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Abstract - In mining, geomechanical properties like 
modulus of elasticity (E) and uniaxial compressive strength 
(UCS) are the two crucial design parameters as they 
represent the mechanical behaviour of rock. There are 
several direct procedures for UCS & E to determine in the 
laboratory, recommended by the ISRM and ASTM. These 
tests are relatively straightforward and reliable, but their 
prerequisite is high-quality sample preparation, well-
calibrated equipment, and expertise to operate, are making 
the tests expensive with time-consuming, tedious work. Out 
of all these disadvantages, the indirect estimation of 
parameters has gained prominence. An attempt has been 
made to predict UCS & E from the physical properties of the 
limestone by using Artificial Neural Networks (ANN) and 
Multivariate Regression Analyses (MVRA). P-wave velocity, 
density, porosity, Schmidt hammer rebound value, slake 
durability index are used as input parameters, whereas UCS 
& E are output parameters to develop the ANN and MVRA 
models. The performance evaluation of all developed models 
are evaluated by statistical techniques like Root Mean 
Square Error (RMSE), Akaike Information Criterion (AIC), 
Variance Accounted For (VAF), and Absolute Average 
Relative Error Percentage (AAREP), Coefficient of 
determination (R2). On comparisons of performance indices, 
the ANN model has indicated high R2, higher VAF, lower 
values of RMSE & AIC, and minimum value of AAREP than 
linear and non-linear multivariate regression analysis 
models for both UCS and E. The performance comparisons 
showed that neural networks are an effective and reliable 
approach for minimizing the uncertainties in predicting 
rock parameters. 
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1.INTRODUCTION  

The geomechanical properties of the rocks like uniaxial 
compressive strength and modulus of elasticity are the 
two crucial parameters widely used in designing rock 
engineering projects. Uniaxial compressive strength is 
included as the primary input parameter for the rock 
characterization, assessment and classification. Modulus 
of elasticity (E) is a character of rock materials, which 
estimates how carefully they approximate the perfect 
elastic material (Farmer, 1968; Jumikis, 1979).  

These laboratory investigations are standardized by the 
International Society for Rock Mechanics (ISRM, 2007). 
But still, there some limitations regarding the precision of 
the parameters (Wang, 1981). Some of the uncertainties in 
quantifying the rock parameters include sample 
preparation, testing environment, insitu moisture content, 
equipment calibration. Direct Determination of elastic 
properties in a laboratory is expensive, tedious, laborious, 
and very time consuming, as well as expertise is required 
(Palchik, 2007; Mishra and Basu, 2013; Wang and 
Aladejare, 2015, 2016). In most cases, due to difficulties in 
the preparation of high-quality core samples (weak, 
stratified, and highly fractured rocks) and test 
performance (time-consuming, expensive, and careful 
execution), UCS and E are not measured or ill measured by 
laboratory tests (Torabi-Kaveh et al.,2014). To overcome 
all these difficulties, some of the essential design 
parameters which are difficult to establish can be 
determined indirectly, using the relationship between the 
static and dynamic properties of rock with both statistical 
and artificial intelligence (AI) such as an artificial neural 
network (ANN). 

Two crucial physical properties of rocks that have been 
utilised widely for the prediction of UCS and E are P-wave 
velocity (Vp) and porosity (n). There is a substantial 
relationship between these parameters as the Vp of a rock 
increases with decreasing effective porosity. Also, both the 
parameters powerfully correlate to the density (d) of 
considered rock. In this observation, many researchers 
have reported several relationships between UCS and E 
with Vp, d, and n in a simple or multivariate form 
(Minaeian and Ahangari 2013; Azimian and Ajalloeian 
2015; Danial et al.2015; Abbaszadeh Shahri et al. 2016). 
Therefore, it can be noted that with these three 
parameters can be efficient and thriving in the prediction 
of UCS and E. Laboratory testing on the rock core samples 
is a very precise process in the estimation of rock strength. 
However, they cannot ever indicate the continuous profile 
of the formation, and Coring is comparatively very costly, 
and the results are susceptible to the rate of stress loading 
and unloading. Therefore, developing the prediction 
models for an indirect method of estimation has drawn 
considerable attention. Prediction models are developed 
using regression analysis (linear or non-linear) and 
artificial intelligence-built methods. In prediction models, 
the results of rock indexes, which are quick, highly 
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economical and very easy to conduct the tests, are used as 
inputs in prediction models of UCS and E.  
 

