
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 299

Time and Space Efficiency Comparative Study between Non recursive

and Recursive Tower of Hanoi Algorithm

Sarvekash Aggarwal

UG Student, Dept. of Computer Science Engineering, Chandigarh University, Mohali, India

---***---
Abstract - The Tower of Hanoi (TOH) is one of the solitaire

games which is commonly used in psychology problem solving.

Various approaches in solving the problem had been proposed

over the years. Focusing on the field of Computer Science

comes the introduction of frequency count(FC). Determining

the FC through Mathematical Analysis (MA) can compute for

the Time Efficiency (TE) or the number of steps it takes to

solve the TOH problem that is eminently based on the number

of inputs (n). Alongside with FC is Memory Requirement (MR),

the MR of an algorithm is highly based on the data structure

and variables involved. Computation of MR through MA

defines the demands of an Algorithm when it comes to Space

Efficiency (SE). The purpose of this research is to determine

which between Recursive Tower of Hanoi Algorithm (RTOHA)

and No Recursive Tower of Hanoi Algorithm (NRTOHA) is

more befitting in solving problems like the TOH. Given the

number of disks the study then proceeds in implementing and

making use of the NRTOHA and RTOHA in solving the puzzle,

Mathematical analysis of both Algorithm shows proof on the

Key Words: Mathematical Analysis, Non-

Recursive/Iteration Algorithm, Recursive Algorithm,

Tower of Hanoi, Frequency Count,

Memory Requirement

1. INTRODUCTION

The Tower of Hanoi is a notable puzzle, invented in the

19th century, that has been used for years. It helps

people how to determine the results of their action

when breaking down a goal into sub goal. The Tower of

Hanoi puzzle is composed of three rods and doughnut-

like disks that can fit into these rods. At first, they are

placed in a pyramid form at the first rod (see Image 1).

To solve the puzzle, the player must move the three

disks at the other end of the rod in pyramid form.

Three rules were implemented and these are: (1) you

cannot transfer disks simultaneously; (2) you cannot

place a bigger disk above a smaller one; (3) you cannot

set aside a disk. There are specific number of moves

that depend on the number of disks. It is calculated by

2N-1, where N is the number of disks. This simple

puzzle helps people to increase their performance in

problem-solving in terms of speed and number of

moves that is done [1][9][10].

Reminder: The puzzles objective is to transfer all disks

from rod A to rod C, in resort to rod B, one at a time

without placing a larger disk on top of a smaller disk.

Images 1 and 2: All disk must first be moved to rod A.

Disk 1 makes the first move, transferring towards rod C.

Images 3 and 4: Disk 2 follows moving from rod A to rod

B, Disk 1 again, transfers from rod C to rod B, on top of

Disk 2

Images 5 and 6: Rod C is empty and only Disk 3(n-

1)/Biggest Disk is left on rod A; Disk 3 moves to the

empty(null) rod C. and Disk 1 goes back to rod A.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 300

Images 7 and 8: Disk 2 follows up with Disk 3, Disk 2 is

placed on top of Disk 3. Finally Disk 1 transfers to rod C

on top of Disk 2 solving the puzzle.

Mathematical Analysis of Non-Recursive Algorithms is

just by counting the number of basic operations of a

series of formulas or code. An Iterative or Non-

recursive Algorithm is numerous times that a loop is

cycled to do an operation. Loops will become a series of

sums for the number of times that the operations

inside the loop are processed.

Mathematical Analysis of Recursive Algorithms

involves repeatedly counting the number of series’

basic operations when calling the same function within

its function.

Mathematical Analysis on both algorithms includes the

count of frequency when an operation is processed and

necessary memory for each algorithmic code.

The objective of this study is to find the time

complexity of both algorithms, usage, and other

variables that might affect the algorithms themselves.

The results between the two algorithms will then be

analyzed and compared considering the criteria of TE

and SE.

