
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1925

Game Development using Artificial Intelligence in Unreal Engine

Ritik Kothari1, Smit Nawar2, Siddharth Kothari3, Asst. Prof. Jaya Jeswani4

1-3Student, Information Technology, Xavier Institute of Engineering, Mumbai, India
4Assistant Professor, Department of Information Technology, Xavier Institute of Engineering, Mumbai, India

---***--

Abstract - Artificial intelligence has been a growing
resource for video games for years now. Most video games,
whether they’re racing games, shooting games, or strategy
games, have various elements that are controlled by AI, such
as the enemy bots or neutral characters. Even the ambiguous
characters that don’t seem to be doing much are programmed
to add more depth to the game, and to give you clues about
what your next steps should be. AI in video games is a distinct
subfield and differs from academic AI. It serves to improve the
game-player experience rather than machine learning or
decision making. During the golden age of arcade video games,
the idea of AI opponents was largely popularized, in the form
of graduated difficulty levels, distinct movement patterns, and
in-game events de-pendent on the player's input. AI is often
used in mechanisms which are not immediately visible to the
user, such as data mining and procedural-content generation.
However, there are also many other ways that AI and game
development are growing through each other. Although AI
continues to be used to bring video games to life, video games
are now being trained to study their own patterns so as to
improve their own algorithms, which is just one of many ways
that AI is becoming more advanced.

Key Words: Artificial Intelligence, AI Agents, Video
games.

1. INTRODUCTION

The term "Game AI" is used to refer to a broad set of
algorithms that include techniques from control theory,
robotics, computer graphics and computer science in
general, and so video game AI may often not constitute "True
AI" in that such techniques do not necessarily facilitate
computer learning or other standard criteria, only
constituting "automated computation" or a predetermined
and limited set of responses to a predetermined and limited
set of inputs.[1][2][3] Game AI/heuristic algorithms are used
in a wide variety of quite disparate fields inside a game. The
most obvious is in the control of any NPCs in the game,
although "scripting" (decision tree) is currently the most
common means of control.[4] These handwritten decision
trees often result in "artificial stupidity" such as repetitive
behaviour, loss of immersion, or abnormal behaviour in
situations the developers did not plan for.[5] Pathfinding, a
common use for AI, is widely seen in real-time strategy
games. Pathfinding is the method for determining how to get
a NPC from one point on a map to another, taking into
consideration the terrain, obstacles and possibly "fog of
war".[6][7] Commercial videogames often use fast and

simple "grid-based pathfinding", wherein the terrain is
mapped onto a rigid grid of uniform squares and a
pathfinding algorithm such as A* or IDA* (graph traversals)
is applied to the grid.[8][9][10] Instead of just a rigid grid,
some games use irregular polygons and assemble a
navigation mesh out of the areas of the map that NPCs can
walk to.[8][11] As a third method, it is sometimes
convenient for developers to manually select "waypoints"
that NPCs should use to navigate; the cost is that such
waypoints can create unnatural-looking movement. In
addition, waypoints tend to perform worse than navigation
meshes in com-plex environments.[12][13] Beyond static
pathfinding, navigation is a sub-field of Game AI focusing on
giving NPCs the capability to navigate in a dynamic
environment, finding a path to a target while avoiding
collisions with other entities. Rather than improve the Game
AI to properly solve a difficult problem in the virtual
environment, it is often more cost-effective to just modify
the scenario to be more tractable. If pathfinding gets bogged
down over a specific obstacle, a developer may just end up
moving or deleting the obstacle.[14]

2. LITERATURE REVIEW

Bogost, Ian (March 2017). ""Artificial Intelligence" Has
Become Meaningless". Retrieved 19 May 2020.

Excerpt: When the mathematician Alan Turing
accidentally invented the idea of machine intelligence almost
70 years ago, he proposed that machines would be intelligent
when they could trick people into thinking they were human.
At the time, in 1950, the idea seemed unlikely; Even though
Turing’s thought experiment wasn’t limited to computers, the
machines still took up entire rooms just to perform relatively
simple calculations. But today, computers trick people all the
time. Not by successfully posing as humans, but by convincing
them that they are sufficient alternatives to other tools of
human effort. Twitter and Facebook and Google aren’t
“better” town halls, neighborhood centers, libraries, or
newspapers—they are different ones, run by computers, for
better and for worse. The implications of these and other
services must be addressed by understanding them as
particular implementations of software in corporations, not
as totems of otherworldly AI.

