
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2998

Modern Social Media Application on Serverless Architecture with

Microservices Pattern

Ankita Dalvi1, Megha Darda2, Anshika Kumar3, Navneet Khanna4, Vidya Waykule5

1,2,3,4Undergraduate Students, Department of Computer Engineering, AISSMS COE, Pune, Maharashtra, India
5Professor, Department of Computer Engineering, AISSMS COE, Pune, Maharashtra, India

---***---
Abstract - Social Media Applications have grown
dramatically over the last decade, generating massive ever-
growing data exerting an extensive load on the infrastructure.
Thus, to efficiently handle such a large quantity of data
without the need for managing the underlying infrastructure
which has limited capacity and is susceptible to downtime, and
also, seamlessly auto-scaling the system and reducing overall
costs, serverless architectures come to the rescue.

The serverless application operates as a collection of
interconnected services that involves communication logic
between the data and services of the app. Microservices and
Serverless Architecture have changed the way we perceive
web-based applications. Thus, by using the benefits of
Serverless which deals with using the whole Backend as a
service (BAAS) and also adding the Microservices code pattern
for independence and isolation, we create an architecture that
uses the best of both worlds.

Key Words: Serverless Architecture, Microservices, Cloud
Computing, BaaS, Social Media Application, Cloud Native.

1. Introduction

In the past decade, social media has become an important
part of our everyday life, changing the way we communicate,
collaborate, gather information, exchange thoughts and ideas
and consequently perceive the world around us.

As of January 2021, 4.2 billion of the world's population are
now active on social media, which means around 53% of the
world population now uses social media actively as per the
annual US 2021 Digital Trends report by Hootsuite, and We
are Social.

Such massive usage of the social media platforms generates
tremendous amounts of data and a need for a strongly
designed and managed infrastructure for which cloud
platforms seem to be the best choice.

1.1 Modern Cloud-Native Application

Application development approaches have been
constantly changing. Cloud-Native Applications have become
popular choices to embrace modern approaches like
serverless, microservices, and containers. In Cloud-Native

architectures, we can quickly code, build, deploy and manage
without compromising security or quality.

Cloud-Native architectures take complete advantage of
the latest and best technologies around distributed systems.
They are specifically designed to utilize the versatility,
reliability, and scalability benefits of the cloud. Cloud-Native
Application ensures flexibility of the infrastructure and
dependencies, enhances automation capabilities, and
improves utilization of the resources.

1.2 Microservices Code Pattern

As Social Media Applications have many functionalities, with
each experiencing heavy traffic, Microservices have become
the core of cloud-native social media application
architecture. Cloud-native applications are collections of
microservices that are designed and developed
independently and are packaged as lightweight containers
and developed into the cloud and typically rely on
asynchronous communication to share information with
each other.

Individual microservices expose different APIs, each with its
own application logic built to execute a single business
function. Some microservices handle functionalities that the
end-client doesn't directly interface with. When one service
fails in a microservice pattern, for whatever reason, other
microservices will continue functioning without an issue.
Containers make deployment into any cloud platform (AWS,
Google, etc.) simpler and can ease the process to quickly
scale-in or scale-out. In this manner, the infrastructure
utilization becomes fully optimized.

2. Serverless Application

Serverless Applications comprise of third-party Backend-as-
a-Service (BaaS) services, and/or that include containers
which run custom code on a Functions-as-a-Service (FaaS)
platform that is event-triggered where the Cloud Provider
dynamically manages the allocation and provisioning of
servers. By leveraging serverless, applications draw out the
need for a traditional always-on server component.
Serverless architectures benefit significantly from easier
monitoring, lowered operational cost, complexity, and
engineering lead time. AWS Lambda, Google Cloud Functions,
Azure Functions, IBM OpenWhisk etc are popular cloud
provider choices for going Serverless

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2999

2.1. Key Features of Serverless Architecture

Fig -1: Key features of Serverless architectures

3. Serverless Microservices Architecture

Fig -2: Microservices Serverless Architecture

In the Microservices Pattern, each job or functionality is
isolated separately. The serverless platform by Cloud
Provider invokes appropriate service on an event trigger.
Each of these services can also be broken down into smaller
functions. These functions and services can access a file
system, a database, or use third-party services. It is also
important to use best code practices, as one could end up
with too many functions which are harder to manage and can
result in a lot of cognitive overhead.

Fig -3: Microservices code pattern in Serverless

(Refer fig 3) Event-driven serverless architectures change
how we approach application development, its management,
and its architecture. Within a microservices approach, the
intent is to be responsive to the interface and that is the
primary mechanism for interaction with the logic whereas
within a serverless approach, the intent is to be responsive to

events that occur like an HTTPinvocation, and an API is only a
mechanism for generating events.

