
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1174

Self-made Programming Language: Alfa

Akshay Kurhekar1, Devansh Shrivastav2, Kush Shah3

1,2,3U.G Students, of Computer Engineering, Sinhgad Institute of Technology, Maharashtra, India
---***--
Abstract - This paper is primarily intended for the students
in computer Engineering. This new language Alfa is a user
friendly Object Oriented Programming Language whose
syntaxes can be easily understood by the user so that she/he
can write the code without any confusion. Specific details can
be inherited from existing languages such as java, python, C,
C++, etc. and specialized in defining the semantics of various
programming languages, and the reusability and modifiability
of many programming languages features can be manifested
across language paradigms.

Key Words: tokens, keywords, primitive data type, user
defined, data type.

1. INTRODUCTION

The programming language is a formal language

comprising a set of instructions that produce various

kinds of output. Programming languages are used

in computer program to implement algorithms . Most

of the programming languages are HLL (High Level

Language) which is only understood by the

programmers but machine understands 0s & 1s i.e.,

Binary Language or MLL (Machine Level Language).

Thousands of different programming languages have

been created, and more are being created every year.

Many programming languages are written in

an imperative form while other languages use

the declarative form.

Syntax

The syntax of a computer language is the set of rules
that defines the combinations of symbols that are
considered to be correctly structured statements or
expressions in that language. This applies both to
programming languages, where the document
represents source code, and to markup languages,
where the document represents data.

Semantics

 The field concerned with the rigorous mathematical

study of the meaning of programming languages. It

does so by evaluating the meaning of

syntactically valid strings defined by a specific

programming language, showing the computation

involved. In such a case that the evaluation would be of

syntactically invalid strings, the result would be non-

computation. Semantics describes the processes a

computer follows when executing a program in that

specific language. This can be shown by describing the

relationship between the input and output of a

program, or an explanation of how the program will be

executed on a certain platform, hence creating a model

of computation.

Imperative programming Language

In computer science, imperative programming is a

programming paradigm that uses statements that

change a program's state. In much the same way that

the imperative mood in natural languages expresses

commands, an imperative program consists of

commands for the computer to perform

Examples: FORTRAN, AGOL, PASCAL, C etc.

Object Oriented Programming Language

Object-oriented programming is a programming

paradigm based on the concept of "objects", which can

contain data and code: data in the form of fields, and

code, in the form of procedures. A feature of objects is

that an object's own procedures can access and often

modify the data fields of itself.

Examples: C++, Java, Python, C#, Ruby, SCALA etc.

2. LITERATURE REVIEW

In A Framework Based on Compiler Design Techniques for

Programming Learning Environments by Sefa Aras, Eyup

Gedikli, Ozcan Ozyurt in 2018, we inferred that current

programming learning environments are platforms that are

done programming with visual components generally. In

https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language_syntax
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Computer_platform
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Model_of_computation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1175

such environments, it is not possible to make a syntax error

due to the physical structure of the visual components. In

these environments, users are aiming to be able to combine

visual components rather than programming logic.

Therefore, when learners of programming with visual

components have difficulties by using real programming

languages. To prevent such problems, a new language has

been created in the developed learning environment, which

has a simple syntax and similar to real programming

languages. This programming language is intended for users

to learn programming concepts and to be easy to adapt to

real programming languages.

In Programming Languages by Niyazi ARI, Prof Dr. sch.

techno ETH, and Nuraiym Mamatnazarova MsCS in 2014,

basic classification of programming languages was explained

like declarative and imperative programming languages.

Secondly it gives a structure of C-program with a examples.

And it covers the logical and functional programming like

COlmnon LISP, Standard Meta Languages, and Functional

programming with Haskell. Declarative programming

languages is illustrated by key concept, and examples with

any applications for easy understanding for students.

In Qualitative Assessment of Compiled, Interpreted and Hybrid

Programming Languages by Ampomah Ernest Kwame,

Ezekiel Mensah Martey, Abilimi Gilbert Chris in 2017, The

study shown that both compiler and interpreter

programming languages have varying advantages and

disadvantages when used by programmers to write

programs. The interpreter technique is slow and inefficient,

since lines of code are repeated and translated while the

program is running. However, due to the fact that anytime

interpreted language program is run, the interpreter refers

to the source code it is a relatively easy to modify and rerun

a piece of code or to move the code to a computer

environment different where it was developed and run.