Kaplan, Jerry (March 2017). "AI's PR Problem". MIT
Technology Review.

Excerpt: AI makes use of some powerful technologies, but
they don’t fit together as well as you might expect. Early
researchers focused on ways to manipulate symbols
according to rules. This was useful for tasks such as proving
mathematical theorems, solving puzzles, or laying out

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1926

integrated circuits. But several iconic AI problems such as
identifying objects in pictures and converting spoken words
to written language proved difficult to crack. More recent
techniques, which go under the aspirational banner of
machine learning, proved much better suited for these
challenges. Machine-learning programs extract useful
patterns out of large collections of data. The power
recommendation systems on Amazon and Netflix, hone
Google search results, de-scribe videos on YouTube,
recognize faces, trade stocks, steer cars, and solve a myriad of
other problems where big data can be brought to bear. But
neither approach is the Holy Grail of intelligence. Indeed, they
coexist rather awkwardly under the label of artificial
intelligence. The mere existence of two major approaches
with different strengths calls into question whether either of
them could serve as a basis for a universal theory of
intelligence.

Eaton, Eric; Dietterich, Tom; Gini, Maria (December 2015).
"Who Speaks for AI?" (PDF). AI Matters.

Excerpt: These are boom times for AI. Articles celebrating
the success of AI research appear frequently in the
international press. Every day, millions of people routinely
use AI-based systems that the founders of the field would hail
as miraculous. And there is a palpable sense of excitement
about impending applications of AI technologies.

Good, Owen S. (5 August 2017). "Skyrim mod makes NPC
interactions less scripted, more Sims-like". Polygon.
Retrieved 19 May 2020.

Excerpt: Researchers at Portugal's Universidade de Lisboa
and North Carolina State University have developed a tool
and a mod that makes NPC interactions in The Elder Scrolls 5:
Skyrim a little more like those in The Sims, with the overall
goal of varying NPC behavior for a richer player experience.
The tool is called CIFCK, built on the Comme il-Faut AI model
developed in 2012. It's implemented in "Social Skyrim,"
which is part of the master's thesis of Manuel Guimarães, a
student at Lisbon. The mod creates greater variability in NPC
interactions by allowing them to act on their changing
opinions of other NPCs, which are shaped by their
interactions with the rest of the NPCs and the player. The
original CIF architecture would keep track of NPCs' feelings
but didn't turn those feelings into action.

Lara-Cabrera, R., Nogueira-Collazo, M., Cotta, C., & Fer-
nández-Leiva, A. J. (2015).Game artificial intelligence:
challenges for the scientific community.

Excerpt: Traditionally the Artificial Intelligence (AI) of a
game has been coded manually using predefined sets of rules
leading to behaviors often encompassed within the so called
artificial stupidity, which results in a set of known problems
such as the feeling of unreality, the occurrence of abnormal
behaviors in unexpected situations, or the existence of
predictable behaviors, just to name a few. Advanced
techniques are currently used to solve these problems and
achieve NPCs with rational behavior that takes logical
decisions in the same way as a human player. The main
advantage is that these techniques perform automatically the
search and optimization process to find these smart
strategies.

Yannakakis, G. N. (2012, May). Game AI revisited. In
Proceedings of the 9th conference on Computing Frontiers
(pp. 285–292). ACM.

Excerpt: Since those first days of academic game AI the
term was mainly linked to nonplayer character (NPC)
behavior (i.e. NPC AI) and pathfinding as most of the early
work in that field was conducted by researchers with AI,
optimization and control background and research
experience in adaptive behavior, robotics and multiagent
systems1. AI academics used the best of their computational
intelligence and AI tools to enhance NPC behavior in
generally simple, research-focused, non-scalable projects of
low commercial value and perspective. In almost every
occasion the two (academic and industrial game AI), rather
immature, communities would meet they would conclude
about the gap existent between them and the need of
bridging it for their mutual benefit. The key message of
academic AI has been that industry does not attempt to use
sophisticated AI techniques with high potential (e.g. neural
networks) in their games. On the other end, the central
complaint of industrial game AI has been the lack of domain
knowledge and practical wisdom when it comes to realistic
problems and challenges faced during game production.

