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Abstract-The three phase induction motors (TPIMs) are 
very frequently encountered in industrial environment for 
rotating mechanical loads. TPIM behavior is totally 
dependent on its parameters. The TPIM parameter 
information tells about the health of induction motor and 
also necessary for precise control of its behavior.  
 

In this paper the GNA is used for parameter 
estimation of TPIM.  GNA is trained offline using simulated 
results and then deployed for on-line parameter evaluation 
of squirrel cage TPIM in the Electrical Power Research Lab, 
D.E.I. (Deemed University) Dayalbagh, Agra. The proposed 
method is compared with simple neural approach, and 
experimentally obtained parameters.  
 

Keywords—Parameter Estimation, Three Phase 
Induction Motor (TPIM), Artificial Neural approach 
(ANA), Generalized Neural Approach (GNA), Equivalent 
Circuit Parameters, Soft Computing Techniques.  

I.  INTRODUCTION  
The soft Computing Approaches has been broadly 

used for data analysis during abnormal situations. These 
approaches are further categorized as expert systems [1], 
Fuzzy Logic System(FLS) [2, 3], fuzzy neural approach 
(FNA) [4-13], wavelet transform [14-16], and genetic 
approach [17]. 

 

The TPIM parameters are not constant during its 
working and changes non-linearly. The parameters vary 
with weather conditions, operating temperature, magnetic, 
electrical and mechanical couplings, etc. Therefore, its 
parameters estimated from above discussed methods 
could not give good results [18-19].  

 
In the area of electrical machines and power 

system ANA is widely used in the last 2-3 decades [20-31]. 
ANA can handle large size information at a time because of 
its parallel processing capability. Hence, it is an effective 
approach for TPIM parameter evaluation. Although, ANA 
can do non-linear mapping of  input-output vary well and 
extrapolate the results for ill defined or noisy data, it has 
certain inherent shortfalls. ANA needs large number of 
examples for good training, large training time, no specific 
ANA structure and configuration for a problem in hand. 

The neuron structure is also not known such as summation 
type, or product type or combination etc. 
 
 The paper is divided in eight sections. First section 
deals with the introduction of the work, followed by 
sections two describes GNN tool.  Section third to fifth deal 
with experimentation on TPIM. Section sixth contains 
online parameter estimation of TPIM and finally the 
section describes conclusion of the work and references.  
 

1.1 Generalised Neural Approach (GNA) 
 

To defeat the above mentioned problems, Generalized 
Neuron Approach (GNA) has been built up with the help of 
diverse compensatory functions at aggregation and 
doorstep function as activation for GNA as shown in Fig. 1. 
The back-propagation-training algorithm is used [32-33]. 
After Learning use the Generalized Neural Approach (GNA) 
for TPIM parameter estimation. 
 

 
Fig-1: GNA Model 

The TPIM is approximated as the transformer with the 
exemption that its secondary coils are liberated for angular 
motion. The approximated circuit of TPIM is shown in Fig.1 
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Fig.2: Approximated Circuit of TPIM 
 

The rotor frequency of TPIM  i.e.        

It is recognized that            means the rotor 
reactance is dependent of rotor frequency and changes as 
XR= s * XR0, Where XR0 -  rotor reactance at the applied 
frequency (when rotor is stationary). The rotor 
approximated network of rotor is shown in Fig.2. 

 

Fig-3: Approximated Network of TPIM 
 

In this figure ER is induced rotor network voltage and RR is 
the rotor network resistance. 
The rotor network current (IR) can be calculated as given 
in equation.  
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induced voltage when rotor is stationary and     is the 
rotor network reactance at unity motor slip. The 
customized rotor approximated network can be given in 
Fig. 3. 
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II. ZERO SHAFT LOAD AND STATIONARY ROTOR  TESTS 

FOR DETERMINATION OF TPIM APPROXIMATED CIRCUIT 

PARAMETERS 

The delta connected TPIM is energized by balanced three 
phase, 415 V, 50 Hz AC supply through three phase auto-
transformer. Also a voltmeter, ammeter and two 
wattmeters are connected to measure voltage, current and 
power of TPIM under different test conditions as shown in 
Fig. 4.  

 
Fig-4: Circuit diagram for experimentation 

1.        1. Zero Shaft Load Test 

 
Fig-5: Approximated Circuit for Zero Shaft Load Test 

Under Zero shaft load condition the rotor current is 
negligibly small and hence the approximated rotor circuit 
is open as shown in Fig. 5. The rotor of TPIM is permitted 
to rotate without restraint under zero shaft load condition 
at specified terminal voltage and supply frequency. The 
speed of TPIM is quite close to synchronous speed (i.e. slip 
nearly zero). In this situation voltage, current and power 
are measure.  The shunt parameters can be calculated as 
Zo, Ro and Xo in equation   given below. 
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Where V, I, P are called no load voltage, current and power 

and  

Zo- no load impedance in ohms,  

Ro-no load resistance in ohms,  

Xo-no load reactance in ohms. 