For a data-heavy and traffic-heavy platform like social media,
the serverless platform with microservices code pattern if
implemented correctly could also make it simpler to move to
a pure microservices architecture in the future, which has its
own benefits if the traffic is known to be consistent with
predictable growth and also provides control over the
infrastructure of the system.

3.1. Code and Data Isolation between Microservices

We can deploy multiple microservices each having full
isolation of code. Furthermore, each microservice can have
multiple versions deployed simultaneously. Though mostly
isolated, microservices share some resources like Databases,
cache, etc. While this sharing has certain advantages, a
microservices-based application needs to maintain code- and
data-isolation between microservices. To mitigate unwanted
sharing, one must architect the system carefully. If these
patterns of isolation are not reliable one can formally enforce
separation by using multiple projects for the same
application. One could also opt for a hybrid approach of
project and service isolation.

Fig -4: Isolation in Serverless Compute Service

3.2. Tradeoffs of using Serverless Microservices

 Reduced overall control over the infrastructure
 Increased reliance on vendor dependencies

demands more for a third-party provider’s trust
 Security risk
 Comparatively immature technology, unclear best

practices
 Unless architected correctly, the architectural

complexities could provide a poor user experience
 Lack of operational tools.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3000

4. Proposed Architecture

Fig -5: Architecture of Social Media Application on

Serverless Microservices

Every time the user uses the social media application
through their browser or app they send a request. This
request could be anything like creating comments, getting
feed, editing profiles, etc. Each of these requests would be a
call to some API. API calls are accepted by the API gateway
and then it aggregates the various services required to fulfill
them and returns the appropriate result.

Firstly, we get and verify the authentication credentials
from the user and return a response to the client. We also use
the generated token by the authorization service to verify the
identity of users in the backend services. Event-driven
architectures are pretty popular in modern web application
development and exhibit more reliable behavior in a
distributed environment. These events invoke the
appropriate microservice which is deployed inside the
Serverless Compute Service. The key to the functioning of
these microservices inside the Serverless Microservice
Architecture would be the unidirectionality of code.

The microservice first fetches the cache and if the cache
entry is found empty then the request accesses the database.
Then the cache is updated for future use. Unstructured Data
from Social Media Applications make NoSQL databases a
primary choice.These platforms being Media-heavy need
Data Pipelines to compress the media to save storage space.
One could use a messaging service that is triggered when a
media is uploaded into the storage and then data pipelines
work on that uploaded media.

5. CONCLUSIONS

With serverless being a buzzword, if the architecture is
implemented correctly, Microservices inside Serverless for a
Social Media Application would significantly take off the load
to manage and maintain the infrastructure and foster
innovation, and also, ensure a seamless experience for the
users.

REFERENCES

[1] Kim M., Lee H. (2011) SMCC: Social Media Cloud

Computing Model for Developing SNS Based on Social
Media. In: Lee G., Howard D., Ślęzak D. (eds)
Convergence and Hybrid Information Technology. ICHIT
2011. Communications in Computer and Information
Science, vol 206. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-24106-2_34

[2] C.Veni, “A Study on Social Networks and Cloud
Computing.”, International Journal of Engineering
Trends and Applications (IJETA) – Volume 5 Issue 1, Jan-
Feb 2018

[3] R. A. P. Rajan, "Serverless Architecture - A Revolution in
Cloud Computing," 2018 Tenth International Conference
on Advanced Computing (ICoAC), Chennai, India, 2018,
pp. 88-93, doi: 10.1109/ICoAC44903.2018.8939081.

[4] Rathore, Nitin & Rajavat, Anand & Patel, Margi. (2020).
Investigations of Microservices Architecture in Edge
Computing Environment. 10.1007/978-981-15-2071-
6_7.

[5] Shafiei, Hossein & Khonsari, Ahmad & Mousavi, Payam.
(2019). Serverless Computing: A Survey of
Opportunities, Challenges and Applications.
10.13140/RG.2.2.32882.25286.

BIOGRAPHIES

ANKITA DALVI,
Computer Engineering Student at AISSMS COE,
Savitribai Phule Pune University

MEGHA DARDA,
Computer Engineering Student at AISSMS COE,
Savitribai Phule Pune University

ANSHIKA KUMAR,
Computer Engineering Student at AISSMS COE,
Savitribai Phule Pune University

NAVNEET KHANNA,
Computer Engineering Student at AISSMS COE,
Savitribai Phule Pune University

VIDYA WAYKULE,
Professor, Department of Computer Engineering,
AISSMS COE, Pune-01.

https://doi.org/10.1007/978-3-642-24106-2_34