2. REVIEW OF RELATED LITERATURE
Time series is one of the most frequently used forms of

data obtained from physical or computational

experiments. Time series analysis techniques have

been extremely useful in many fields, including

economics, geology, meteorology, material science,

medical science, and so on. The major goals in

evaluating time series analysis are twofold. This

investigates the structure, features and patterns of the

time series data itself using statistical techniques like

regression methods, spectral analysis, stochastic

modeling and in our case, which is mathematical

analysis of recursive and iterative algorithm.[2][10]

Most researchers believe that the algorithmic solutions

for the Tower of Hanoi proposed by Frame and Stewart

are optimal.

Interestingly, many also feel no need to prove this fact,

even if it was pointed out already in 1941 by the

problem’s editor of the

American Mathematical Monthly[6][9]

 F(n,p) ← reflects Frame's Algorithm

Fi(n,p) ← same as F(n,p), but no monotonicity is req.;

 S(n,p) ← reflects Stewart's Algorithm

Ai(n,p) ← reflects an algorithm taking into account

all partitions;

 A(n,p) ← same as F(n,p), but no monotonicity is

req.

 Equation Proposed to solve multi-peg Tower of
 Hanoi[6][7][8]

The time complexity of iteration can be found by

finding the number of cycles being repeated inside the

loop.[3][5][13]

 Sample Equation for Iterative Algorithm[3][5][11]

You can find the time complexity of recursion by

finding the nth recursive call value in terms of previous

calls. Finding the destination case in terms of the base

case therefore gives us an idea of the complexity of the

time of recursive equations. [4][5][11]

Usually, recursive versions are appropriate for simple

hardware due to the lower effort required for their real

time operation when compared to the non-recursive

ones.[5-8][11]

3. METHODOLOGY

The methodology section discusses and illustrates

the pseudocode of both Non-Recursive and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 301

Recursive method of the Tower of Hanoi Algorithm,

given:

n == 3; n is the number of disks

peg == 3; peg is the number of rods, named ‘A’, ‘B’

and ‘C’

3.1 Pseudocode of Non-Recursive Algorithm

Wherein:

Source Peg = Rod 1 = Rod ‘A’ = from_rod

Auxiliary Peg = Rod 2 = Rod ‘B’ = aux_rod

Destination Peg = Rod 3 = Rod ‘C’ = to_rod

a. Calculate the total number of moves

required:

 2n +1

n ← number of disks.

b. If the number of disks (i.e. n) is even then

interchange destination peg and auxiliary peg

utilizing the bubble sort algorithm.

if (n % 2 == 0)

 {

 char temp = pole3; pole3 = pole2;

 pole2 = temp;

 }

c. for i = 1 to total number of moves:

if i%3 == 1: legal movement of top disk

between source peg and destination peg

 if i%3 == 2:

 legal movement top disk between

 source peg and auxiliary peg.

if i%3 == 0

legal movement top disk between

 auxiliary peg and destination peg.

 Repeat step 3 until all disks are in

 destination peg/Rod ‘C’

 4. End.

3.2 Pseudocode of Recursive Algorithm

This algorithm makes use of only one method that

contains conditional statements which stimulates the

repetitions of steps in solving the problem.

Wherein:

Source Peg = Rod 1 = Rod ‘A’ = from_rod

Auxiliary Peg = Rod 2 = Rod ‘B’ = aux_rod

Destination Peg = Rod 3 = Rod ‘C’ = to_rod

a. Initialize recursive

methodtowerOfHanoi (n, ‘A’, ‘C’, ‘B’);

b. If (n == 1), Move disk from A to rod C

Else, recall method in step 1 with following

parameters:

towerOfHanoi(n-1, from_rod,

aux_rod,to_rod);

Once again, recall method in step 1 with the

following parameters

towerOfHanoi(n-1, aux_rod, to_rod,

from_rod);

Repeat step 2 until all disks are in

‘to_rod/Rod C’.

c. End.

3.3 Mathematical Analysis

In relation with both the following pseudocode shown

above, the researchers will then develop a program

using java code. Line by line, the frequency count and

the memory requirement of both algorithms will be

determined using mathematical analysis before

comparing the two algorithms.

