
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2204

SpeakEasy – Vocal Coding Online Platform

Siddhesh Borkar1, Rhytham Kabra2, Smeet Kevadiya3

1,2,3Dept. of I.T. Engineering, Xavier Institute of Engineering, Mumbai University, India
---***---
Abstract - Programming by voice with current Speech
Recognition (SR) systems is awkward because
programming languages aren't meant to be spoken.
Here, we describe various usability problems with
programming-by-voice and show that none of the
present programming by voice tools addresses all of
those barriers. We then present Speakeasy, a
programming-by-voice tool that addresses the widest
range of programming-by-voice problems to this point.
Speakeasy uses a singular approach where
programmers’ first dictate code using a straight forward
pseudo-syntax, and then translate that automatically to
native code within the appropriate artificial language.
Finally, even though Speakeasy is the tool that currently
addresses the widest range of programming by voice
problems, we conclude that a stronger tool are often
developed by combining features of Speakeasy with
features of other existing programming by voice tools.

1. INTRODUCTION

SpeakEasy is a web-based voice-based programming
platform which enables users to use their voice to code.
The inspiration for this application comes as a
preventive solution to reduce Repetitive Strain Injury.
Activities like continuous typing can lead to injuries in
the wrist and finger muscles called Repetitive Strain
Injury, a broad term for a vast number of injuries.
These injuries start with symptoms like wrist pain and
in severe cases can lead to loss of sensation in the wrist
and fingers also called Carpal Tunnel Syndrome.
SpeakEasy provides the user a preventive tool and also
reduces vocal stress on the user with the use of
predefined commands.

Adding to SpeakEasy’s capabilities can also be
beneficial for specially abled people who might find it
difficult to use the traditional keyboard-mouse
technique of operating. SpeakEasy uses technologies
like Node.js, Javascript and its packages for its backend,
while its frontend is designed using HTML and CSS.

2. PROBLEM STATEMENT

In recent years, there has been an increase within the
amount of computer programmers affected by from

Repetitive Strain Injury (RSI) - an umbrella term
covering a series of musculoskeletal disorders caused
by repetitive motion of the hand, and arms. In today’s
world, we need to get a specific errand completed as
soon as possible, likewise for software engineers or any
individual from a technical background wants to do
their errands with less effort and higher pace. For those
individuals, or any programmer with a handicap that
precludes keyboard and/or mouse input, we can
provide a chance for them to code, to improve the
productivity of coding, to diminish the frenzied writing
efforts we can implement Speech Recognition (SR),
which is an attractive alternative because it could allow
them to try and do their work without using such
devices and perform nearly all errands that you can do
ordinarily.

3. REVIEW OF LITERATURE

In the past, most research is focused on finding the
methods, problems that arise for the implementation
and the proposed solutions for the problems.

One work focuses on the development of a system
which acts as an aid for programmers suffering
through RSI(repetitive strain injury) caused due to
repetitive typing, the proposed system not only
provides solution to usability problems which include
punctuations, existing symbols, local navigation, new
symbols but also provides portability solutions with
cross SR and cross editor.

Another paper proposes a design that generates
environments that enables people to program by voice
and a method of determining if the system is
successful. It also shows how these generators are
often used to support entering data and writing XML
documents.

“VoiceGrip: A Tool for Programming-by-Voice”, this
paper describes various usability problems with
programming-with-voice. It then describes VoiceGrip, a
programming-by-voice tool that addresses the widest
range of programming-by-voice problems to date. The
proposed system in paper is able to solve all the
problems except two. The system has two commands

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2205

namely Compilation and translation commands, the
compilation commands are used to scan a series of
source files for programming symbols, by forwarding
to the Source analyser which scans the source files,
identifies all the symbols they contain and stores them
as Symbol Database.