Hagelback, Johan, and Stefan J. Johansson. "Dealing with
fog of war in a real-time strategy game environment." In
Computational Intelligence and Games, 2008. CIG'08. IEEE
Symposium On, pp. 55-62. IEEE, 2008.

Excerpt: A bot that uses potential fields can be modified to
deal with imperfect information, i.e. the parts of the game
world where no own units are present are unknown (usually
referred to as Fog of War, or FoW).

Abd Algfoor, Zeyad; Sunar, Mohd Shahrizal; Kolivand,
Hoshang (2015). "A Comprehensive Study on Pathfinding
Techniques for Robotics and Video Games". International
Journal of Computer Games Technology. 2015: 1–11.
doi:10.1155/2015/736138.

Excerpt: The graph generation problem for “terrain
topology” is considered a foundation of robotics and video
games applications. In this problem, the pathfinding
navigation is conducted in different continuous
environments, such as known 2D/3D environments and
unknown 2D environments. Several different techniques have
been proposed to represent the navigation environment for
the graphs of these three scenarios. Each of the
representative environment graphs in this paper refers to
one of two techniques, skeletonization or cell decomposition.

Yap, Peter. "Grid-based path-finding." In Conference of the
Canadian Society for Computational Studies of Intelligence,
pp. 44-55. Springer, Berlin, Heidelberg, 2002.

Excerpt: Square grids are simple yet informative models
of both artificial (typically appearing in video games) and
physical (involved in robotics) 2D environments used for
path planning [Yap, 2002]. Typically, in grid path finding an
agent is presumed to move from one traversable
(unoccupied) cell to one of its 8 adjacent neighbors.
Sometimes diagonal moves are prohibited restricting agent’s
moves to only the 4 cardinal directions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1927

Sturtevant, N. R. (June 2012). "Benchmarks for Grid-Based
Pathfinding". IEEE Transactions on Computational
Intelligence and AI in Games. 4 (2): 144–148.
doi:10.1109/TCIAIG.2012.2197681.

Excerpt: The study of algorithms on grids has been
widespread in a number of research areas. Grids are easy to
implement and offer fast memory access. Because of their
simplicity, they are used even in commercial video games.
But, the evaluation of work on grids has been inconsistent
between different papers. Many research papers use different
problem sets, making it difficult to compare results between
papers. Furthermore, the performance characteristics of each
test set are not necessarily obvious. This has motivated the
creation of a standard test set of maps and problems on the
maps that are open for all researchers to use.

Goodwin, S. D., Menon, S., & Price, R. G. (2006).
Pathfinding in open terrain. In Proceedings of International
Academic Conference on the Future of Game Design and
Technology.

Excerpt: The lack of geo-awareness of such
representations becomes most obvious in open terrain
environments. In contrast to maze-like environments where
A*’s expanding search fringe is constrained by walls and
obstructions, in open terrains, expansion is only constrained
by the heuristic and terrain cost. To find a path of a given
length in the open is typically much more expensive than
finding a path of the same length in a constrained
environment. Approaches which are feasible for the confines
of a dungeon fall down in the light of day. A* search is among
the most popular pathfinding techniques adopted by
commercial game developers.

Nareyek, A. (2004). AI in computer games. Queue, 1(10).

Excerpt: "The main role of graphics in computer games
will soon be over; artificial intelligence is the next big thing!"
Although you should hardly buy into such statements, there is
some truth in them. The quality of AI (artificial intelligence) is
a high-ranking feature for game fans in making their
purchase decisions and an area with incredible potential to
increase players' immersion and fun.

Cui, X., & Shi, H. (2011). A*based pathfinding in modern
computer games. International Journal of Computer Science
and Network Security, 11(1), 125-130.

Excerpt: Pathfinding in computer games has been
investigated for many years. It is probably the most popular
but frustrating game artificial intelligence (AI) problem in
game industry. Various search algorithms, such as Dijkstra’s
algorithm, bread first search algorithm and depth first search
algorithm, were created to solve the shortest path problem
until the emergence of A* algorithm as a provably optimal
solution for pathfinding. Since it was created, it has
successfully attracted attention of thousands of researchers
to put effort into it. A long list of A*based algorithms and
techniques were generated.

Design Techniques and Ideals for Video Games". Byte
Magazine. 7 (12). 1982. p. 100.