2.  ABOUT THE STUDY AREA 
 
The study area is located in Udaipur, Rajasthan, India. In a 
hand specimen, the sample is a medium-grained whitish 
limestone with slightly high silica content that is difficult 
to be distinguished from quartzite. At some places, the 
limestone is relatively complex and siliceous in nature, 
having more than 15% silica, mainly due to the presence 
of quartz and pegmatite along foliation planes. Bedding 
planes are found to be filled with grains of quartzite, 
quartz stingers and pegmatite. They are indicative of 
limestone with high silica and low total carbonate. There is 
no physical indication of the presence of magnesia in 
limestone patches. The limestone formation is traversed 
by the number of bands of pegmatite. Generally, they 
follow the bedding of schistosity of limestone with minor 
variation and never cut across. Geologically the area forms 
under the part of the Raialo series, A part of Archean 
Crystalline Complex. Underlain by Aravali supergroup 
System and over the line by the Delhi supergroup System.  
The main lithological unit includes Quartzites, phyllite, 
garnitiferous Biotite schist, Gneisses and limestone. 
Various acid and basic intrusions frequently traversed 
these formations. The limestone is white to buff white in 
colour, crystalline, banded and medium-grained to 
saccharoidal coarse-grained texture and associated with 
calc-silicate calc-granulates, acidic and basic intrusives of 
pegmatites and amphibolites. 

3. LABORATORY INVESTIGATIONS AND DATA 
ANALYSIS 
 
To provide an acceptable estimate of the overall 
properties of the limestone of the study area, the samples 
must be representative of the rock and its lithological 
variability. The core samples were randomly collected 

across the study area as the borehole samples represent 
the sequence and local facies variations, and then the 
obtained cores were prepared as required specimens by 
Core cutting and grinding machines for laboratory testing. 
The specimens were then prepared in the laboratory as 
per the ISRM standards designed to determine different 
physicomechanical properties. Before testing, the 
specimens were dried in the oven at a temperature of 
1050C for 24 hours to remove any moisture. Laboratory 
investigations were conducted as per international society 
for rock mechanics to determine P-wave velocity, density, 
porosity, Schmidt hammer rebound value, and Slake 
durability, Uniaxial Compressive strength and Modulus of 
Elasticity by as per (ISRM. 1978a, ISRM. 1979b, ISRM. 
1981a. ISRM. 1981b.) The obtained results and their basic 
statistics are tabulated in Table 3.1. The UCS values of the 
collected rock samples ranged between 79.26 and 
103.98 MPa, with an average value of 91.46 MPa. In 
contrast, the average value of E was 54.17 GPa values 
varied from 50.65 to 56.89 GPa.  
 
4. DATA ANALYSIS 
 
4.1 Linear Multivariate Regression Analysis 

Multiple regression analysis is a powerful modelling 
technique that can be useful when complex relations are 
involved. The linear multivariate regression technique is 
used to unite two or more parameters that affect a rock 
property. This method can be beneficial in instances 
where complex relations are deeply involved. Moreover, 
multiple regression models' elastic properties of intact 
rocks would be accurately suggested because the obtained 
equations are accompanied by the determination 
coefficients (R2). This test was performed at a 95 % 
significance level. A higher coefficient of determination 
would be desirable. In the present study, MVRA analysis 
was carried out to predict UCS & E by using Vp, d, n, SDI 
and SHRN.  

Table 3.1: Basic Descriptive statistics of the data set 

Description 
Parameters  

E (Gpa) UCS (Mpa) Vp (m/s) d (kg/m3) n % SDI SHRN 

Minimum 50.65 79.26 5,221.94 2,485.00 2.27 97.21 42.00 

Maximum 56.89 103.98 5,509.68 2,943.00 2.56 99.95 52.00 

Mean 54.17 91.46 5,370.01 2,731.70 2.36 98.85 47.33 

Standard deviation  1.58 8.13 95.35 129.49 0.07 0.64 2.95 

Mean standard error 0.25 1.29 15.08 20.47 0.01 0.10 0.47 
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Table 4.1: Descriptive statistics of linear MVRA for UCS and E 

Dependent Variable Independent variable Coefficient Std. error T-value Std. coefficients R2 

UCS 

Intercept -360.1185 117.955 -3.053 -- 

0.850 

Vp (m/s) 0.0523 0.008 6.589 0.613 
d (Kg/m3) 0.0003 0.005 0.055 0.005 
n % 8.4103 4.195 2.005 0.077 
SDI 1.0366 1.312 0.790 0.082 
SHRN 1.0088 0.351 2.871 0.366 

E 

Intercept -239.9625 125.245 -1.916 -- 

0.709 

Vp (m/s) 0.0071 0.008 0.840 0.426 
d (kg/m3) -0.0084 0.006 -1.503 -0.686 
n % -3.3135 4.455 -0.744 -0.155 
SDI 2.9716 1.393 2.133 1.199 
SHRN -0.1459 0.373 -0.391 -0.272 

The obtained Multivariate Regression equation for the 
prediction of UCS & E is given below in equation (4.1) & 
(4.2): 

                                       

                                                                         
(4.1) 

                                       

                                                               (4.2)  

Whereas UCS is the uniaxial compressive strength (MPa), 
Vp is the P-wave velocity (m/s), E is the modulus of 
elasticity (GPa), n is the porosity (%), d is the density 
(kg/m3 ), SDI is the slake durability index, SHRN is the 
Schmidt Hammer Rebound Number. 