4.RESULTS

4.1 Time Efficiency/Frequency Count

Comparison

In regards to the Recursive TOH Algorithm, the

following are changed to simplify procedures:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 302

● towerofHanoi = TOH

● source_peg = A

● auxilary_peg = B

● destination_peg = C

●

Table 4.1

Steps NR-TOH Algorithm R-TOH
Algorithm

Step 1 N N

Step 2 if(i%3 = = 1)

moveDiskBetwee

nTwoPoles(A, C, pole1,

pole3);

if(i%3 = = 2)

moveDiskBetwee

nTwoPoles(A, B, pole1,

pole2);

if(i%3 = = 0)

moveDiskBetwee

nTwoPoles(B, C, pole2,

pole3);

if(n==1)

Step 3 1 case 1 case

Step 4
(Frequency

Count)

TOH(n, A, C, B)
TOH(1, A, C, B)
= 1
TOH(2, A, C, B)
= TOH(1, A, C,

B) +1+ TOH(1,
A, C, B)
= 3
TOH(3, A, C, B)
= TOH(2, A, C,

B) +1+ TOH(2,
A, C, B) =
3+1+3
= 7
TOH(4, A, C, B)
= TOH(3, A, C,

B) +1+ TOH(3,
A, C, B) =
7+1+7

 = 15

TOH(5, A, C,
B) = TOH(4, A,

C,
B) +1+ TOH(4,

A, C, B) =

15+1+15

= 31

TOH(6, A, C,
B) = TOH(5, A,

C,
B) +1+ TOH(5,

A, C, B) =

31+1+31

= 63

.

.

.

TOH(n, A, C,

B)

=

2 n−1

Step 5

(Order of
Growth)

Given F.C =2n2 +2n
O.G. = O(n2)

Given F.C = 2
n−1

O.G. =

O(2n)

4.2 Space Efficiency/Memory Requirement

Comparison

 Table 4.2

 NR-TOH
Algorithm

R-TOH
Algorithm

Memory

Requirement

2n2 +2n + 28 10n − 10

5. DISCUSSION

5.1 In accordance with Table 4.1

As a result, The number of frequencies in the Recursive

approach has an exponential value rather than the

Iterative approach. The Execution Time of the

Recursive Algorithm is highly complex meaning it is

very slow compared to the No Recursive Algorithm.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 303

5.2 In accordance with Table 4.2

In this table we made a comparison of Memory

Requirement of both algorithms. We compute the

necessary memory for iterative algorithm by its

method to loop for solving the Tower of Hanoi

problem. As for the Recursive algorithm, we calculate it

within its method by the number of times the method

is named.

CONCLUSION

As for the usage of either of these techniques is a trade-

off between time complexity and size of code. If time

complexity is the point of focus, and the number of

recursive calls would be large, it is better to use

iteration. However, if time complexity is not an issue

and shortness of code is, recursion would be the way to

go.

Recursion involves calling the same function again, and

therefore, has a very short code length. However, as we

saw in the analysis, when there is a considerable

number of recursive calls, the time complexity of

recursion can become exponential. Therefore, in

shorter code, the use of recursion is advantageous, but

higher time complexity. Iteration is a code block

repetition. This involves a larger size of code, but the

time complexity is generally lesser than it is for

recursion.

With regard to the overhead, Recursion has the

overhead of repeated function calls, which is due to

repetitive calling of the same function, the time

complexity of the code increases manifold. There is no

such overhead involved in iteration. Infinite Repetition

in recursion can lead to CPU crash but in iteration, it

will stop when memory is exhausted. Infinite recursive

calls can occur due to some errors in specifying the

base condition, which never becomes incorrect, which

keeps calling the function, which can lead to machine

CPU crashing. Infinite iteration due to a mistake in

iterator assignment or increment, or in the terminating

condition, will lead to infinite loops, which may or may

not lead to system errors, but will surely stop program

execution any further.