Excerpt: Game manufacturers and authors constantly try
to answer why some computer games are better than others.
Many factors contribute to the appeal of a computer game,

including technical quality, graphics, sound, pace, gameplay,
and action. Yet one cannot merely list the properties of a
given game and expect the length of the list to tell whether
that game will be a success. Giving the player an advantage of
sheer numbers is to provide it with intelligence adequate to
meet the human player on equal terms. Unfortunately, AI
techniques are not understood well enough to be useful in
such context.

3. PROPOSED WORK

To develop a sandbox environment where the player
character completes a specific set of objectives to proceed
the main goal. The game will simulate combat from a third-
person perspective. The player will encounter opponent
waves they need to survive in order to progress. The
opponents will be predictable AI which the player can
predict in order to overcome and defeat them. The proposed
work can be divided into ten modules.

3.1. Setting up the Character and Controller class

Prerequisite: Create a C++ based project with no starter

content in Unreal Engine 4.

Create a new C++ class in Unreal Engine 4 (UE4), de-rived

from the Parent Class: ACharacter. Let UE4 generate the C++

files, declare a USpringArmComponent* variable in the

header file, this component tries to maintain its children at a

fixed distance from the parent, but will retract the children if

there is a collision, and spring back when there is no

collision. USpringArmComponent* is used as a ‘camera

boom’ to keep the follow camera for a player from colliding

into the world. The U prefix indicates that it’s derived from a

UObjectBase class, topmost in the Unreal Engine 4 hierarchy.

UE4 prime hierarchy is as follows: UObject -> AActor ->

APawn -> ACharacter. The A prefix indicates that it’s an

Actor. Prefixes are used for class names for UE4’s reflection

and garbage collection system.

In the .cpp file associated with the header file for the
Character class created, initialize and setup the ‘camera
boom’ by using CreateDefaultSubobject
<USpringArmComponent> which is a template function for
creation of a component or subobject. This is done in the
Constructor itself which gets fired up at the start of the
program.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1928

The Camera is then defined similarly as the CameraBoom but

using the template function for <UCameraComponent> and

attached to the Actor. Derive a blueprint from this C++

Character class to set the Skeletal Mesh in the blueprint to

the Actor mesh which will be visible in the viewport.

Fig 1: Spring Arm Component.

For Character movement, declare a function MoveForward()

which takes a float argument to move the Character a

specific value.

3.2. Creating animation Blueprints and Blend spaces.

To add animations to this Character, create an Animation

Blendspace for idle, walking and running animations.

Fig 2: Animation blendspace for movement.

In the AnimGraph for the Animation blueprint, create a State

Machine. This State Machine takes care of various states the

Character can be in during any particular time in game.

Fig 3: State machine for movement.

The first state termed as IdleWalkRun consists of a state

machine. The state machine is further expanded for

Unarmed and Armed states.

Fig 4: Transition and states for weapons equipped.

The Unarmed state consists of getting the MovementSpeed

variable from C++ and using the blendspace which was

created for Idle/Walk/Run animations, connecting it to the

output.

Fig 5: Linking the blendspace to the output pose.

Going back to the state machine inside IdleWalkRun, a

transition is made from Unarmed to Armed with the

following transition rules.

Fig 6: Transition rule for Unarmed to Armed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1929

Similar to the blendspace created for Unarmed animations,

create a 1D blendspace for Armed idle, walking and running

animations

3.3. Gameplay Mechanics.

This module includes implementation of different gameplay

mechanics like floor switch, interactable items, floating

platform, spawn volume and creating the HUD.

A new C++ class is created derived from the Parent Class:

Actor. In the FloorSwitch.h header file, UBoxComponent* and

UStaticMeshComponent* variables are declared for

TriggerBox, FloorSwitch and the Door.

These are defined further in the .cpp file by

CreateDefaultSubboject template function.

In the BeginPlay() function this Actor, namely FloorSwitch,

the AddDynamic macro is used. OnComponentBeginOverlap

event is called when something starts to overlaps this

component, for example a player walking into a trigger.

Helper macro for calling AddDynamic() on dynamic multi-

cast delegates. Automatically generates the function name

string. It takes UserObject and FuncName as parameters.

UserObject passed is this, which is essentially the

FloorSwitch Actor itself and the function names for the

relevant functions passed by reference.

The boolean bIsCharOnSwitch is used to determine whether

the Character is overlapping with the TriggerBox. On

OverlapBegin fires the RaiseDoor() and LowerFloorSwitch()

which are both BlueprintImplementableEvents, defined in

blueprints for this Actor.

