
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5170

Handwritten Digit Recognizer using Deep Neural Network

G. Sri Nikesh1, T. Amruth2, B. Ajay Reddy3, Kota Rajashekhar4, N. Jaya Surya5

6Professor Nahida Nazir (guide), Lovely Professional University, India
--***---

ABSTRACT: The paper will describe the best
approach to get more than 90% accuracy in the field of
Handwritten Digit Recognizer (HDR). There have been
plenty of research done in the field of HDR but still it is an
open problem as we are still lacking in getting the best
accuracy. In this paper, the offline handwritten digit
recognition will be done using the algorithm Deep Neural
Network (DNN) using Convolutional Neural Network
(ConvNet). The purpose is to develop the software with a
very high accuracy rate and with minimal time and space
complexity and also optimal.

Keywords— Handwritten Character Recognition,
Deep Neural Network, Convolutional Neural Network

1. INTRODUCTION

Handwriting recognition is a computer function that can
receive and interpret easy-to-understand handwriting
input from various concrete sources. Pictures of
manually written content can be perceived "offline" on
paper by optical examining (OCR) or intelligent word
recognition then again, the motion of the pen tip can for
example be recorded "online" via the surface of a pc
screen with a pen. This is a simple job since there are
usually more hints.

The problem remains albeit the variable of language is
kept constant, by categorizing handwriting by similar
languages. each piece of writing is different, though there
are some similarities which will be classified together.
The task for a knowledge scientist, during this case, is to
group the digits involved in writing an identical language
in categories that might indicate related groups of an
equivalent numbers or characters. The optimization of
this process is of utmost importance, together wants to
acknowledge handwriting because it is written. The
classifiers that are utilized in these cases vary in their
methods and recognition speeds, alongside the accuracy
of recognition.

Neural networks (NN) have proved useful during a vast
range of fields, classification being one among the
foremost basic. NNs show excellent performance for the
classification of images by extracting features from
images and making predictions supported those
features. many various sorts of NN scans be used for
classification, i.e., convolutional neural networks (CNN),
recurrent neural networks (RNN), etc. Each type has its
architecture, but some properties remain an equivalent.
As each layer consists of neurons, each neuron is

assigned weight and activation functions. First, we'll
check out the architecture of every neural network.

Handwriting recognition plays an important role in
storing and retrieving input and handwriting
information. A large number of historical papers exist in
physical form. This includes genealogical information,
old family records, written manuscripts, personal
diaries, and many other pieces of the shared past.
Continuous verification of this information could damage
the original document and the actual data. Handwriting
recognition enables translation that converts this
information into an easy-to-read electronic format.

Most modern tablet computers and hybrid notebooks
have an active pen and display that users can use to
write and draw on the screen. It is very useful for users
to recognize handwritten text, understand its meaning,
and save it as digital text that can be used by computers
and word processing applications. This is the first step
towards realizing handwritten number recognition.
Benchmark The benchmark model is selected from one
of the competing Kaggle Digit Recognizer cores and used
for comparison. Benchmark accuracy rating of the model
is 0.872.

2. LITERATURE REVIEW

Since 2009, the repetitive neural network and deep
feedforward neural network developed by the Jürgen
Schmidhuber research group at the AI Lab IDSIA in
Switzerland have won a few worldwide writing contests.
Bidirectional and multidimensional long term short term
memory (LSTM), particularly Alex graves. Circa 2009,
International Conference on Document Analysis and
Recognition won three competitions in the field of
handwriting recognition without first having to speak
three different languages (French, Arabic, and Persian).
A new GPU-based feedforward network deep learning
method developed by Dan Ciresan of IDSIA and his
colleagues won the ICDAR 2011 offline Chinese
handwriting recognition competition. In the famous
MNIST problem with handwritten digits by Yann LeCun
and colleagues at NYU, the neural network is also the
first artificial pattern recognition engine to achieve
competitive human performance.

CNN is taking part in a vital function in numerous areas
Take, for example, image processing. It does have an
impact on various domains. CNN is used for defect
identification and ordering, in nanotechnology, such as
semiconductor aggregation [18]. Digit recognition by

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5171

hand has made great strides. a trouble of pastime
amongst experts in the field. This topic is the focus of
extensive number of publications and documents that
are being distributed these days. It has been
demonstrated in study that deep learning algorithms
such as multi-layer, In comparison to the most
commonly used classification models like SVM and KNN,
CNN using Keras with Theano and TensorFlow offers the
highest precision. and RFC. Due to its most elevated
precision, Convolutional Neural Network (CNN) is being
utilized for an enormous scope in photo arrangement,
video investigation, and so on Numerous specialists are
attempting to interpret sentiment in a statement, often
in the processing of natural language and the
identification of sentiment, CNN is used, by shifting
various boundaries [19]. Scientists are dealing with this
issue to diminish the error rate however much as could
reasonably be expected, in one test using 3-NN, trained
and tested on MNIST, the error in recognition of writing
using hand was 1.19 percent. [20].

