
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 25

Proximity Detection Warning System using Ray Casting

Prof. Sneha Vanjari1, Gayatri Kulkarni2, Ashutosh Bhorde3, Bhakti banne4, Samiksha Kudale5

1Professor, Dept. of IT Engineering, Zeal College of Engineering and Research, Pune, India.
,3,4,5 UG Student, Dept. of IT Engineering, Zeal College of Engineering and Research, Pune, India.

---***--
Abstract - In the current era of technology, we are seeing a
lot of objects which work autonomously. These include
drones, transportation vehicles, haulers, robots and many
more. When these things are being operated autonomously,
they need to learn their environment by detecting threats so
human workers can work safely.

The proximity detection analysis has importance for various
working such as logistics, transportation, operation
management, network and mining line. The shortest path
analysis is an artificial intelligence concept which has
significance of developing the capability about think cause
and effect, learning and thinking like a human being.
Heuristic technique is a method for solving a drag which
gets a result or not. The solution based on this technique
may return unexpected value which varies according to the
given problem. In the 3D game industry, real-time
strategists use shortest path analysis control for movement
of character, vehicle, and animals. Heuristic algorithms
increase efficiency to avoid barrier objects on maps and
search for the shortest path for the operator in an
environment. Thus, Heuristic Search Algorithms are core
algorithms used for artificial intelligence applications like
games, robotics, astronomy and network control. This
research proposes two essences, detecting obstacles
beforehand and finding an optimal shortest path for the
user to navigate freely in an environment. Our project aims
on developing a prototype system to give an early indication
using ray casting and pathfinding algorithms.

Key Words: Proximity detection, Raycasting, Pathfinding
Algorithm, Heuristic technique, Artificial intelligence

1. INTRODUCTION

Nowadays, we are seeing a lot of objects which work
autonomously. These include drones, transportation
vehicles, haulers, robots and many more. When these
things are being operated autonomously, they need to
learn their environment by detecting threats so they can
work safely. In this project, we are using raycasting[5] to
anticipate potential collisions before they happen, so these
autonomous objects can traverse around without getting
damaged.

While experiencing Collision may be a negligible event to
most beings, some objects are so fragile that even a slight
collision could be catastrophic.

Our method for detection is based upon vector algebra
results on “Ray Casting “using mesh colliders which is
provided by Unity game engine to each object present in
the game scene.

 We have developed and implemented a collision detection
method whose pre-processing step is to construct a
decomposition of free space into a 3D scene and obstacles
map, marking the facets that correspond to obstacle
boundaries.

In this paper, we give details of our algorithm, and we
describe the experiments that we have conducted to test
the efficiency of this method. A primary goal of our study
was to determine if, indeed, the methods based on
computational vector algebra have a practical impact on
the collision detection[2]problem.

Our method for detection is based upon vector algebra
results on “Ray Casting “using mesh colliders which is
provided by Unity game engine to each object present in
the game scene. A practical contribution of this project is
our work on systematic experimentation for the Collision
detection problem.

The system we are going to design will use RayCasting
Concept to address proximity of objects in an
environment.

The first phase of the project is going to be to design a
prototype scene where all kinds of movable and
immovable obstacles will be placed along with the user.
Then we will use vector algebra to calculate the distance
and proximity between the obstacle and the user to send
an early warning to the operator that a potential threat is
near our reach.

In the last phase we will calculate optimal and shortest
path using A * algorithm which is one of the most accurate
heuristic pathfinding algorithms.[6]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 26