Fig 7: Static mesh for the trigger-box and door.

Appropriate Static Mesh are set for the Door and the

FloorSwitch itself. In the Event Graph for this blueprint, the

C++ declared BlueprintImplementableEvents are called here.

DoorTimeline and FloorSwitchTimeline timelines are

created. Both of these timelines consist of float tracks. The

float track varies from value 0.0 to 0.75 and stops at the 0.75

value. This allows the Door to operate smoothly on the

function of time. A blueprint is derived from this FloorSwitch

C++ class.

Create another C++ class derived from Parent Class: AItem.

This class will be used as pickup items for the Character

which can heal the player or add coins. In the header file,

OnOverlapBegin() and OnOverlapEnd() override functions

are declared.

OnPickupBP() function is designed to be overridden

(implemented) in blueprint. Derive a blueprint from Pickup

class for Coins.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1930

Fig 8: Static mesh for the coin.

Set the Static Mesh Component for Coins and add the

IdleParticlesComponent, OverlapParticles and OverlapSound

for it in blueprints. Create a new variable in Event Graph

called Coins and set the variable type as Integer. This will

increment the Coins count by 1 when the Character overlaps

with the Pickup Item. The Increment Coins function declared

in Main.h and defined in Main.cpp which is the Character

class.

Fig 9: Increment logic.

In the header file, the function is set as BlueprintCallable

which allows the function to be called from blueprints. It

takes an amount which is integer with value 1. In the

Main.cpp file, the function simply increases the Coins amount

by 1.

Create a new C++ class derived from the Parent Class:

APlayerController. APlayerController class is derived from

AController. For HUD creation and use of Unreal Motion

Graphics, add UMG module in the Build.cs file. Slate UI is also

essential and must be added. In the newly derived C++ class

called MainPlayerController class, declare TSubclassOf

<UUserWidget> to be selected in blueprints and the

UUserWidget* object itself.

The user widget is extensible by users through the

WidgetBlueprint. In the MainPlayerController.cpp file, if

HUD_OverlayAsset is set in blueprints and is valid, create the

HUD_Overlay with CreateWidget<> function.

In UE4, create a new Widget Blueprint for User Interface,

delete the Canvas panel and add Vertical boxes to align the

Health and Stamina bars at the top left. Add some more

boxes to display the Coins count in the bottom right. Name

the boxes appropriately for easier usage. This is the

backbone HUD_OverlayAsset which will further consist of

the HUD_Overlay like HealthBar, StaminaBar, Coins,

HostileHealthBar and PauseMenu.

Fig 10: UI Widget blueprint.

3.4. Combat Mechanics.

Create a new C++ class derived from Parent Class: AItem. In

the header file, declare a USkeletalMeshComponent* variable

which is used to create an instance of an animated

SkeletalMesh asset. The behavior of audio playback is

defined within Sound Cues. bWeaponParticles is used for

particle effects implementation while UBoxComponent*

CombatCollision is a box component which will be on the

weapon mesh to activate and deactivate collision for it.

In the Weapon.cpp class file, set SkeletalMesh and attach it to

the RootComponent. Similarly, for CombatCollision.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1931

Back in UE4, open the Character’s skeleton and add a socket

under the RightHand, naming it “RightHandSocket” which is

used in the code. This particular socket is used to attach the

weapon into the hand of the Character. Once attached, this

weapon will move in any direction according the bones

created in the Character’s skeleton.

Fig 11: Sword attachment to skeleton.

A new Animation Montage is created in UE4, adding various

kinds of attack animation for the Character when equipped

with a weapon.

Fig 12: Animation Montage for attack anims.

Each attack animation is using notifies. SwingSound notify is

used to play the SwingSound for the weapon.

ActivateCollision and Deactivate Collision notify fires the

relevant function from C++. Notifies are events which are

fired when the animation reaches that specific frame in time.

EndAttacking notify is added before the animation ends.

Each animation is separated by a montage section.

Alongside, a new blueprint is derived from AHostileNPC C++

class. The SkeletalMesh is set, Spheres are tweaked to fit the

mesh accordingly and CapsuleComponent is tweaked to

further suit collision events with other Actors.

Fig 13: Skeletal mesh for the Hostile class.

Create a Widget Blueprint for Hostile’s HealthBar. Delete the

canvas panel and add a horizontal box with a progress bar.