2.  Stationary Rotor Test 

Fig-6: Approximated Circuit for Stationary Rotor Test 

In stationary rotor condition, the rotor will not rotate. 
Hence, a small voltage applied to stator terminals of motor 
results huge current to flow. The Approximated circuit 
under stationary rotor condition is shown in Fig. 6. 
Therefore, connect TPIM to a controllable- AC supply and 
regulate the applied voltage under the stationary-rotor, till 
the TPIM current is equal to the nameplate current. 
Determine voltage, current and power.  Now we determine 
equivalent resistance and equivalent reactance from 
equation given below. 
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Where Vb, Ib, P are called blocked rotor voltage, current 
and power  and 

Zb-equivalent impedance in ohms,  
Rb-equivalent resistance in ohms = r1+r2’,  
r1 – Stator resistance in ohms 
r2 – Rotor resistance in ohms referred to stator side 
Xb-equivalent reactance in ohms = x1+x2’. 
x1 – Stator reactance in ohms 
x2 – Rotor reactance in ohms referred to stator side 
 

1. Zero Shaft Load Test at different voltages 
V= [320, 340, 360, 380, 400, 420, 430, 440] Volts 
I= [2.5,   2.8,   3,    3.2,   3.4, 3.7,   4,    4.2] Amps 
P= [200, 220, 225, 240, 270, 290, 320, 340] Watts 
 

2. Stationary Rotor Test at different currents 
Vb= [174, 179, 184, 190, 196, 220, 225, 230] Volts 
Ib= [6,     6.25, 6.5,   7,   7.35, 7.7, 7.75, 7.8] Amps 
Pb= [780, 860, 940, 1100, 1200, 1220, 1300, 1400] Watts 

III. EXPERIMENTAL SETUP 

The tests conducted in Electrical Power Research lab at 
Department of Electrical Engineering, Faculty of 
Engineering, D.E.I. (Deemed Univ.) Agra, India. The 
laboratory set up for parameter evaluation of TPIM is 
consisting of the following components as shown in Fig. 7:  
a. TPIM with outside winding connection facility 
b. Sensors / Transducers (Current, Voltage, and Speed) 
c. Data Acquisition system 
d. Signal conditioning /processing devices 
e. Suitable software / tools for Parameter Estimation 

     

Fig-7: Block diagram Parameter Estimation System for 
TPIM 

These components of block diagram shown in Fig. 7 
are discussed in the following sections.  
 
TPIM with outside winding connection facility 

 
The TPIM with outside winding connection facility is 
shown in Fig.8. The motor stator windings are connected 
for four pole delta connected machine as shown in Fig. 9. 
The experiment setup is consisting of the 5 hp, three phase, 
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415V, 7.8A, 50Hz Squirrel cage TPIM. The motor 
specifications are given in Table – 1. 

 
Table – 1: Specifications of TPIM 

 
Number of poles 2,4,6,10,12 (By changing coil 

connections) 
External dia of TPIM Stator                                 25.5 cm 
Internal dia of  TPIM Stator                                  12.18 cm 

Gap between stator and 
rotor 

0.325cm 

Length of Si-steel core 6.25 cm 
Dia of TPIM shaft 3.4 cm 
Rotor slot  length 1.33 cm 
No. of stator slots                                      36 
No. of rotor slots                                      28 

specified voltage (line) 440 volts 
specified frequency                                              50 Hz 

specified power                                                    3.75kW 
Skew 0.425 

 

 
Fig-8: TPIM with outside winding connection facility 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-9: Stator pole diagram of 4-pole TPIM 

5.3.2 Sensors / Transduceers (Current, Voltage and 
Speed) 
For the measurement of voltage and current the sensors 
are developed in the lab and calibrated by voltage-current 
- frequency (VIF) meter. The speed transducer is 
developed using a coil wound on a permanent magnet and 
iron strips of the cooling fan passes at a close distance from 
magnet as shown in Fig. 10. As these iron strips pass just 
below the magnetic pole, the flux linkage changes which 
results in the voltage waveform as shown in Fig. 11-12. 
The LabVIEW Virtual Instrument (VI) for measurement of 
speed is shown in Figs. 13-14.  