 

4.2 Non-Linear Multivariate Regression Analysis 

The Non-linear multivariate regression technique is also 

employed to predict UCS and E. For establishing the 

statistic model, the same input variables used as inputs of 

linear multivariate statistics models consist of Vp, d, n, SDI, 

and SHRN were applied. The obtained Multivariate 

Regression equation for the prediction of UCS & E is given 

below in equation (4.3) & (4.4):  

                                    

                                           
  

                                             

                                                                                      (4.3) 

 

                                   

                                          
  

                                         

                                                                                          

(4.4) 

 

Table 4.2: Descriptive statistics of non-linear MVRA for 

UCS and E 

Dependent 
Variable 

Independent 
variable 

Coefficient 
Std. 

error 
R2 

UCS 

Intercept 3690.979 9993.0 

0.9
10 

Vp (m/s) 2.2907 1.2647 
d (Kg/m3) 0.0807 0.18 
n (%) -149.345 623.58 
SDI -196.714 184.05 
SHRN -10.8683 8.56 
Vp 

2 (m/s) -0.0002 0.0001 
d 2 (Kg/m3) 0.0000 0.0000 
n 2 (%) 32.0244 126.90 
SDI 2 1.0077 0.9 
SHRN 2 0.1213 0.08 

E 

Intercept -19309.3 10759 

0.7
74 

Vp (m/s) 3.749 1.361 
d (Kg/m3) 0.087 0.203 
n (%) -1684.0 672.72 
SDI 234.365 198.12 
SHRN -20.311 9.196 
Vp 

2 (m/s) 0.000 0.000 
 d 2 (Kg/m3) 0.000 0.000 
n 2 (%) 342.276 136.90 
SDI 2 -1.169 1.008 
SHRN 2 0.208 0.097 

Whereas E is the modulus of elasticity (GPa), UCS is the 

uniaxial compressive strength (MPa), d is the density 

(kg/m3 ), Vp is the P wave velocity (m/s), n is the porosity 

(%), SDI is the slake durability index, SHRN is the Schmidt 

Hammer Rebound Number. Table 4.1 & 4.2 shows the 

coefficients of the parameters and standard errors along 
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with the coefficient of determinations for linear and non-

linear MVRA models 

4.2 Artificial Neural Network Analysis 

Multi-layer perceptrons (MLP’s)are the layered 

feedforward architectured networks that are trained with 

backpropagation techniques. These networks can be 

implemented in acquiring pattern classification. The main 

advantage of multi-layer perceptrons is that they are 

effortless, flexible and secure to use. These models consist 

of three layers of neurons. The first layer is an input layer. 

It is used to present data to the network. The input layer 

receives the data from various sources. Hence, the number 

of inputs decides the total size of individual neurons in the 

network's input layer. The second layer is a hidden 

layer(s). These are employed to perform as an assemblage 

of pattern detectors. In ANN algorithms, the construction 

of network architecture requires the optimal number of 

hidden layers between the input layer and output layer 

and the optimal number of neurons in each layer. The total 

number of hidden layers and their neurons is often 

determined by the trial-and-error method. The third layer 

is an output layer. It produces an suitable response in the 

form of output to the given input data. The output layer 

consists only a single node that represents UCS or 

modulus of elasticity (E).  

In the present study, Levenberg–Marquardt is applied to 

identify and train the network. In this neural model, an 

activation function has been used, which is Tan Sigmoid. 

Furthermore, Levenberg-Marquardt is used as a learning 

rule. A three-layer artificial neural network with the 

description of input and output nodes employed in this 

study is shown in Fig. 4.1 & 4.2 

Two neural network structures were implemented in the 

MATLAB software environment to predict UCS, and E. 

