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Abstract: Wireless Sensor Network (WSN) has long been 
regarded as an essential method for many applications. The 
position of sensor nodes is needed for the majority of WSN 
applications. The location knowledge of WSN nodes is 
critical for determining the source of incidents and acting on 
them. For this reason, several localization algorithms have 
been created. We suggested CFTL cluster-based fault-
tolerant localization in this paper, which is commonly used 
in WSN applications. These algorithms use a few reference 
nodes with position information to localize other nodes 
using these nodes as a reference. However, in practice, 
certain reference nodes can fail and report incorrect 
position details to other nodes. This limits the network's 
overall localization accuracy. As a result, it is critical to 
recognize and exclude defective reference nodes from the 
localization phase. However, since both defective nodes and 
heterogeneous nodes change hop distances in Wireless 
Sensor Networks (WSN), identifying just faulty nodes within 
a group of heterogeneous nodes becomes much more 
difficult. This paper presents a fault filtering approach for 
fault-tolerant localization that can be used with some of the 
current hop-based localization algorithms. Under defective 
conditions, the Fault Filtering algorithm exhibits improved 
localization accuracy and more robust efficiency. 
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1. INTRODUCTION 

Many spatially distributed sensor nodes are used 
in wireless sensor networks (WSNs) to sense or track the 
physical and environmental environments around it. 
Temperature, pressure, gas, soil moisture, proximity 
sensor, light sensor, humidity, ultrasonic sensors, and 
other sensors are examples of sensor nodes. Per sensor 
node has a transducer, microcomputer, and transceiver. 
WSNs have enormous capacity for developing powerful 
applications due to the diversity of physical and 
environmental environments [2]. The position of sensor 
nodes is needed for the majority of WSN applications. This 
positioning data can be used in navigation, goal detection, 
place-conscious data collection, and other applications [3]. 
For localization, the Global Positioning System (GPS) is a 
common option. However, these technologies necessitate 
line-of-sight visibility between nodes and satellites, which 
is not feasible in the majority of implementations [1]. 
Furthermore, attaching a GPS receiver to each node is not 

feasible [4]. As a result, localization has become a 
significant issue in WSNs. It is being thoroughly researched 
for a broad variety of applications [5]. Since they do not 
need any extra hardware support for range measurements, 
range free localization algorithms are more common for 
large scale WSNs. 

 

Figure 1: Wireless Sensor Networks 

A WSN is typically made up of a large number of 
sensor nodes with minimal processing and power 
capacities that communicate over unreliable and low 
bandwidth radio links [3]. As a result, this resource-
constrained environment suffers from repeated node and 
connectivity failures. The usefulness of a WSN-based 
programme, on the other hand, stems from providing 
stable facilities, which necessitates the implementation of 
fault tolerance techniques. The use of node redundancy is 
a standard method for providing fault tolerance in WSNs. 
However, this solution is insufficient to meet the 
application's specifications. Users ought to identify a 
certain event (fire identification, tracking) with a certain 
level of accuracy, for example, no false negatives with or 
without tolerating false positives. As a result, the optimal 
responsiveness, i.e., efficiency and timeliness of data 
transport, often differs across applications. Certain 
applications, such as wildlife monitoring, may require low 
responsiveness in extreme situations, while others, such as 
military applications, might require strong responsiveness 
[8]. 
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Other intermediate responsiveness groups may be 
defined, such as applications that do not need high 
delivery reliability [6] but do need delivery timeliness, i.e., 
if any data is missing, application output would not suffer. 
Still, data should arrive within the time bounds provided 
by the application. 

This work contributes to the state of the art by 
demonstrating that we can balance the ease of 
constructing a centralised fault management system to 
reduce power usage usually offered by dispersed fault 
management systems. As a result, the proposed device 
achieves high precision in fault detection while also using 
little resources [9]. 

The following is how this paper is structured. 
Section II discusses related literature concerned with fault 
control schemes. The suggested fault management scheme 
is then presented in Section III, and the experiments are 
described in Section IV. Section V reports on simulation 
performance, and Section VI concludes the paper with final 
discussions. 

2. BACKGROUND STUDY 

Alavi, S. M. M., & Saif, M. [1] The process of data fusion is 
one of the most effective strategies for reducing the 
dimension of the dataset while simultaneously improving 
overall device efficiency. Since the data sensed is periodic 
and has redundancy and reduced energy and storage 
space, it becomes an essential challenge to do best with 
these limited resources. The proposed model employs a 
mixture of the Kalman Filter and the ELM (Extreme 
learning machine) to detect flawed data against regular 
data based on the data pattern. To begin, the Kalman filter 
reduces the total datasets into a series of patterns, i.e., 
instead of broad data sets, it offers a collection of regular 
and defective data patterns. Second, this collection of data 
is used to train the ELM model in order to achieve high 
classification accuracy. The proposed model outperforms 
previous models in terms of precision and processing time.  