It is being utilized in convalescing sentences in a picture.
A few analysts are attempting to concoct new techniques
to stay away from the drawbacks of the usual
convolutional layers. Ncfm (No combination of function
maps) is a tool which can be used to improve MNIST
dataset execution [21]. It has a precision of 99.81
percent and is used for large-scale data, in general. With
each passing year, new CNN frameworks emerge with
numerous sorts of examination, Scientists are making a
decent attempt to reduce the number of errors. Error
costs are calculated using MNIST datasets and CIFAR
[22]. CNN is often used to clean up blurry images. As a
result, another model has proposed the usage of the
MNIST dataset. This strategy arrives at a precision 98
percent, with losses ranging from 0.1 percent to 8.5
percent [23]. 98 percent, with losses ranging from 0.1
percent to 8.5 percent [23]. CNN's traffic sign
discernment approach has been suggested in Germany. It
suggested a quicker in general execution with 99.65%
precision [24]. loss characteristic was once planned, this
is particularly true for diaphanous 1D and 2D CNN. In
this case, the precisions had been 93% and 91%
separately [20, 25].

3. METHOD

3.1. Data collection

 The MNIST data base [4] of written by hand digits There
are sixty thousand samples in the training collection and
ten thousand samples in the training set. It is just a
subsection of NIST's larger collection. The digits are
centred on a fixed-size picture that has already been
size-normalized. The original black and white (bi-level)
pics from NIST have been dimension in a 20x20 pixel
container, they were standardized to a stable form while
keeping their aspect ratio intact. As a consequence of the

anti-aliasing strategy employed by the normalisation
algorithm, the following photos contain grey levels. The
images were placed in a 28x28 photograph by
computing the pixels' centre of mass and converting the
image, to work this point in the middle of the
photograph.

3.2. Loading the dataset

 Then initiate this project by importing the required
python libraries and variables. The dataset then will be
downloaded and loaded as training and testing set. using
Keras, a high-level neural networks python library

 3.3. Pre-processing

Then Visualize an image of an integer using matplotlib.
As Keras can use both TensorFlow or Theano. While they
each signify photo in distinctive format. Theano uses the
format (no. of color channels, no. of rows, no. of cols) and
TensorFlow uses (no. of rows, no. of cols, no. of color
channels). A wrapper is created which is needed when
switching backends. The MNIST dataset contains
grayscale images where the color channel value of keras
varies from 0 to 255. In order to reduce the
computational load and training difficulty, map the
values from 0 - 255 to 0 - 1 by dividing each pixel values
(x_train, x_test) by 255. Then target labels
(y_train,y_test) are in the form of numerical integers(0-
9),convert them to binary form in order for the neural
network to perform mapping from input to output
correctly and efficiently.

3.4. Using the DNN model

Then build the model of Deep Neural Network
consequently compile and visualize the model.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5172

 Refined model

and this is the initial model and layers above will be
discussed in the next section.

3.5. Training and Testing

Then use the variables to train the model with pixel-
values of the handwritten image (X_train) as features
and its respective label(Y_train) as target. Then test the
DNN Model built above with mnist test
dataset(X_test,Y_test). By which we can attain the
accuracy of the model. Factors involving compilation of
model are cross entropy as loss function, SGD as
optimizer and accuracy as metrics.

3.6. Refinement

If the accuracy is not high enough, (initial model is
measured to be 95.82%). Then alter the architecture of
the network. This is the how the refinement of the model
is performed, two more convolutional layer and one
more extra dense (fully connected) layer are added, two
dropout layer is added to ensure that overfitting does
not happen, Using Adam optimizer instead of SGD
(Stochastic Gradient Descent) to update the weights
efficiently.

3.7. Model Testing

On Real Data Then compile and visualize this model too
(Picture is above) then he will train and test the DNN
model (as done in the previous step). Consequently, the
accuracy score for refined model is measured to be
0.9906 i.e., 99.06%. This is the main part, which is

testing this refined model again, but with real data. By
loading images of a handwritten digit and convert it to
the required format (Format the images in order to
match with MNIST Dataset i.e., 28x28 pixel grayscale
image) and then predict what digit is written in it. That
conversion to required format is little critical. It will be
done using OpenCV.

3.8. Final Evaluation

 The final architecture and hyperparameters is chosen
because they performed best out of the other models
tried. The robustness of the final model is verified by
using different images of digits other than MNIST dataset
as mentioned above, the following observations are
based on the results of the test

∙ The final model has predicted the digits of 10 out 11
images correctly.