Back-propagation training algorithm was utilized in the 

two feed-forward networks trained using the Levenberg 

Marquardt algorithm. The transfer functioned called the 

hyperbolic tangent sigmoid transfer function is used in the 

hidden layer, and a pure line transfer function is used in 

the output layer (for both UCS & E models). For each of the 

ANN models developed, the researchers used a manual 

trial and error approach to find the number of neurons in 

the hidden layer. As in each stage of analyses, the numbers 

of neurons were increased in search of the optimum 

model. Since the weights were randomly valued, the 

learning process can be trapped in a local minimum. 

Hence, each developed network has been trained many 

times, and the most competent model was selected. The 

training process stops when the sum of mean squared 

error is minimized or falls within an acceptable range. 

Fig 4.1: ANN model for UCS prediction 

Fig 4.2: ANN model for E prediction 
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Both developed models have a three-layer feed-forward 

network that consists of an input layer (5 neurons), one 

hidden layer (25 neurons for the model I and 15 neurons 

for model II), and one output layer (1 neuron) (Fig. 4.1 & 

4.2) 

5. RESULTS AND DISCUSSIONS 
 
5.1 Prediction of UCS & E by Linear and Non-
linear MVRA 

Empirical equation 4.1, 4.2, 4.3, 4.4 by linear and non-

linear MVRA are used to estimate UCS & E from their 

respective input data. The estimated UCS & E values are 

plotted with measured UCS & E values in Figure 5.1, 

5.2,5.3, 5.4, which are used to compare the measured UCS 

& E respectively with estimated UCS & E from inputs of P-

wave velocity, density, porosity, Schmidt hammer rebound 

number, slake durability index, respectively. The figures 

show that the data and empirical model used provided a 

satisfactory estimation of UCS & E values. Based on the 

visual judgement of the performance of the empirical 

models, the estimated UCS & E from equations 4.1, 4.2, 4.3, 

4.4 seems to be close to the measured one but not all 

estimated UCS & E values are relative to the measured 

ones, but they have the same trend.  

 

5.2 Prediction of UCS & E by Artificial Neural 
Networks 

ANN model-1 & 2 are used to estimate UCS & E from their 

respective input datasets. The correlation between 

predicted and the observed value of UCS & E are displayed 

in Figure 5.5 & 5.6, which are used to compare the 

measured UCS & E with estimated UCS & E respectively 

from inputs of P-wave velocity, density, porosity, Schmidt 

hammer rebound number, slake durability index, 

respectively. From the figures, it seems that the data and 

ANN model used has provided a highly satisfactory 

estimation of UCS & E values. Based on the visual 

judgement of the performance of the ANN models, the 

estimated UCS & E values seems to be closer than the 

MVRA models to the measured data values. 

 
Fig 5.1: Relationship between measured and predicted 

UCS by linear MVRA 

 
Fig 5.2: Relationship between measured and predicted E 

by linear MVRA
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Fig 5.3: Relationship between measured and predicted 
UCS by non-linear MVRA 

 

Fig 5.5: Relationship between measured and predicted 
UCS by ANN 

 

Fig 5.4: Relationship between measured and predicted E 
by non-linear MVRA 

 

Fig 5.6: Relationship between measured and predicted E 
by ANN 

Table 4.2: Descriptive statistics of non-linear MVRA for UCS and E 

 
 
 
 

 
 
 

Parameter Model R2 RMSE AIC VAF AAREP 

UCS Linear MVRA model 0.850 0.740 -6.353 85.018 71.976 

E Linear MVRA model 0.709 0.916 -1.556 70.856 117.110 

UCS Non-linear MVRA model 0.910 0.745 -5.145 91.288 53.236 

E Non-linear MVRA model 0.774 0.831 0.580 77.422 104.340 

UCS ANN model-1 0.980 0.729 -10.628 98.792 44.792 

E ANN model-2 0.866 0.766 -1.567 85.966 104.170 
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5.2 Prediction of UCS & E by Artificial Neural 
Networks 

statistical techniques were applied to estimate the UCS 
and E from the results of laboratory tests using empirical 
models to distinguish between the estimated UCS and E 
values with the lab oratorically measured UCS and E 
values reported for the same sample data from the study 
area. The trend and statistical outcomes of estimated 
Uniaxial compressive strength and modulus of elasticity 
are compared with measured UCS and E. Then, five 
statistical performance indicators are used in the study to 
assess the empirical equations upon their reliability and 
prediction performance. In addition to the Coefficient of 
determination (R2), the Root Mean Square Error (RMSE), 
Akaike Information Criterion (AIC), Variance Accounted 
For (VAF), and Absolute Average Relative Error 
Percentage (AAREP) are used to assess the UCS and E 
prediction. The coefficient of determination (R2) can be 
calculated as   

   
∑ ( )  ∑ (    )

  
   

 
   

∑ ( )  
   

      (5.1) 

N is the number of rock sample data used in the analysis; y 
and y' are measured and predicted values, respectively. If 
the coefficient of determination is nearly or equal to 1, the 
model will be excellent. 

