_time +

average_time_difference

6. CONCLUSIONS

 In conclusion, we have successfully studied the
implementations of Lamport’s algorithm, Cristian’s
algorithm, Berkeley’s algorithm and PCS algorithm. The
various approaches and logics have been analyzed. The
importance of synchronization had been understood and
discussed. With the rise of Distributed Systems in today’s
world, there are more up and coming algorithms and
protocols to maintain the synchronization in Distributed
Systems. For further work, we hope to come up with our
own efficient and accepted algorithm for keeping the
clocks of each node in sync.

ACKNOWLEDGEMENT

First and foremost, we would like to thank God. Our
sincere gratitude goes to our dear VIT University founder
Dr, G. Vishwanathan, without whom we would not have
this opportunity. We cannot express enough thanks to the
Computer Science department at VIT Chennai, especially
Dr. Amit Kumar Tyagi – for giving us the wonderful
opportunity of conducting our research. It was with his
guidance and motivation that we have successfully
completed this paper. Our completion of this project
would not have been possible without the constant love
and support from our family and friends.

REFERENCES

[1] Van Steen, Maarten, Guillaume Pierre, and Spyros
Voulgaris. "Challenges in very large distributed systems."
Journal of Internet Services and Applications 3.1 (2012):
59-66.

[2] Lamport, Leslie. "A fast mutual exclusion algorithm."
ACM Transactions on Computer Systems (TOCS) 5.1
(1987): 1-11.

[3] Lamport, Leslie. "Time, clocks, and the ordering of
events in a distributed system." Concurrency: the Works of
Leslie Lamport. 2019. 179-196.

[4] Gusella, Riccardo, and Stefano Zatti. "The accuracy of
the clock synchronization achieved by TEMPO in Berkeley
UNIX 4.3 BSD." IEEE transactions on Software Engineering
15.7 (1989): 847-853.

[5] Cristian, Flaviu. "Probabilistic clock synchronization."
Distributed computing 3.3 (1989): 146-158.

[6] Holger Karl; Andreas Willig, "Time Synchronization,"
in Protocols and Architectures for Wireless Sensor
Networks, Wiley, 2005, pp.201-229, doi:
10.1002/0470095121.ch8.

[7] Williams, R. N. (2018, May 8). What is the Best Source
of UTC Time? Galleon Systems.
http://www.galsys.co.uk/news/what-is-the-best-source-
of-utc-time/.

[8] Rollins, S. (2008, January 15). Time Synchronization.
http://www.cs.usfca.edu/~srollins/courses/cs686-
f08/web/notes/timesync.html.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3303

[9] Rollins, S. (2018, January 15). Time and Global States.
http://www.cs.usfca.edu/~srollins/courses/cs682-
s08/web/notes/timeandstates.html.

[10] UKEssays. (November 2018). Importance Of Time
In Distributed Systems. Retrieved from
https://www.ukessays.com/essays/philosophy/importan
ce-of-time-in-distributed-systems-philosophy-
essay.php?vref=1

[11] Honour, J. (2020, March 30). Distributed Systems:
Physical, Logical, and Vector Clocks. Medium.
https://levelup.gitconnected.com/distributed-systems-
physical-logical-and-vector-clocks-7ca989f5f780.

https://levelup.gitconnected.com/distributed-systems-physical-logical-and-vector-clocks-7ca989f5f780
https://levelup.gitconnected.com/distributed-systems-physical-logical-and-vector-clocks-7ca989f5f780