Stephen C. Arnold & Leo Mark and John Goldthwaite
“Programming by Voice, Vocal Programming”, The
proposed design consists of a generator for voice
recognition syntax-directed programming
environments. The generator takes an input context-
free grammar (CFG) for a programming language, such
as Basic, C, C++, Java or XML DTD together with a voice
vocabulary for that language. The second domain the
paper focuses on is the use of speech recognition for
data entry. It can successfully enter data in an XML
document which has been demonstrated in the paper.
A number of various sort of commands are needed
within the syntax-directed programming interface also
as within the forms-based data entry and editing
interface.

M. A. Jawale, A. B. Pawar, D. N. Kyatanavar “Smart
Python Coding through Voice Recognition”, the
proposed system in paper, will support the specific
operation that is developing a computer program
through the voice of the user, which is recognized by
the system. Keywords are going to be identified as Key
in voice input and can be mapped to a prepared
dictionary database of stored keywords. If it is found in
this set, it will be displayed in the user workspace for
further processing otherwise an error message will be
given to the user with prompting for correct voice
input.

Anurag Singh, Ganesh Tambatkar, Shashank Hanwante,
Nitish Agrawal, Rahul Hajare, Ketki Khante “Voice to
Code Editor Using Speech Recognition”, in the
proposed paper PyAudio is a Python by default speech
recognizer engine which is extremely helpful and may
recognize a phrase or sentence easily and that we also
can improve its productivity by defining macros in
order that its understandability should get improve. In
this paper, they have categorised the system into Front
End Analysis and Back End Analysis for improved
understanding and representation of speech
recognition systems in each part. The main reason for
them to classify the system is that it’ll provide higher
accuracy because they were facing issues associated
with noise, vocabulary size, and domain in order that

they came up with their idea of Front-End Analysis and
Back End Analysis.

5. PROPOSED SYSTEM

Programming environment can create annoying
complications for the software developers who suffer
from repetitive strain injuries (RSI) and related
disabilities which makes typing difficult. The software
development process is very much repetitive and has
activities like program composition, editing, and
navigation, and the tools used for programming are
solely based on keyboard typing and offline (i.e desktop
applications). This would mean a lot of physical
interaction with the keyboard and mouse and also the
tools have to be installed on the developer’s machine
which means all the processing will be completely
performed on the user machine.

The main purpose of this project is to reduce the efforts
in developing software and programs by reducing the
physical problems or restrictions associated with it and
also to make it available to more and more people even
if the user doesn’t want to install it on their own
machine instead leverage the online servers to process
their code. Our system is based on Client-Server
architecture as most of the modern web apps
nowadays. Here the processing is divided between
client and the server so as to take the load off from the
client side.

5.1 CLIENT SIDE

Client side acts as a regular modern GUI that you come
across any websites present online which provides an
easy to use visual interface for users. The GUI is
lightweight so as to keep the load time as low as
possible.

The client side consists of a Code Editor (CE) where
user can code using their voice and also with physical
interaction devices if they want. Client side includes a
Voice Recognition Module (VRM) as well which turns
on if the appropriate permissions are provided from
the browser. This VRM will detect voice continuously
and only stop detecting intelligently after the user has
stopped speaking. VRM also has Speech-To-Text
abilities which will interpret the speech and convert it
into text. This interpreted text is then sent to the server
side for processing. This is the major part of the client
side. When the processing is completed on server side
and the response has been sent back to client, it is fed

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2206

into a Command and Code Separator (CCS) module
which recognizes the commands or operations to
perform on client side editor and what data is to be
displayed in the code editor. The user can send the
code to the server side for execution and respective
output will be received back to the user.

5.2 Communication between Client-Server

As this system is based on client-server architecture,
there has to be a communication link between them.
We have used sockets as our real time communication
link. Each user is given a unique isolated socket (link)
connection to the server, which ensures safety of users
to some extent. This link is bidirectional so that both
client side and server side can communicate with each
other over the same link. When the STT has generated
the text, it is sent to the server using this socket. Also
the generated code and output is sent back to the client
via the same socket.