Bind a function to it, create a new variable for RefToMain

which is the same as RefToMainChar variable created for

other widget blueprints. Similar to Main’s widget, check if

RefToMain is valid, if not, get the Owning Player Pawn and

cast it to Main_BP. Set the cast as RefToMain and return.

Fig 14: Health widget for Hostile class.

3.5. Extending the Hostile class.

Based on the AHostileNPC C++ class, new blueprints are

derived for different types of hostiles.

Fig 15: Extension of Hostile class with minions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1932

Fig 16: Extension of Hostile class with minions.

Each Hostile is given separate SkeletalMesh but all 3 use the

same skeleton. Their CombatSphere, CombatCollision and

CapsuleComponent is tweaked to better fit their mesh. Add

sockets LeftAttackSocket and LeftParticlesSocket for the

Hostile’s skeleton for CombatCollision and HitParticles.

Fig 17: Attaching hitpoint for sword.

Create a new animation blueprint for this skeleton and

create a clone of the EventGraph from previous

SpiderAnim_BP. In the AnimGraph, create a clone of the

StateMachines as well.

Fig 18: Animation montage for attack anims.

Create Animation Montage for it and add similar notify

events.

3.6. Extending the Weapon class.

Based on AWeapon C++ class, derive various blueprints for

different kinds of weapons to be added into the world. Set

the SkeletalMesh, IdleParticlesComponent for each. Tweak

all CombatCollision since different weapons have different

skeletal mesh and different skeletons as well. Add socken

WeaponSocket to the appropriate skeleton files to enable

HitParticles during attacking animations with HostileNPCs.

Fig 19: Adding weapons with dynamic effects.

3.7. Adding the Weapon Trail effects.

For the Hostiles and Character who have access to weapon

like swords, create two sockets for each at the hand itself

and then at the tip of the weapon for adding trail effect.

Fig 20: Sword trail effects for character.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1933

Create a trail in the animation montage and then use the

sockets created with the PS template. This adds a trail effect

when the Character swings their sword.

Fig 21: Trail points for the effect.

Similarly, for the Hostile’s animation montage and the

skeleton.

Fig 22: Trail effect for minions.

3.8. Switching Levels: Level Transition Volume.

Create a new C++ class derived from the Parent Class:

AActor. In the header file, declare a UBoxComponent*

TransitionVolume which will be used to load the next level

when the Main Character overlaps with it.

UBillboardComponent* is a 2d texture that will be rendered

always facing the camera. This is useful to select and tweak

the TransitionVolume in the viewport while setting it up in

the world. FName TransitionLevelName is used to set the

next level name. Fname is a public name, available to the

world. Names are stored as a combination of an index into a

table of unique strings and an instance number.

OnOverlapBegin() function is declared for overlap

functionality.

Inside the constructor, setup TransitionVolume as the

RootComponent and setup Billboard and attach it to the

RootComponent. TransitionLevelName is set to “SunTemple”

by default which is the current LevelName.

In BeginPlay(), use AddDynamic function to map the

OnOverlapBegin function for OnComponentBeginOverlap.

In OnOverlapBegin(), cast OtherActor to AMain if it is valid. If

the cast is successful, call the SwitchLevel() function defined

in Main class and passing the TransitionLevelName to it.

Create a blueprint derived from LevelTransitionVolume C++

class.

Fig 23: Placeholder for the transition volume.

Set the LevelTransitionName in blueprint to the next level

name to switch to. Now back in Main class, declare the

SwitchLevel() function.

3.9. Saving and Loading the game.

Create a new C++ class derived from the Parent Class:

USaveGame. In the header file, create a struct for storing

Character related data and other information which can be

used for saving and loading the game.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1934

Back in the Main class header file, declare functions from

saving and loading.

In the Main class file, for SaveGame(), use

CreateSaveGameObject() which creates a new, empty

SaveGame object to set data on and then pass to

SaveGameToSlot. StaticClass() is passed as an argument to it

which returns a [UClass] object representing this class at

runtime. The returned object from CreateSaveGameObject is

cast to USave and assigned to SaveGameInstance variable.

It is essential to give these variables the category,

SaveGameData. In the class header file, declare a FString

PlayerName, uint32 UserIndex which is a 32-bit unsigned

integer. FCharacterStats variable CharacterStats is declared.