A fault tolerant localization algorithm known as 
clustering-based DV-Hop is defined in [3] Bhat, S. J., & 
Santhosh, K. V.. To weed out flawed nodes, this algorithm 
employs basic K-means clustering and voting techniques. 
In localization, only non-faulty nodes are included. 

Liu, S. et al. [5] describes a data aggregation approach for 
homogeneous WSNs that combines fault node self-
checking and data fusion. A new weighting approach based 
on statistics theory is proposed, and the weighting 
coefficient is dependent on the divergence between the 
calculated meaning. 

Long, H. et al. [6] describes the dynamic consensus 
expanded Kalman filter, a sensor control technique for 
dynamic goal monitoring. The goal is initially positioned 
using weighted least squares. Each move is then tracked to 
establish a complex monitoring cluster, with cluster 
participants collaborating to conduct target detection and 
distributed state estimation. The algorithm performs state 
estimation for nonlinear structures using the consensus 
filter of a distributed extended Kalman filter. 

Xue Wang, et al. [7] suggested a reputation-based method 
for goal localization in wireless sensor networks. The 
authors suggested a mixed-Gaussian model to explain a 
node's action as a result of any major errors. Each node 
estimates the model's parameters based on its credibility 
and hence modifies the actual data reading. The authors 
used the Dirichlet distribution to create a node's credibility 
in this case. The updated measurements are first filtered 
by a local voting scheme to remove inaccurate data before 
being obtained by a chosen PN to determine the target 
position using the PSO algorithm during the target 
localization process. 

Wang Su, & Yang Bo. [10] The easy and efficient object 
identification, position, and tracking algorithms are 
developed to meet the battlefield detection environment's 
requirements, completely using multi-sensor data fusion. 
In the laboratory, the identification, position, and 
monitoring of a man, a shooter, and a vehicle are 
accomplished using a small-scale network. The 
experimental results indicate that the device can achieve a 
high identification rate and accurate target position and 
monitoring trajectories in a specific detection 
environment. 

3. SYSTEM MODEL 

When all of the network's nodes have been 
deployed, they must organise themselves into clusters 
before sending the sensed data to BS. The nodes in the 
distance-based distributed design transfer data over 
shorter distances, so the energy expended is much lower 
than the energy used to transmit directly to the BS. Some 
network parameters are considered in order to group the 
nodes into clusters: 

3.1 Node grouping-phase I: This segment addresses the 
proposed method for clustering randomly deployed nodes 
based on inter-node size. Using this algorithm, nodes with 
inter-node distances less than the optimum distance are 
clustered into a single cluster. Depending on the node 
density of the WSN, can be varied to maintain the number 
of nodes per cluster (m) and hence the number of clusters 
(k) at an optimum. A large number of nodes can be 
positioned within a short distance in a random 
deployment. In this scenario, the scale of the cluster is 
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determined by the number of nodes in the clusters, which 
might or may not be the same, because certain clusters 
may have a greater number of nodes in size) than others. 
This condition results in the creation of clusters of varying 
sizes and the overloading of the cluster head of large 
density clusters. The traffic caused by these clusters causes 
the network to become unbalanced and becomes a 
hindrance to routing. The amount of energy consumed by 
intra-cluster processing ranges in direct relation to the 
number of nodes in the cluster. In a heavily deployed WSN, 
may be reduced to restrict the m, which raises k. In a 
sparsely deployed WSN, may be increased to have m ideal, 
which reduces k. The proposed algorithm limits the 
number of nodes in a cluster to m, and the data rate and 
usable bandwidth determine its value. Thus, the interval 
between nodes and cluster size are the two parameters 
used as algorithm termination conditions, and it shapes 
distributed and traffic balanced clusters. 

3.2 Step II of cluster head selection: For resource-
constrained and fault-prone WSN, the cluster head election 
algorithm should require low communication overhead 
and message complexity in terms of time and messages. 
The algorithm ensures that only one cluster head is active 
at any given moment, and non-cluster nodes must be 
aware of their CH. Energy usage is assumed to be evenly 
distributed by spontaneously spinning the cluster-head. In 
order to prolong the cluster's lifespan, the re-election of a 
new CH selection process must be performed after the 
crash loss of a current CH. The algorithms that choose the 
CH at random must look for the fittest nodes around the 
entire network, which increases the cluster setup time and 
energy as a function of the number of nodes in the 
network, while the suggested algorithm chooses a node 
inside the cluster as the CH, which greatly reduces time 
and energy and improves scalability. 