∙ This model had problem in predicting digits that have
thin stokes like the digit 4 with thin stroke in the test
cases.

 The observations of test confirms that our model is
reliable enough to perform well on real data.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5173

This was the error due to the type of stoke, and the
above results are some of the successful predictions

 4. TECHNIQUES EXECUTED

Given that the problem is a supervised learning problem
and more specifically a classification the problem, there
are a lot of algorithms available for training a classifier to
learn from the data. The algorithm chosen for this
project is Deep Neural Network (DNN) using CNN

4.1 Convolutional neural network (CNN, or
ConvNet): may be a feed-forward artificial neural
network during which the availability design between its
neurons is enlivened by the organization of the animal
visual cortex [5]. Since it models animal visual
perception, it can be applied to visual recognition tasks
such as handwritten digit recognition from images. The
below are the common types of layers to build ConvNet
or DNN architectures:

● Convolutional Layer - The entry to a
convolutional layer is a m x m x r photo, where
m is the photo's height and width, and r is the
channel quantity, for example, r equals 3 in a
photo of type RGB. The convolutional layer will
have k filters of size n x n x q, where n is less
than the photo's dimension and q can be either
comparable in light of the fact that the channel

total, r or smaller, which varies by kernel. The
filter capacity affects the structure
which is already closely associated, in
which all of them are combined with the photo
to develop k feature vectors each having the
capacity of m-n+1. [6]

● ReLU Layer - An activation function of type
elementwise is applied by The Rectified Linear
Unit, like max (0, x) thresholding at zero.

● Pooling Layer - play out a down sampling
activity along the spatial measurements (width,
height)

● Fully-Connected or Dense Layer - computes
scores (between 0-9 digits). Likewise with
conventional Neural Networks and in light of the

fact that the name infers, every neuron during
this layer will be associated with all or any of the
numbers within the previous volume. [7]

● Dropout is a neural net overfitting mitigation
strategy. The main concept is to lose modules at
an irregularity (along with their connections)
[8]

● Flatten - Flattens the input. Does not affect the
batch size. Consider the example below.[9]

If the convolutional layer the output shape is
(None,64,32,32). Now when flatten is applied to the
layer, the output shape is flattened by multiplying
64*32*32 = 655

4.2. SoftMax

SoftMax layer [16] is typically the final output layer in a
neural network that performs multiclass classification
(for example: object recognition). the Softmax classifier
produces a more logical result and moreover has a
probabilistic elucidation, something we will explore
momentarily. The feature visual mapping stays
consistent in the Softmax classifier; however, we now
perceive these values as un - normalized log
probabilities for all the classes and substitute the hinge
loss with a cross-entropy error that has a technique
given below:

where (Fj) signifies the j-th variable of the array of class
scores f. The complete loss for the dataset is indeed the
mean of (Li) across all training sets plus a regularisation
function R(W)

The formula is called the SoftMax.

4.3. The cross-entropy (loss function) [16]
between a estimated and a true distribution (q&p) is
defined as:

4.4. Stochastic Gradient Descend (SGD):
Optimizer in Gradient Descent (GD) optimization, we
compute the cost gradient based on the complete
training set; hence, we sometimes also call it batch GD. In
case of very large datasets, using GD can be quite costly
since we are only taking a single step for one pass over
the training set -- thus, the bigger the preparation set,
the slower our algorithm refreshes the loads and the
more it might take until it meets to the global expense
minimum (note that the SSE cost function is convex). In

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5174

Stochastic Gradient Descent (SGD; sometimes also
referred to as iterative or on-line GD), we don't
accumulate the weight updates as we see below for GD:

Instead, we update the weights after each training
sample:

Here, the term "stochastic" comes from the very fact
that the gradient supported one training sample may be
a "stochastic approximation" of the "true" cost gradient.
Due to its stochastic nature, the trail towards the
worldwide cost minimum isn't "direct" as in GD, .but may
go "zig-zag" if we are visualizing the cost surface in a 2D
space. [17]

4.5. Adaptive Moment Estimation Optimizer
(Adam)

Adam [15] figures versatile learning rates for every
boundary. As well as putting away a dramatically
decaying avg of past squared gradients (vt) like Adadelta
and RMSprop, Adam likewise keeps a dramatically
decaying normal of past gradients (mt), almost like
momentum:

The name of the strategy is derived from projections of
the primary moment (the mean) (mt) and the
consequent 2nd (the uncentered variance) (vt) of the
gradients independently. Since (mt) and (vt) are
instituted as vectors of 0's, the makers of Adam note that
they are skewed to 0, specifically during the primary
time steps and principally the decay rates are low, i.e.,
Beta1 and Beta2 are almost one.

By measuring bias-corrected 1st & 2nd moments, they
are able to limit these biases.