5.3 Server Side

This is the heart of the system where most of the
processing is handled. As soon as the STT interpreted
text is sent to the server via socket, the server
generates the code using the Code Generation Module
(CGM). The CGM analyses and parses the text to look
for relevant information on the basis of which the code
will be generated dynamically. The CGM makes use of a
command storage object where various code and its
syntaxes are mapped, it is modified according to need
and the generated code is then sent back to the user via
the same socket the request came through. The other
part of the server side handles the code execution,
where the received code is stored on the server
temporarily and then executed in the respective
execution environment. The output of which is sent
back to the user as soon as it is generated.

6. FUTURE SCOPE

Improving the accuracy of the microphone and
reducing background noise to increase the ability to
detect correct words.

Extending SpeakEasy’s range from a Python only
platform to add more languages.

AI powered autocomplete to increase the usability of
the platform and further decrease vocal load of the
user.

Integration with existing IDE’s to leverage the existing
processing power of IDE and introduce a vocal
solution.

SpeakEasy’s capability can be used beyond
programming to facilitate a solution to reduce typing
strain for people who aren’t involved in coding.

Fig -1: Process Flow of Speakeasy

7. CONCLUSION

As the world moves towards voice-enabled devices
including smart home-devices and mobile assistants,
SpeakEasy provides an unorthodox platform for coding
in Python, the system allows users to either choose
from a predefined set of commands or allows the user
to speak the entire syntax himself. SpeakEasy reduces
the processing load on the client by processing the
code at the backend. The current implementation of
SpeakEasy provides support for python only and is
aimed to be extended for other languages for better
user experience. The system doesn’t possess any
intelligence in the current version and can be
introduced to enhance user operability.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2207

REFERENCES

[1] A. Desilets “VoiceGrip: A Tool for Programming-by-
Voice”, in International Journal of Speech Technology,
2001.

[2] Stephen C. Arnold & Leo Mark and John Goldthwaite
“Programming by Voice, Vocal Programming”,
Conference Paper, 2000.

[3] M. A. Jawale, A. B. Pawar, D. N. Kyatanavar “Smart
Python Coding through Voice Recognition” in
International Journal of Innovative Technology and
Exploring Engineering,2019

[4] Anurag Singh, Ganesh Tambatkar, Shashank
Hanwante, Nitish Agrawal, Rahul Hajare, Ketki Khante
“Voice to Code Editor Using Speech Recognition” in
International Research Journal of Engineering and
Technology, 2018

[5] Rinor S.Maloku, Besart Xh.Pllana “HyperCode: Voice
aided programming” in IFAC-PapersOnLine, 2016

[6] Liu Qigang, Xiangyang Sun “Research of Web Real-
Time Communication Based on Web Socket” in
International Journal of Communications, Network and
System Sciences, 2012

[7] Nitin Washani, Sandeep Sharma, “Speech
Recognition System: A Review”, International Journal
of Computer Applications, 2015.

[8] Désilets, A., Fox, D. C., & Norton, S. “VoiceCode: an
innovative speech interface for programming by-
voice”, 2006

[9] MDN Web Docs - “the Web Speech Api”, accessed 06
January 2021, <https://developer.mozilla.org/en-
US/docs/Web/API/Web_Speech_API/Using_the_Web_S
peech_API>

[10] Node.js Docs, accessed 07 January 2021,
<https://nodejs.org/api/child_process.html>

[11] SOCKET.IO Docs, accessed 09 January 2021,
<https://socket.io/docs/v4>

[12] Express Docs, accessed 09 January 2021,
<https://expressjs.com/en/4x/api.html>

[13] Ace Docs, accessed 27 January 2021,
<https://ace.c9.io/#nav=api>

https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
https://nodejs.org/api/child_process.html
https://socket.io/docs/v4
https://expressjs.com/en/4x/api.html
https://ace.c9.io/#nav=api