FCharacterStats is the struct variable. F prefix is used in UE4

C++ for struct.

3.10. User Interface: Pause Menu.

Create a new Widget Blueprint for PauseMenu. Use the

Canvas Panel to anchor the menu in the bottom left of the

screen. Use button in Palette to create 4 buttons.

Fig 24: Pause Menu widget.

Create a new animation for the OptionBox and in the track,

choose OptionBox. Animation is set for PauseMenu which

slides the PauseMenu from out of the screen and into the

viewport in a time of 0.25 secs. Hitting ESC will bring up the

pause menu which will pause the game in place. Resume

button will resume it or pressing ESC again. SaveGame fires

up the SaveGame() C++ function, similarly, LoadGame fires

up the LoadGame() C++ function. Quit button will quit the

game directly.

Fig 25: Transition effect for the menu.

For the Event Graph, create event nodes for the buttons.

Fig 26: Event nodes for the pause menu buttons.

Get the PlayerPawn and cast it to MainPlayerController_BP

which is a blueprint derived from AMainPlayerController

class. Relevant functions are called for events fired. This

implements a PauseMenu for Resume, Save Game, Load

Game and Quit functionalities.

The game is then ready to play.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1935

4. RESULTS

Fig 27: Spawn location of the character.

Fig 28: Enemy character.

Fig 29: Animated flaming sword and health potion.

Fig 30: Level completion screen.

5. CONCLUSION

Artificial Intelligence adds realism to the gaming experience
and make the game more powerful and meaningful. This RPG
game is a prototype of using AI in Unreal Engine 4. Here, this
game simulates combat from a third-person perspective and
player will encounter opponent waves they need to survive
in order to progress. AI can bring the revolution in the
gaming industry. This project shows the basic use of AI in a
game. Unreal Engine consist of many different functions
which can be used in implementing advanced AI.

6. REFERENCES

[1] Bogost, Ian (March 2017). ""Artificial Intelligence" Has

Become Meaningless". Retrieved 19 May 2020.
[2] Kaplan, Jerry (March 2017). "AI's PR Problem". MIT

Technology Review.
[3] Eaton, Eric; Dietterich, Tom; Gini, Maria (December

2015). "Who Speaks for AI?" (PDF). AI Matters.
[4] Good, Owen S. (5 August 2017). "Skyrim mod makes

NPC interactions less scripted, more Sims-like". Polygon.
Retrieved 19 May 2020.

[5] Lara-Cabrera, R., Nogueira-Collazo, M., Cotta, C., &
Fernández-Leiva, A. J. (2015). Game artificial intelli-
gence: challenges for the scientific community.

[6] Yannakakis, G. N. (2012, May). Game AI revisited. In
Proceedings of the 9th conference on Computing Fron-
tiers (pp. 285–292). ACM.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1936

[7] Hagelback, Johan, and Stefan J. Johansson. "Dealing with
fog of war in a real-time strategy game environment." In
Computational Intelligence and Games, 2008. CIG'08.
IEEE Symposium On, pp. 55-62. IEEE, 2008.

[8] Abd Algfoor, Zeyad; Sunar, Mohd Shahrizal; Kolivand,
Hoshang (2015). "A Comprehensive Study on Pathfind-
ing Techniques for Robotics and Video Games". Inter-
national Journal of Computer Games Technology. 2015:
1–11. doi:10.1155/2015/736138.

[9] Yap, Peter. "Grid-based path-finding." In Conference of
the Canadian Society for Computational Studies of In-
telligence, pp. 44-55. Springer, Berlin, Heidelberg, 2002.

[10] Sturtevant, N. R. (June 2012). "Benchmarks for Grid-
Based Pathfinding". IEEE Transactions on Computa-
tional Intelligence and AI in Games. 4 (2): 144–148.
doi:10.1109/TCIAIG.2012.2197681.

[11] Goodwin, S. D., Menon, S., & Price, R. G. (2006).
Pathfinding in open terrain. In Proceedings of Interna-
tional Academic Conference on the Future of Game
Design and Technology.

[12] Nareyek, A. (2004). AI in computer games. Queue, 1(10).
[13] Cui, X., & Shi, H. (2011). A*-based pathfinding in modern

computer games. International Journal of Computer
Science and Network Security, 11(1), 125-130.

[14] "Design Techniques and Ideals for Video Games". Byte
Magazine. 7 (12). 1982. p. 100.

