
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1882

FER-M: Facial Expression Recognition on Mobile Devices

Sanket Naik1, Sahil Nair2, Manish Chavan3, Sachin Barahate4

1-3Department of Computer Engineering, Vasantdada Patil Pratishthan’s College of Engineering, Mumbai,
Maharashtra, India

4Professor, Department of Computer Engineering, Vasantdada Patil Pratishthan’s College of Engineering, Mumbai,
Maharashtra, India

---***---

Abstract – The task of facial expression recognition has
been studied extensively. However, not a lot of research focuses
on the deployment of the various deep-learning based
approaches used for this task. We aim to compare different
Neural Networks and the factors that should be considered
when deploying these models on mobile devices.

Key Words: Deep Learning, Facial Expression
Recognition, CNN, ResNet, Computer Vision, PyTorch,
OpenCV, Android.

1. INTRODUCTION

We as humans convey a lot of messages through our
expressions. The facial expression of a person can often give
us a brief idea about their emotional state and their mood.
Humans can easily understand facial expressions of another
person with minimum delay and a high accuracy. However,
achieving the same level of accuracy and speed has been a
challenge for machines. Recent advances in the field of Deep
Learning have made the machines more accurate and has
significantly lowered the prediction latency.

There has been a lot of research focussed on the task of
machine learning using modern techniques such as
Convolutional Neural Networks, Residual Networks and
other Deep Learning based approaches. However, these
approaches have mainly focussed on achieving the highest
accuracy and have not considered the factors that affect the
deployment of such deep-learning based models on mobile
devices.

In this paper, we compare various approaches such as
Convolutional Neural Networks (CNNs) and Residual Neural
Network (ResNet) and try to find the approach which is best
suited for the task of facial expression recognition on mobile
devices.

2. RELATED WORK

Researchers have extensively studied various approaches
for achieving the best performance for the task of facial
expression recognition. Approaches such as Convolutional
Neural Networks [1], Attentional Convolutional Networks [2],
and 2-Channel Convolutional Networks [3] have shown that
Convolutional Neural Networks are the best performers for
this task. However, due to the complexity of these models,

they may not be the best for the task of performing facial
expression recognition on mobile devices. Other approaches
such as Residual Neural Networks [4] also have similar
performance as that of Convolutional Neural Networks

Moreover, the findings of various researchers [5][6] after
studying the performance of Convolutional Neural Networks
and Residual Neural Networks suggests that models should
have a lower number of trainable parameters in order to
minimize the size of the final model and have low latency
during the prediction process.

3. METHODOLOGY

We developed three different models to get a
comprehensive understanding of the factors affecting the
deployment of deep learning models on mobile devices. The
three models that were developed were – a Shallow
Convolutional Neural Network, and a Deep Neural Network,
a Residual Neural Network. The Residual Neural Network
was based on the ResNet-9 architecture [7]. All models were
trained on the same hyperparameters to eliminate the
variance that would result from different hyperparameters.
We used the one cycle learning rate method [8] where the
learning rate of the optimizer starts from a lower value and
slowly rises till it reaches the defined maximum value. The
learning rate is then slowly reduced till we reach the lower
value a few epochs before the end. Finally, in the remaining
iterations the learning rate is annihilated way below the
lower learning rate value. The hyperparameters used for the
training process were as follow:

Table -1: Hyperparameters used for the training process

Parameter Value

Epochs 20

Batch Size 256

Max. Learning Rate 0.008

Optimizer Adam

The three models were trained using the hyperparameters

shown in Table 1 and their performance was compared. The
parameters that we compared were validation loss,
validation accuracy, training loss and model size. Later, we
built an Android app using Flutter to compare the real-world

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1883

accuracy, size of the app and the prediction latency on
mobile devices.

4. DATASET & DATA PREPARATION

 The model was trained on the FER-2013 Dataset [9]. This
dataset consists of grayscale images of faces of size 48x48
pixel. The faces have already been centered in the images
and the faces generally occupy the same volume of space in
each image. The dataset consists of a training test and a test
set. The training set consist of 28,709 images and the test set
consists of 3,589 images. All images in the dataset are
labelled and have been categorized into one of the seven
given categories where 0=Angry, 1=Disgust, 2=Fear,
3=Happy, 4=Sad, 5=Surprise and 6=Neutral.

 The images from the dataset were loaded using the
DataLoader class of PyTorch. For both sets, the Grayscale
transformation was applied which loads all images as
grayscale images. This was followed by the ToTensor
transformation which converts the images into PyTorch
tensors. Then, the Normalize transformation was applied.
This transformation normalizes all the images so that all the
tensor values are between 0 and 1. Additionally, the
RandomHorizontalFlip and RandomCrop transformations
were applied to the training set to augment the data. These
transformations help to extract more information from the
dataset.

5. ANALYSIS

5.1 Model Training & Testing

 All models shared some common features such as the
Conv Block which was simply a 2D Convolution followed by
Batch Normalization and a ReLU activation layer. The
Shallow Convolutional Neural Network was built of 3 Conv
Blocks, each followed by a 2D Max Pooling Layer. The output
was then Flattened and passed through 2 Linear layers, each
followed by a ReLU activation. A Linear layer was added as
the output layer. The Deep Convolutional Neural Network
had a total of 6 Conv Blocks in pairs of two, each pair was
followed by a 2D Max Pooling Layer. Then, just like the
Shallow CNN, the output was Flattened and passed through 2
Linear layers, each followed by a ReLU activation. A Linear
layer was added as the output layer. The ResNet-9 model
was based on the standard definition of the ResNet-9
architecture [7].