7. RECOMMENDATIONS

For future research, the study must stick with the

comparison of both Algorithms and the computation of

Time and Space Efficiency must be applied on other

problem solving puzzles such as the Tower of London

Puzzle, slightly similar to TOH. Second, The study still

needs additional proof, more analytic and computation

methods can be included to justify the results in this

paper without increasing the number of pegs.

8. REFERENCES

[1]Noyes, J., & Garland, K. (2003). Solving the Tower of

Hanoi: does mode of presentation matter?. Computers In

Human Behavior, 19(5), 579-592. doi: 10.1016/s0747-

5632(03)00002-5

[2]Ghosh, S., & Dutta, A. (2018). An efficient non-recursive

algorithm for transforming time series to visibility graph.

Physica A: Statistical Mechanics and Its Applications.

doi:10.1016/j.physa.2018.09.053

[3]Ghosh, S., & Dutta, A. (2018). An efficient non-recursive

algorithm for transforming time series to visibility

graph.Physica A: Statistical Mechanics and Its

Applications. doi:10.1016/j.physa.2018.09.053

[4]Khadem, M. M., & Forghani, Y. (2019). A recursive

algorithm to increase the speed of regression-based binary

recommendation systems. Information Sciences.

doi:10.1016/j.ins.2019.10.072

[5]Rocha, R. V., Coury, D. V., & Monaro, R. M.

(2017).Recursive and non-recursive algorithms for power

system real time phasor estimations. Electric Power

Systems Research, 143, 802–812.

doi:10.1016/j.epsr.2016.08.034

[6]Klavžar, S., Milutinović, U., & Petr, C. (2002). On the

Frame–Stewart algorithm for the multi-peg Tower of Hanoi

problem. Discrete Applied Mathematics, 120(1-3), 141–157.

doi:10.1016/s0166-218x(01)00287-6

[7] J.S. Frame, Solution to advanced problem 3918,

Amer. Math. Monthly 48 (1941) 216–217. doi:

10.1016/j.ins.1986.10.083

[8] P.K. Stockmeyer, The Tower of Hanoi: a historical

survey and bibliography, manuscript, September1997

Discrete Applied

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 304

Mathematics, 120(1-3), 141–157. doi:10.1016/s0166-

218x(01)00287-6

[9]Hinz, A. M., & Petr, C. (2016). Computational Solution of

an Old Tower of Hanoi Problem. Electronic Notes in Discrete

Mathematics, 53, 445–458.

Doi:10.1016/j.endm.2016.05.038

[10]Minsker, S. (2014). The Cyclic Towers of Antwerpen

problem—A challenging Hanoi variant. Discrete Applied

Mathematics, 179, 44–53. doi:10.1016/j.dam.2014.03.011

[11]Hinz, A. M., Kostov, A., Kneißl, F., Sürer, F., & Danek, A.

(2009). A mathematical model and a computer tool for the

Tower of Hanoi and the Tower of London puzzles.

Information Sciences, 179(17), 2934–2947.

doi:10.1016/j.ins.2009.04.010

[12]Welsh, M. C., & Huizinga, M. (2005). Tower of Hanoi

disktransfer task: Influences of strategy knowledge and

learning on performance. Learning and Individual

Differences, 15(4), 283– 298.

doi:10.1016/j.lindif.2005.05.002

[13]Ke, Y. (2019). The new iteration algorithm for

absolute value equation. Applied Mathematics Letters.

doi:10.1016/j.aml.2019.07.021

[14]Lu, X.-M., & Dillon, T. S. (1995). Parallelism for

multipeg towers of Hanoi. Mathematical and Computer

Modelling, 21(3), 3–17. doi:10.1016/0895-

7177(94)00210-f

[15]Wu, J.-S., & Wang, Y.-K. (2003). An optimal algorithm

to implement the Hanoi towers with parallel moves.

Information

Processing Letters, 86(6), 289–293.

doi:10.1016/s00200190(03)00226-6

BIOGRAPHIES

 SARVEKASH AGGARWAL is

currently pursuing BE in
Computer Science Engineering
from Chandigarh University,
Mohali, India. His area of
specialization in the under-
graduate degree is Internet of
Things.

1’st
Author
Photo