Interpreters are very good development tools since it can be

easily edited, and are therefore ideal for beginners in

programming and software development. However they are

not good for professional developers due to the slow

execution nature of the interpreted code. On the other hand

the compiler technique translate the whole code into a single

machine code program and run this machine code. Execution

of code is very fast when using compiler technique, however,

the code cannot be executed on any other platform apart

from the one the code was developed on it. The hybrid

language combines both techniques and minimizes the

disadvantages associated with each of the two techniques

while maintaining the advantages they have to some degree.

Due to the high execution speed of both compiled and hybrid

languages, they are good for professional software

developers.

In Design and Implementation of an Interpreter Using

Software Engineering Concepts by Fan Wu, Hira Narang,

Miguel Cabral in 2014, the design of an interpreter for the

SimpleC programming language in the context of a software

engineering project has been presented. The paper also has

demonstrated that some of the standard software

engineering concepts such as object-oriented design, design

patterns, UML diagrams, etc., can provide a useful track of

the evolution of an interpreter, as well as enhancing

confidence in its correctness. A similar project could be

introduced at Tuskegee University to meet some

requirements not satisfied by shorter projects. Some

requirements include, but are not limited to, writing a

complete project using challenging algorithms and data

structures, use of different development tools,

objectoriented design, and team management which is an

important issue to consider given that only team work in

software engineering and database courses.

In Object Oriented Programming Vs Procedural Programming

by A. A. B. C. B. Adhikari in 2016, the author proposed about

the differences between Object-Oriented Programming and

Procedural Programming it is obvious that OOP is based on

objects and classes while Procedural Programming is based

on procedures. Using objects in OOP rather than procedures

as in procedural programming allow the developers to reuse

a single code anywhere as needed. Thus, allowing coding

methods that are more complicated with ease and using less

code. When we consider about the security of the data when

using either of the programming paradigms, OOP provides

more secu-rity as it has a more improved data concealing

mechanism rather than procedural programming languages.

3. SYSTEM ARCHITECTURE

As shown in the figure 1 the first step in interpreting our
language is Lexical analysis. In this, the interpreter reads the
input of characters from the source code and convert it into a
stream of tokens by removing any whitespace or comments
in the source code. The part of the interpreter that does it is
called a lexical analyzer, or lexer for short. They all mean
the same: the part of interpreter that turns the input of
characters of the input code into a stream of tokens. It works
closely with the syntax analyzer. It reads character streams
from the source code, checks for legal tokens, and passes the
data to the syntax analyzer.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1176

Table -1: fig 1

Before you can interpret an expression you first need to
recognize what kind of phrase it is, whether it is addition
or subtraction, for example. The lexical analyzer cannot
check the syntax of a given sentence due to the limitations
of the regular expressions. Regular expressions cannot
check balancing tokens, such as parenthesis. Therefore, this
phase uses context-free grammar (CFG), which is
recognized by push-down automata. The process of finding
the structure in the stream of tokens, or put differently, the
process of recognizing a phrase in the stream of tokens is
called parsing. The part of an interpreter or compiler that
performs that job is called a parser. The parser analyzes
the source code (token stream) against the production rules
to detect any errors in the code. The output of this phase is
a parse tree.

A parser should be able to detect and report any error in the
program based on the parse tree. It is expected that when an
error is encountered, the parser should be able to handle it
and carry on parsing the rest of the input. Mostly it is
expected from the parser to check for errors but errors may
be encountered at various stages of the interpretation
process. A program may have the following kinds of errors at
various stages:

 Lexical Error:

It is encountered when name of some identifier is
typed incorrectly etc.

 Syntactical Error:

It is encountered when missing semicolon or
unbalanced parenthesis etc.

 Semantical Error:

It is encountered when there is an incompatible
value assignment etc.

 Logical Error:

It is encountered when the code not reachable,
infinite loop or etc.