 After the three models were trained for 20 epochs with
the hyperparameters as shown in Table 1, their accuracy and
loss values were compared. The Training Loss was the
lowest for the ResNet-9model and the highest for the
Shallow CNN as shown below in Chart 1. Even though isn’t
an important metric, it does show that the ResNet-9 model
might be overfitting to the data.

Chart -1: A comparison of the Training Loss

 Another loss metric that we compared was the Validation
Loss which is the Loss when the model is run on the test set.
Here, the Shallow CNN actually performed the best while the
ResNet-9 model had the highest loss as shown below in
Chart 2. This is further proof of the ResNet-9 model
overfitting to the training set.

Chart -2: A comparison of the Validation Loss

 The Validation Accuracy which is the accuracy of the
models on the test set was then compared. We found that the
models performed quite similarly with the ResNet-9 model
having the highest accuracy and the Shallow CNN having the
lowest accuracy as shown below in Chart 3.

Chart -3: A Comparison of the Validation Accuracy

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1884

 The final metric that we considered after model training
was the model size. This would directly affect the size of the
app that the model is deployed to and having a large model
would make the app size large. We found that the Shallow
CNN and the Deep CNN models were a lot larger than the
ResNet-9 model as shown below in Chart 4.

Chart -4: A Comparison of the Model Size

5.2 Deployment on Mobile

 After the three models were created, we deployed them
to an Android app built using Flutter [10]. The app uses a
camera to capture an image (Figure 1). This image is then
converted to a grayscale image. We use a Haar Cascade
Classifier [11] provided by the OpenCV Android SDK to
detect faces in the image. The detected faces are then
cropped and resized to get an image of size 48x48 pixels. The
resized image is then converted to a tensor using the helper
functions provided by the PyTorch Mobile SDK [12]. Finally,
we predict the expression on the face by passing the tensor
to the model. The predicted expression is then displayed to
the user on a new page along with the time taken as shown
below in Figure 1.

Figure -1: The Prediction process on the Android App

5.3 Results

 As a part of the final testing, we deployed the three
models through the Android app and tested them. The
first point of comparison was the app size. The app size
is directly related to the model size and so the results
were similar to the results seen in the model size
comparison. The ResNet-9 model had the smallest app
size and the Deep CNN had the largest app size as
shown below in Chart 5. This proves that the
complexity of the model has a direct correlation with
the app size after model deployment.

Chart -5: A comparison of the App Size in MB

 The next metric that was compared was the average
latency. This is the time taken for getting a prediction from
the model. We noted the latency for five runs of each model
and calculated the average latency for the model. The Deep
CNN was the worst performer here. The Shallow CNN and
ResNet-9 model had similar latencies and only varied by a
small amount as shown below in Chart 6. This proves that a
complex model which has more trainable parameters takes
more time to get the prediction as compared to a smaller and
less complex model.

Chart -6: A Comparison the Average Latency (in ms)

 Finally, we tested the models on 50 real world images to
get the real-world accuracy of the models. To get the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1885

accuracy, we checked how many images were correctly
predicted by the models by using the simple percentage
formula. We observed that the Shallow CNN actually
performed the best and the Deep CNN had the worst
performance as shown below in Chart 7. This proves that the
most complicated model may not be the most accurate one
in real-world scenarios.

Chart -7: A Comparison of the real-world accuracy

6. CONCLUSION

 We developed three different models for the task of facial
expression recognition and compared various metrics to
determine the most important things to consider when
deploying deep-learning based models on mobile devices.
Our results have shown that complex and deeper models
aren’t a good fit for mobile deployment and may actually
perform worse than simpler models. Also, the app size
directly depends on the model size which means that a
smaller model is better suited for deployment on mobile
devices. Additionally, a more complex model also increases
the latency which is the total time taken to get the prediction
from the model.

REFERENCES

[1] Alizadeh, Shima, and Azar Fazel. ‘Convolutional Neural

Networks for Facial Expression Recognition’.
ArXiv:1704.06756 [Cs], Apr. 2017. arXiv.org

[2] Minaee, Shervin, and Amirali Abdolrashidi. ‘Deep-
Emotion: Facial Expression Recognition Using
Attentional Convolutional Network’. ArXiv:1902.01019
[Cs], Feb. 2019. arXiv.org

[3] Hamester, Dennis & Barros, Pablo & Wermter, Stefan.
(2015). Face expression recognition with a 2-channel
Convolutional Neural Network. 1-8.
10.1109/IJCNN.2015.7280539.

[4] He, Kaiming, et al. ‘Deep Residual Learning for Image
Recognition’. ArXiv:1512.03385 [Cs], Dec. 2015.
arXiv.org

[5] Howard, Andrew G., et al. ‘MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision
Applications’. ArXiv:1704.04861 [Cs], Apr. 2017.
arXiv.org

[6] Luo, Chunjie, et al. ‘Comparison and Benchmarking of AI
Models and Frameworks on Mobile Devices’.
ArXiv:2005.05085 [Cs, Eess], May 2020. arXiv.org

[7] https://myrtle.ai/learn/how-to-train-your-resnet-4-
architecture/

[8] Smith, Leslie N. ‘A Disciplined Approach to Neural
Network Hyper-Parameters: Part 1 -- Learning Rate,
Batch Size, Momentum, and Weight Decay’.
ArXiv:1803.09820 [Cs, Stat], Apr. 2018. arXiv.org

[9] https://www.kaggle.com/c/challenges-in-
representation-learning-facial-expression-recognition-
challenge

[10] https://flutter.dev/

[11] https://docs.opencv.org/3.4/db/d28/tutorial_cascade_c
lassifier.html

[12] https://pytorch.org/mobile/android/