 

Figure 2: Multipath Communication 

3.3 Data aggregation-phase III: When a node is elected 
as a CH, the notification is broadcast to all nodes in the 
cluster. The non-CH nodes then submit their sensed data 
to the CH during the data aggregation process. It 
establishes a Fault traffic pattern and distributes time slots 
among cluster participants to prevent a collision at CH. CH 
aggregates the data and sends it to the BS at the end of 
each round. The third function of the CFTL algorithm is 
fault tolerance, which is achieved in a straightforward way 
in the proposed framework. The health parameter 
measurement in each cluster updates the node-id, and a 
nominee list consisting of nodes with greater node-ids 
outside the actual CH node-id is maintained. As a CH fails, a 
new node with the highest node-id is elected as CH and 
restores the cluster by sending its own data to the BS for 
the current round. 

3.4 FAULT FILTERING ALGORITHM 

To enhance the localization accuracy in erroneous 
situations, we have developed a fault filtering This 
algorithm assumes that the cumulative number of 
defective nodes is less than L=2. First, the distance 
between nodes is increased by calculating the distance as a 
function of node contact radius. The average 
communication distance (ACD) is a feature of node 
communication size.. 

3.5 Algorithm: Fault Filtering Algorithm 

Input: List of CFTL values, consistency threshold. 

Output: Consistent CFTL values. 

1. While (ACDmax - ACDmin) > consistency threshold. 

2. Sort CFTL values. 

3. Jenks Step1: 

4. Find ACDmean, which is mean of CFTL 

5. Find sum of squared deviation SSD as shown in (3) 

6. Jenks Step2: 

7. For i D 1 to (number of CFTL values - 1) 

8. Classify CFTL into two groups ; (1 V ACDi) and (ACDiC1 V 
ACDend ) 

9. Find class mean for Group1 and Group2, ACDGmean1 
and ACDGmean2 

10. Find SCDi from (4) 

11. Find GF(i) from (5) 
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12. End for 

13. The value with highest GF is the best classi_cation and i 
is the classi_cation index 

14. Retain cluster with majority of values 

15. End While 

If the strongest cluster node is node it sends data 
to the base station and completes the data routing 
operation. Otherwise, it sends the data to the best 
candidate among its neighbours, who then repeats the 
routing procedure. This procedure is repeated until a node 
decides it is the best candidate and sends directly to the 
base station. Since the best candidate will have an indirect 
direction that is safer than direct delivery, this localised 
decision-making mechanism results in a monotonic 
reduction in energy costs over time.. 

4. DISCUSSIONS 

4.1 Model of Faults 

WSNs are vulnerable to a broad variety of 
processing and networking faults. WSNs are often 
disrupted due to cheap machinery, scarce services, and 
harsh environmental factors [1]. To obtain the optimal 
tolerance, faults must be identified appropriately. Our fault 
classification is dependent on data transfer protocols' 
capacity to withstand the consequences of these faults 
[10]. We classify all faults observed during data transport 
as either unacceptable or tolerable. 

4.2 Formalized paraphrase Unacceptable Flaws 

The consequences of intolerable errors are those 
that data transfer protocols cannot address. WSNs may be 
used in harsh conditions to identify fires and monitor 
citizens in disaster zones. These conditions have the 
potential to permanently kill nodes on a massive scale or 
the whole WSN, which is clearly unmanageable. Other 
unacceptable flaws include sink crash loss and network 
partitioning. The sink is crucial since it serves as a 
connection between the consumer and the WSN. 
Consequently, if the sink fails, the network would be 
unable to connect with the customer, resulting in an 
unacceptable error. Since source nodes and sink nodes can 
belong to separate network partitions, network 
partitioning is regarded as an unacceptable flaw. If the 
WSN can be maintained, these unacceptable defects can be 
turned into tolerable ones. 

 

Figure 3: Retransmission during Fault occurrence 

4.3 Communication Errors: The most common failures in 
the WSN are communication failures. Message loss and 
longer message delays are examples of data transport 
failures. These errors have a strong effect on the WSN's 
responsiveness. 

4.4 Node Failures: Node failures trigger a shift in network 
topology, which can affect the WSN's responsiveness. 
Nodes can often begin to misbehave. The event detection 
performance suffers as a result of these errors. 

5. CONCLUSION 

To achieve fault tolerance in wireless sensor 
networks, the cluster forming process is an acceptable 
option (WSN). This implements a used CFTL scheme that 
discovers the linked neighbour sets and starts the 
clustering phase based on connectivity. Each node 
determines its energy usage to determine the most energy-
efficient route for data transmission from node to node. 
The suggested method has many benefits. To shape 
clusters, for example, all that is needed is awareness of 
one-hop neighbours. Furthermore, the clustering scheme 
is resistant to topological changes induced by node 
collapse, mobility, CH transition, and node addition or 
removal. 
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