When a parser encounters an error anywhere in
the statement, it ignores the rest of the statement
by not processing input from erroneous input to
delimiter, such as semi-colon. This is the easiest
way of error-recovery and also, it prevents the
parser from developing infinite loops.

Code generation can be considered as the final phase of
interpretation. Through post code generation, optimization
process can be applied on the code, but that can be seen as
a part of code generation phase itself.

Step 1 : The interpreter reads a source code or instruction.
Then it verifies that the instruction is well formatted, i.e. it
checks the syntax of each line. If it encounters any error, it
immediately halts the translation and shows an error
message.
Step 2 : If there is no error, i.e. if the code is well formatted
then the interpreter translates it into its equivalent form in
intermediate language called “Byte code”. Thus, after
successful execution of code, it is completely translated into
Byte code.
Step 3: Byte code is sent to the Python Virtual
Machine(PVM).Here again the byte code is executed on
PVM. If an error occurs during this execution then the
execution is halted with an error message.

4. COMPARISION

A. Variable Declaration:

1. In C++

In C++ the variable declaration requires some primitive

data types such as int, float, char, bool etc.

 Syntax: data_type identifier;
 example: int a;

 2. In python

In python the variable declaration doesn’t need a data type

before identifier.

 Syntax: identifier = value

 example: a = 0

3. In Alfa

 In Alfa we have a generic data type for declaring variables

i.e., var because the common mistake every programmer

does is giving a wrong data type to the variable so, var then

automatically assigns the desired data type to the identifier

corresponding to the value assigned to it.

Lexical

Analysis
 Lexical Analysis

Syntax

Analyzer

Code Generator
zer

Code Generator

Execution

Error Handler

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1177

Syntax: var identifier = value; # here ‘ ; ’ is optional

 example:

 var abc = 0;

[‘VAR’, ‘INTEGER’, ‘=’, ‘0’]

Here ‘abc’ is assigned an integer datatype by virtue of the

value given.

B. Selection Statements syntax:

1. In C++

The basic selection statements used in C++ is if, if …else etc.

Syntax:

if (condition){// statements}

if (condition){//statements}

else {// statements}

if (condition){//statements}

else if(condition){//statements}

else{//statements}

example:

if(2 == 2){cout<<“TRUE”;}

if (2 > 3){cout<<“TRUE”;}

else{cout<<“FALSE”;}

if (2 > 3){cout<<“FALSE”;}

else if(2 == 3){cout<<“FALSE”;}

else{cout<<“TRUE”;}

2. In Python

The basic selection statements used in python is if, if …else

etc.

Syntax:

 if condition:
statements

 if condition:
#statements

else:

#statements

 if condition:
#statements

elif condition:

#statements

else:

#statements

example:

 if 2 == 2:
 print(“TRUE”)

 if 2 == 3:
 print(“FALSE”)

else:

print(“TRUE”)

 if 2 > 3:
print(“FALSE”)

elif 2 ==3:

print(“FALSE”)
else:

print(“TRUE”)

3. In Alfa

The basic selection statements used in Alfa is if, if …else etc.
here the syntax used is inherited from C++ and Python for
the ease of use of programmers who program in both the
languages. As shown in the syntax below we have used curly
brackets because it is used for implementing the concept of
modularity.
Syntax:

 if condition {// statements}

 if condition{//statements}
else {// statements}

 if condition {//statements}
elif condition {//statements}

else{//statements}

example:

 if 2 == 2 {print(“TRUE”);}

 if 2 > 3 { print(“TRUE”);}
else{print(“TRUE”);}

 if 2 > 3 { print(“TRUE”);}
elif 2 == 3 { print(“TRUE”);}
else{print(“TRUE”);}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1178

C. Iteration Statements syntax:

1. In C++

The iteration statements used in C++ are for, while, do

while. These statements are often referred to as looping

statements.

Syntax:

 while(condition){
//statements

}

 do{
//statements

}while(condition);

 for (initialization ; condition ; updation)
{

//statements

}

2. In Python

The iteration statements used in python are for, while.

These statements are often referred to as looping

statements.

Syntax:

 while condition:
//statements

 for condition :
//statements

example:

 while i < 10:
print(i)

i = i + 1

 for i in range (1,10) :
print(i)

3. In Alfa

The iteration statements used in Alfa are for, while. These

statements are often referred to as looping statements.