 

Data acquisition system (DAS) 
 
Data acquisition system (DAS) contains the data 
acquisition hardware and suitable software. The main 
function of this hardware is to convert various electrical 
and mechanical analog signals like armature current, 
voltage, power, speed and vibration to digital signals 
through ADC and vice-versa through DAC as per the 
requirements. These digital signals are used by the 
computer to convert into useful information that a 
computer can read, and analyzed to extract meaningful 
information. The ADC is used in the DAS card for analog to 
digital converter. After ADC, S/H network is used to 
digitize and hold the signal. As the name indicates, S/H 
network is a network whose purpose is to digitize an input 
analog signal and hold its last digitized value until the 
input is taken. A microcontroller is used to interface the 
sensor output with computer. The microcontroller used in 
this DAQ card is MICRO –CONTROLLER ATMEGA16A PU 
1339. The data acquisition system and its block diagram 
are shown in Figures 15 and 16. 
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Fig-10: Coil on the magnet 

Fig-11: Induced voltage waveform with noise 

 

 

 

 

Fig-12: Induced voltage waveform without noise 

 

Fig-13: LabVIEW interfacing VI for Speed measurement

 
Fig- 14: Screen shot for Speed measurement at No-load 

 
 

Fig-15: Data Acquisition System 

 

Fig-26: Block Diagram of sensors and DAQ system 
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This section deals with the experimentation with TPIM 
under different operating conditions and loads.  

 

The experimental results of healthy TPIM under different 
loading conditions are as: 
 
Fig.17 shows the applied load on the shaft of TPIM under 
different loading conditions when motor is healthy or 
windings are short circuited by 10%, 20% or 30%. 
 
Fig. 18 shows three phase voltages of healthy TPIM under 
different loading conditions (no-load, light load, full load 
and overload).  Figs. 19 shows three phase currents of 
healthy TPIM,   
 
Fig. 20 shows that the speed of TPIM decreases as the load 
torque increases.  

 

  

Fig-17: Load applied on TPIM under different loading 
conditions 

 

Fig-38: Phase a, b and c Voltage of Healthy TPIM under 
different loading conditions 

 

 

 

 

 

 

 

(a) When motor is healthy  

 
(b) When one Phase is shorted by 10% of TPIM through 

R=3.1 ohm  

 
(c) When 10% of each Two Phases are short circuited of 

TPIM through resistance R=3.1 ohm  
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(d)  When 10% of each Three Phases are short circuited of 
TPIM through resistance R=3.1 ohm  

 

 (e) When one Phase is shorted by 20% of TPIM through 
R=3.1 ohm 

 
(f)  When 20% of each Two Phases are short circuited of 

TPIM through resistance R=3.1 ohm 

Fig-19: Currents of Phase a, b and c of TPIM under 
different loading conditions 

 
(a) Speed of Healthy TPIM 

 

(b) When one Phase is shorted by 10% through R=3.1 ohm 

 
 

 
(c) When 10% of each Two Phases are short circuited 

through resistance R=3.1 ohm 
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(d) When 10% of each Two Phases are short circuited 

through resistance R=3.1 ohm 

 
 (e) When one Phase is shorted by 20% through R=3.1 ohm 

0 
 

 
(f) When 20% of each Two Phases are short circuited 

through resistance R=3.1 ohm 

Fig-20: Speed variation of TPIM under different loading 
conditions 

IV. RESULTS AND DISCUSSION 

Form the above results it is very clear that the TPIM 
under healthy conditions, 10%, 20%, 30% short 
circuited winding of one phase, 10% short circuited 
winding of each two phases, 20% short circuited 
winding of each two  phases, and 10%  short circuited 
winding of each three  phases draw very different 
three phase currents for same loading conditions and 
produce very different toques.  
 
The speed is reduced for same torque if one, two or 
three winding(s) are short circuited by 10%. 
 
Similarly, the speed is reduced at faster rate for same 
torque if one or two winding(s) are short circuited by 
20%. 
 
Fig.20 portrays that speed reduction is less when one 
winding is short circuited by 10% as compared to 
same winding short circuited by 20%. 
 
The results represents that the motor current 
increases differently when motor is healthy in 
comparison to the motor when one, two or three 
winding(s) short circuited by 10% and when one, or 
two winding(s) short circuited by 20%. 

V. ON-LINE DATA ACQUISITION FROM EXPERIMENTAL SET UP 

OF TPIM 

The above developed sensors and data acquisition 
system are interfaced with personal computer 
through the interfacing software developed in MS-
Visual Studio. The acquired on-line data are shown in 
Fig. 21 and Fig. 22. This data is used for the 
estimation of stator and rotor parameters of TPIM. 
These on-line estimated parameters using GNA are 
plotted on the screen as shown in Fig. 22. The details 
of GNA parameter estimation is discussed in next 
section.  
 