:

As we've seen in adadelta and RMSprop, which generates
the adam update law below, at a specific instance are
commonly accustomed to renew parameters.

5. CONCLUSION

 The accuracy of the final model is 99.19% whereas the
benchmark model’s accuracy is 87.2%. Our model has
clearly outperformed the benchmark model. Although, in
order to justify that our model has potentially solved the
problem, we need to look at the results of the real time
test conducted against model as shown in Fig 6. Our
model can correctly predict 10 out of 11 tests. Thus, our
model solved the problem with a good accuracy score
and reliability in real time applications. However, using
the MNIST dataset and keras library simplified the
process a lot. MNIST Dataset was a good choice in deep
learning, as there was lot of tutorials and guides
available. using MNIST dataset which helped in
understanding them easily. Also, Keras helped in
kickstarting into deep learning without writing complex
code which was really helpful in quick prototyping and
experimenting in order to build a better model.
SUGGESTED ADVANCEMENTS The final model in this
project uses only simple Convolutional Neural Network
architecture. There is more advanced architecture like
the Deep Residual Neural Network (ResNet) [12] and
VGG-16[13] which could be used to improve the
accuracy a little. Also we could hyperas[14] library to
fine tune the hyper-parameters and architecture of the
model.

6. REFERENCES

 [1] en.wikipedia.org/wiki/Handwriting recognition

 [2] www.ehow.com/list_7353703_benefits-advantages-
handwritingrecognition.html

 [3]
www.cse.unsw.edu.au/~billw/cs9444/crossentropy.ht
ml

https://en.wikipedia.org/wiki/Handwriting_recognition

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5175

 [4] http://yann.lecun.com/exdb/mnist/

[5]en.wikipedia.org/wiki/Convolutional_neural_network

 [6]

ufldl.stanford.edu/tutorial/supervised/ConvolutionalNe
uralNetwork/

 [7] http://cs231n.github.io/convolutional-networks/

 [8] www.quora.com/What-is-dropout-in-deep-learning

 [9] https://keras.io/layers/core/#flatten

 [10] https://www.quora.com/What-are-softmax-layers

 [11]www.kaggle.com/romanroibu/digit-
recognizer/random-forest-digit-classifier

 [12] https://arxiv.org/abs/1512.03385

 [13] www.robots.ox.ac.uk/~vgg/research/very_deep/

 [14] https://github.com/maxpumperla/hyperas

 [15] sebastianruder.com/optimizing-gradient-descent/

 [16] http://cs231n.github.io/linear-classify/

 [17] https://www.quora.com/Whats-the-difference-
between-gradient-descent-andstochasticgradient-
descent/answer/Sebastian-Raschka-1?srid=hhRTP

 [18] K. B. Lee, S. Cheon, and C. O. Kim, "A convolutional
neural network for fault classification and diagnosis in
semiconductor manufacturing processes," IEEE
Transactions on Semiconductor Manufacturing, vol. 30,
no. 2, pp. 135-142, 2017.

 [19] K. G. Pasi and S. R. Naik, "Effect of parameter
variations on accuracy of Convolutional Neural
Network," in 2016 International Conference on
Computing, Analytics and Security Trends (CAST), 2016,
pp. 398-403: IEEE.

 [20] M. Wu and Z. Zhang, "Handwritten digit
classification using the mnist data set," Course project
CSE802: Pattern Classification & Analysis, 2010.

 [21] Y. Yin, J. Wu, and H. Zheng, "Ncfm: Accurate
handwritten digits recognition using convolutional
neural networks," in 2016 International Joint Conference
on Neural Networks (IJCNN), 2016, pp. 525-531: IEEE.

 [22] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian,
"Disturblabel: Regularizing cnn on the loss layer," in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4753-4762.

[23] A. Tavanaei and A. S. Maida, "Multi-layer
unsupervised learning in a spiking convolutional neural
network," in 2017 International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 2023-2030: IEEE.

[24] J. Jin, K. Fu, and C. Zhang, "Traffic sign recognition
with hinge loss trained convolutional neural networks,"
IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 5, pp. 1991- 2000, 2014.

[25] Y. Liu and Q. Liu, "Convolutional neural networks
with large margin SoftMax loss function for cognitive
load recognition," in 2017 36th Chinese Control
Conference (CCC), 2017, pp. 4045- 4049: IEEE.

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://cs231n.github.io/convolutional-networks/
http://www.quora.com/What-is-dropout-in-deep-learning
https://keras.io/layers/core/#flatten
https://www.quora.com/What-are-softmax-layers
http://www.kaggle.com/romanroibu/digit-recognizer/random-forest-digit-classifier
http://www.kaggle.com/romanroibu/digit-recognizer/random-forest-digit-classifier
https://arxiv.org/abs/1512.03385
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://github.com/maxpumperla/hyperas
http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/linear-classify/