2. LITERATURE SURVEY

The purpose of the literature review was to cover collision
awareness and proximity detection and research based
recommendations for providing obstacle fewer
environments. Articles reviewed focused on efficient
proximity detection. Special attention was paid to learn
more about ray casting algorithms. More than 10 articles,
publications (including reports, manuals and guidance
materials) and 2 online training modules for Unity game
engine and fact sheets were reviewed. The system uses
object recognition information to augment existing object
recognition algorithms. Its performance should thus
continue to improve as researchers develop better
recognition software, and roboticists develop better PDS
(Proximity Detection System) software. We design
algorithms with a fixed radius for the client and server
respectively, with the purpose of reducing unnecessary
collision with the user. That is we will place the objects
randomly to create an environment and the user will
dodge and review the proximity of the object far from him.
The problem of proximity detection is often encountered
in massively multiplayer online games and in network
applications. The implementation is carried out using
Unity Game Engine and Ray tracing Algorithms. Object
detection and classification are major challenges where
applications are based on robotic advancements.
Navigation, detection, calculating proximity are based on
the ability to recognize objects. Object detection
algorithms are expected to detect and classify all instances
of an object. They should be detected even if there are
variations of position, scale and environment variations
such as intensity.

3. PROBLEM STATEMENT

These days, we are seeing a lot of objects which work
without human interaction. When these things are being
operated autonomously, they need to adapt the
information about them on the go by detecting threats so
they can work safely.

While experiencing collisions may be a negligible event to
most beings, some objects are so fragile that even a slight
collision could be dangerous for the situation.

Our method for detection is based upon vector algebra
results on “Ray Casting “using mesh colliders which is
provided by Unity game engine to each object present in
the game scene.

 Therefore, the need for us to build and implement a
proximity detection[1] system that will preemptively
detect threats to autonomous objects and will allow them
to traverse in a safe manner by avoiding collisions has
arrived.

4. SYSTEM ARCHITECTURE

diagram

As the objective of the project is to make sure the primary
object reaches the destination without colliding with
anything. Most of the code in the project basically keeps
running until the outcome is achieved. Following are the
major modules in the project:

Object detection - As soon as the program is initiated, we
start using ray casting to detect all the foreign objects in
the vicinity of the primary object. The primary object will
usually have a range within which we will be able to detect
all the objects and the objects outside of the range will be
ignored.

Data Preprocessing - Once we receive basic information
about all the objects around the primary object, we will
check if any of them are threats or not based on the
distance to the primary object. We will also try to detect if
a foreign object is on the move. All the information will be
stored in the memory of the primary object. The primary
object will also use steering behaviors[3] of the threats to
detect what type of threat the object is dealing with.

Keeping track of the objects - Every render frame of the
application, Object detection, and Data processing steps
will run until the primary object reaches its destination.
This will allow us to get the updated information about the
environment of the primary object. Regardless of whether
a foreign object is a static object or not, if it is a threat, we
can add it to the unsafe list. All the objects in the unsafe
list will be treated as if they will cause some damage to the
primary object.[4]

Route calculation - In this step, based on the data we
collected so far, we will calculate a safe route for our
primary object. The system will be using A* algorithm, as
it will provide us with heuristics so we can calculate the
fastest route to the destination. To calculate the safest
route, the system uses the collected data and will make
sure that the primary object will be out of range of the
potential collisions with the threats.

5. ALGORITHM

A) Ray Casting

1. Gather basic information about all surrounding objects

2. Cast a ray into the environment

3. If the collides with one of the objects

 Then check if any of them are threats

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 27

4. calculate distance from current position to the said
obstacle

5. alert the operator about current situation

B) Pathfinding Algorithm (A* Algorithm)

The A* ("A star") algorithm[7] has three important
properties:

It will always return the least expensive path if a path
exists to the destination, other algorithms may find a path
faster but it is not necessarily the "best" path we can take.

A* uses a heuristic (a "guess") to search nodes considered
more likely to lead to the destination first, allowing us to
often find the best path without having to search the
entire map and making the algorithm much faster.

A* is based on the idea that each node has some cost
associated with it. If the costs for all nodes are the same
then the best path returned by A* will also be the shortest
path but A* can easily allow us to add different costs to
moving through each node.