 

Fig.21 On-line data acquisition from experimental set up of 
TPIM 
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Fig. 22 On-line parameter estimation of TPIM using GNA 

Parameter Estimation Using ANA and GNA  

The above data is used as input for training of 
Artificial Neural Approach (ANA) and Generalized 
Neural Approach (GNA). These trained neural 
approaches are used for estimating the values of Ro, 
Xo, equivalent resistance and equivalent reactance. 
The ANA and GNA used for on line parameter 
estimation have following structure as given in Table 
2.  
 

Table -2: ANA and GNA structures 

S.No.  Structure ANA GNA 
1.  Inputs 2 2 
2.  Outputs 4 4 
3.  Hidden 

neurons 
10 - 

4.  Hidden layer 
Activation 
Function 

tanig tansig 
and 
gaussian 

5.  layer 
Activation 
Function 

Pure 
linear 

Pure 
linear 

 

The Levenberg-Marquet learning algorithm is used for 
training. The estimated parameters using ANA are 
illustrated in Table 3 at full load. 
 
 

Table-3: Comparisons of Experimental and Estimated 
Values at full load 

 
 
 

 
The TPIM parameters vary with TPIM temperature, 
applied frequency, ф-saturation, and operating point. The 
rotor network parameters are vital parameters for TPIM 
control. The rotor network resistances can changeup to 1.5 
times over the whole operation. 
 
The conventional ANA has some disadvantages such as 
learning rate, hidden layers of ANA and its connections, 
etc. To overcome some of its problems GNA is used in this 
work. 

   
 

 
Table–4: Comparison of Experimental & Estimated Values 

using ANA and GNA we get the approximately same 
parameters 

 
TPIM 

Parameters 

Experimental 

Value(Ω) 

Estimated 

Value by 

ANA (Ω) 

Estimated 

Value by GNA 

(Ω) 

Ro 21.1 24.3 22.1 

Xo 195.38 200.46 198.49 

Rb 23.011 25.0112 24.12 

Xb 45.59 48.59 46.57 

ON LINE PARAMETER ESTIMATION USING GNA 

 
The voltage, current and power is acquired on-line and the 
TPIM parameters are estimated on-line using ANA and 
GNA. The results are tabulated in Table-4. The screen shot 
is also shown in Fig 22. 
 
The speed- torque curve for these estimated parameters 
are compared with experimentally calculated parameters 
of healthy TPIM is shown in Fig. 24. 

TPIM 
Parameters 

Experimental 
Value(Ω) 

Estimated 
Value by 
ANA (Ω) 

% Error 

Ro 21.18334 24.3 12.82% 
Xo 195.3894 200.46 2.50% 
Rb 23.01117 25.0112 8.01% 
Xb 45.5996 48.59 5.4% 

Fig-23: Block diagram of neural approach for parameter 
estimation 
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Fig-24: Comparison of speed – torque curves of TPIM for 
ANA, GNA and experimentally calculated parameters 

Table-5: On Line Parameter Estimation under different 
loading conditions using ANA 

 Loading condition 

 0% 25%  50%  75%   100%   150

%  

Ro 19.55 20.05 21.07 22.7 24.3 24.5 

Xo 182.4 185.8 190 196 200.5 209 

Rb 22.61 22.78 22.88 22.9 25.01 23.9 

Xb 44.84 45.22 46.62 47.8 48.59 50 

 
Table-6: On Line Parameter Estimation under different 

loading conditions using GNA 

 Loading condition 

 0% 25%  50%  75%   100%   150%  

Ro 19.75 20.15 21.47 21.5 22.1 23.1 

Xo 183.1 186.4 190.8 197 198.5 200 

Rb 22.71 22.98 23.18 23.2 24.12 24.9 

Xb 45.14 45.52 46.82 48.9 46.57 51 

 

VI. CONCLUSION 

 
This paper deals with the experimentation on TPIM under 
different motor conditions and also different loading 
conditions. It is found that the phase currents of TPIM are 
very different for different motor conditions and under 
different loading conditions. Similarly, the motor speed 
decreases at different rates. The information for motor 
currents,  voltages  and speed are used for on-line 
estimating the motor parameters (such as R1, X1, R2, X2 and 

shunt parameters (R0 and X0) of TPIM. The parameter 
estimation is done with neural approach such as ANA, GNA 
and compared with conventional methods.  
 
The estimated parameters using proposed approaches 
have been used by the mathematical model of TPIM to plot 
the ω-T characteristics for validating the results.  
 
It is found that the results obtained from GNA are better 
than other approaches  
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