Syntax:

 while condition{
//statements

 }

 for indemtifier = initial_ value to end_value step
step_value {

//statements

 }

 Here step and step_value is optional

example:

 while i < 10{
print(i)

i = i + 1

 }

 for i = 0 to 10 step 2{
print(i)

}

D. Functions :

1. In C++

In C++ a function always returns a value of data type that is

mentioned before the function name unless its return type is

mentioned as void. The return type can be a primitive

datatype or a user defined data type.

Syntax:

a) function definition:

return_type function_name (data_type parameter_name){

 / /statements

 return parameter_name;

}

b) function calling:

function_name (parameter_name);

2. In Python

In python it is not necessary that function should always

return a value. The return type is not mentioned for a

function instead it uses a generic keyword def.

Syntax:

a) function definition:

def function_name (parameters):

 #statements

 return parameter_name

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1179

b) function calling:

function_name (parameter_name)

3. In Alfa

In Alfa fun keyword is used to define a function because, in

some existing languages the data type of value to be

returned does not match the return type of function so in

order to overcome this the fun keyword is used.

The datatype of formal parameters are not required to be

mentioned.

a) function definition:

fun function_name (parameters){

 / /statements

 return parameter_name;

}

b) function calling:

function_name (parameter_name);

E. Error Handling

As we know that in any programming language various types

of errors are encountered. Similarly in Alfa when an error

occurs, the type of error is precisely mentioned e.g. runtime

error, invalid syntax error etc. As well as the traceback call is

also shown with line number and the position of error

element.

F. Execution Statement

1. In C++

compile: g++ filename.cpp

execution: ./a.out in Linux and ./a.exe in Windows

2. In Python

python3 filename.py

3. In Alfa

run(“filename.txt”)

G. Comments

1. In C++

Single line: // statements

Multi Line: /* statements */

2. In Python

Single line: # statements

Multi Line: Python does not really have a syntax for multi-

line comments but you can use a multiline string.

“ “ “ statements ”””

3. In Alfa Single line : # statements

5. CONCLUSION

 A new Object-Oriented programming language is developed
along with its interpreter while maintaining and
implementing the basic syntaxes and semantics. We have
overcome some of the constraints of existing programming
languages at a basic level to make the language user friendly.
Also, we gained immense knowledge about the architecture
and methodology of the designing of a compiler. We took
references from various available resources that helped us
for the successful execution of the project.

6. REFERENCES

[1] Programming Languages, 2014 11th International

Conference on Electronics, Computer and

Computation (ICECCO), Niyazi ARI, Prof Dr. sch.

techno ETH, and Nuraiym Mamatnazarova MsCS

[2] Object-Oriented Software Specification in

Programming Language Design and Implementation

Proceedings. The Twenty-Second Annual

International Computer Software and Applications

Conference (Compsac '98) (Cat. No.98CB 36241)

Year: 1998 Barrett R. Bryant and Viswanathan

Vaidyanathan

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1180

[3] An Experience Report on Teaching Compiler Design

Concepts using Case-Based and Project-Based

Learning Approaches 2016 IEEE Eighth

International Conference on Technology for

Education (T4E) Divya Kundra and Ashish Sureka

[4] Qualitative Assessment of Compiled, Interpreted

and Hybrid Programming Languages,

Communications on Applied Electronics (CAE) –

ISSN : 2394-4714 Foundation of Computer Science

FCS, New York, USA, Ampomah Ernest Kwame,

Ampomah Ernest Kwame, Abilimi Gilbert Chris

[5] A Framework Based on Compiler Design

Techniques for Programming Learning

Environments, 2018 International Conference on

Artificial Intelligence and Data Processing (IDAP)

Sefa Aras, Eyup Gedikli, Ozcan Ozyurt Software

Engineering Department Karadeniz Technical

University Trabzon, Turkeyq

[6] Design and Implementation of an Interpreter Using

Software Engineering Concepts, (IJACSA)

International Journal of Advanced Computer

Science and Applications,Fan Wu, Hira Narang,

Miguel Cabral