Analysis of A-Star (A*) Algorithm: -

A* is a graph search algorithm that finds the least-cost
path from a given initial node to one goal node (out of one
or more possible goals). It uses a distance-plus-cost
heuristic function (usually denoted f(x)) to determine the
order in which the search visits nodes in the tree. The
distance plus-cost heuristic is a sum of two functions: the
path-cost function (usually denoted g(x), which may or
may not be a heuristic) and an admissible heuristic
estimate of the distance to the goal. The path-cost function
g(x) is the cost from the starting node to the current node.

A-Star Algorithm Pseudo Code

1. Create Start Node with Current Position

2. Add Start Node to Queue

3. While Queue Not Empty

4. Sort Node Queue byf(N) Value in Ascending

5. Get First Node From Queue call Node “N”

6. If N is Goal Then Found and Exit Loop

7. Else

8. Mark N Node as Visited

9. Expand each reachable Node from N call Node
“Next N”

10. f(Next N) = g(Next N) + h(Next N)

11. Loop

6. PROPOSED OUTCOME: -

This proposed system should have a primary object which
will autonomously move around in a 3D environment. The
primary object will be able to detect proximity with
objects within its vicinity based on the line of sight it has
available. The primary object will also have some
destination information which will be used to calculate the
fastest path to the destination. Once the path is calculated
the primary object will try to learn its surroundings using
raycasting and will try to avoid all possible collisions to
reduce any damage.

7. EXPECTED RESULTS

This Proximity Detection system will be able to detect
obstacles beforehand.

The real-time information gathered from the detection
system will be sent to the report generator which will
provide a detailed output of the happening surroundings,
shortest path and proximity of the obstacles on the screen.

The system should also assess the situation and generate
an early level indication to indicate the operator about
incoming threat. This is how an operator will be able to
decide whether to change the current path or to continue
with the same path.

8. CONCLUSIONS

 This proximity detection application will let autonomous
objects traverse safely in an unsafe environment. By
avoiding collisions, a lot of resources can be saved while
performing autonomous tasks. This will solve safety-
related problems for many applications like automated
mining carts.

In the future, the system can be upgraded with many new
features. If a collision is imminent, then we can implement
a system to try to detect the damage profile and reduce it
despite colliding with foreign objects. In addition to that,
after the collision happens, the primary object will try to
stabilize its orientation and calculate a new path to its
safety. Also, if possible, the primary object will try to clear
the threat by itself if possible.

For further development of the study, we always need to
develop more heuristic techniques, as Heuristic algorithms
are never complete as they are based on Logic which is
based on Hope that “This solution must be the answer of
my question”. As they are developed on the basis of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 28

resources and previous results available, they will try to
provide the best solution available.

REFERENCES

1. https://ieeexplore.ieee.org/document/8904257/
(proximity detection)

2. https://ieeexplore.ieee.org/abstract/document/8
835462 (Threat prediction)

3. https://www.red3d.com/cwr/steer/gdc99/
(Steering Behaviors)

4. https://www.researchgate.net/publication/2652
36262_Towards_Obstacle_Avoidance_and_Autonomous_U
AV_Operation (obstacle avoidance)

5. https://ieeexplore.ieee.org/document/6851204 (Ray
casting)

6. https://ieeexplore.ieee.org/document/6324627 (Path
finding algorithm)

7. https://ieeexplore.ieee.org/document/7550934 (A*
algorithm)

https://ieeexplore.ieee.org/document/8904257/
https://ieeexplore.ieee.org/abstract/document/8835462
https://ieeexplore.ieee.org/abstract/document/8835462
https://www.red3d.com/cwr/steer/gdc99/
https://www.researchgate.net/publication/265236262_Towards_Obstacle_Avoidance_and_Autonomous_UAV_Operation
https://www.researchgate.net/publication/265236262_Towards_Obstacle_Avoidance_and_Autonomous_UAV_Operation
https://www.researchgate.net/publication/265236262_Towards_Obstacle_Avoidance_and_Autonomous_UAV_Operation
https://ieeexplore.ieee.org/document/6851204
https://ieeexplore.ieee.org/document/6324627
https://ieeexplore.ieee.org/document/7550934