RMSE estimates the variation of predicted UCS & E values 
from the measured UCS & E values. RMSE is calculated as 

      √
∑ (    )  
   

 
                         (5.2) 

Whereas N is the number of rock sample data used in the 
analysis, y and y' are measured and predicted values, 
respectively. Its value will always be non-negative, and a 
value of zero indicates a perfect fitness of a model to the 
data. In general, a low RMSE value shows a high 
forecasting ability of empirical equation or model and 
input data.  

Akaike Information Criterion (AIC) is also estimated to 
compare the forecasting models' performance in the study. 
The AIC is calculated as 

       (∑
(    ) 

 

 
   )            (5.3) 

Where N is the number of rock data used in the analysis, y 
and y' is measured and predicted values, respectively, np 
is the number of parameters that are need to be predicted. 
The model will be highly effective when AIC has the 
minimum value. 

Variance Accounted For (VAF) measures the preciseness 
of prediction methods. The VAF can be calculated as 
follows 

    (  
   (    )

   ( )
)                 (5.4) 

Var is the variance, y and y' are measured, and predicted 
values, respectively High VAF denotes high prediction 
performance. 

Absolute Average Relative Error Percentage (AAREP) 
measures the prediction accuracy of the estimation 
method. AAREP is calculated as 

      
   

 
∑ |

    

 
| 

                 (5.5) 

N is the number of rock sample data used in the analysis; y 
and y' are measured and predicted values, respectively. 
The smaller the value of AAREP, the more reliable the 
estimation. 

The calculated indices from the equations 5.1, 5.2, 5.3, 5.4, 
5.5 are tabulated in Table 5.5 

6. CONCLUSION 

The main objective of this study is to determine a rock’s 
mechanical strength parameters using data sets for quick, 
easy application and low-cost estimation at the 
preliminary stage of site investigation. In this research, the 
artificial neural networks were used to predict UCS and E 
of limestone rocks and compared with linear and non-
linear multivariate statistical models along with 
experimental data set. Geological conditions of the study 
area were studied, and limestone rock samples were 
collected from the study area for research, and laboratory 
analyses were carried out to determine 40 data sets of 
geotechnical properties. Each of the data sets comprises 
density (d), p-wave velocity (Vp), slake durability index 
(SDI), porosity (n), uniaxial compressive strength (UCS), 
Schmidt hammer rebound value (SHRN), modulus of 
elasticity (E). Initially, linear multivariate regression 
analyses were implemented to establish the correlations 
between UCS, E and Vp, d, n, SHRN, SDI, and non-linear 
multivariate regression analyses and ANN application with 
five inputs and one output. Four equations were suggested 
by using weight values determined by using linear and 
non-linear MVRA to predict UCS and E of the limestone 
rocks. The statistical performance analysis techniques like 
Root Mean Square Error (RMSE), Akaike Information 
Criterion (AIC), Variance Accounted For (VAF), and 
Absolute Average Relative Error Percentage (AAREP) 
indices for the models predicting the UCS and E were 
determined. From the obtained results of linear (for UCS, 
R2=0.850; for E, R2=0.709) and non-linear (for UCS, 
R2=0.910; for E, R2=0.774) multivariate regression 
analyses, there are statistically satisfactory relationships 
between uniaxial compressive strength and modulus of 
elasticity with p-wave velocity, density, porosity, Schmidt 
hammer rebound value, slake durability index. Upon 
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correlations, it is found that the p-wave velocity has a 
significant degree of dependence than other input 
variables to predict UCS & E.  The R2 value (UCS=0.980, 
E=0.866) of the ANN model is exhibiting its higher 
prediction performance over linear and non-linear MRVA 
models. On comparisons of performance indices, ANN has 
demonstrated higher R2, higher VAF, lower value of RMSE 
& AIC, and minimum value of AAREP than linear and non-
linear multivariate regression analyses both UCS and E. 
The high performance of the artificial neural network 
model was obtained from the greater degree of robustness 
and fault sensitivity than traditional linear and nonlinear 
MVRA statistical models as there are many more 
processing neurons, and each has a primary local 
connection. It is shown that the constructed ANN model 
exhibits high and reliable performance in predicting E and 
UCS of the limestone rocks. The performance comparison 
also showed that a neural network is a good approach for 
minimizing the uncertainties in predicting rock 
parameters. However, it should be noted that the 
prediction equations derived are valid only for 
understudied limestone rocks with similar characteristics. 
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