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Abstract - The Tower of Hanoi (TOH) is one of the solitaire 

games which is commonly used in psychology problem solving. 

Various approaches in solving the problem had been proposed 

over the years. Focusing on the field of Computer Science 

comes the introduction of frequency count(FC). Determining 

the FC through Mathematical Analysis (MA) can compute for 

the Time Efficiency (TE) or the number of steps it takes to 

solve the TOH problem that is eminently based on the number 

of inputs (n). Alongside with FC is Memory Requirement (MR), 

the MR of an algorithm is highly based on the data structure 

and variables involved. Computation of MR through MA 

defines the demands of an Algorithm when it comes to Space 

Efficiency (SE). The purpose of this research is to determine 

which between Recursive Tower of Hanoi Algorithm (RTOHA) 

and No Recursive Tower of Hanoi Algorithm (NRTOHA) is 

more befitting in solving problems like the TOH. Given the 

number of disks the study then proceeds in implementing and 

making use of the NRTOHA and RTOHA in solving the puzzle, 

Mathematical analysis of both Algorithm shows proof on the 
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1. INTRODUCTION 

 
The Tower of Hanoi is a notable puzzle, invented in the 

19th century, that has been used for years. It helps 

people how to determine the results of their action 

when breaking down a goal into sub goal. The Tower of 

Hanoi puzzle is composed of three rods and doughnut-

like disks that can fit into these rods. At first, they are 

placed in a pyramid form at the first rod (see Image 1). 

To solve the puzzle, the player must move the three 

disks at the other end of the rod in pyramid form. 

Three rules were implemented and these are: (1) you 

cannot transfer disks simultaneously; (2) you cannot 

place a bigger disk above a smaller one; (3) you cannot 

set aside a disk. There are specific number of moves 

that depend on the number of disks. It is calculated by 

2N-1, where N is the number of disks. This simple 

puzzle helps people to increase their performance in 

problem-solving in terms of speed and number of 

moves that is done [1][9][10]. 

Reminder: The puzzles objective is to transfer all disks 

from rod A to rod C, in resort to rod B, one at a time 

without placing a larger disk on top of a smaller disk. 

 
Images 1 and 2: All disk must first be moved to rod A. 

Disk 1 makes the first move, transferring towards rod C. 

 

 
Images 3 and 4: Disk 2 follows moving from rod A to rod 

B, Disk 1 again, transfers from rod C to rod B, on top of 

Disk 2 

 

 
Images 5 and 6: Rod C is empty and only Disk 3(n-

1)/Biggest Disk is left on rod A; Disk 3 moves to the 

empty(null) rod C. and Disk 1 goes back to rod A. 
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Images 7 and 8: Disk 2 follows up with Disk 3, Disk 2 is 

placed on top of Disk 3. Finally Disk 1 transfers to rod C 

on top of Disk 2 solving the puzzle. 

Mathematical Analysis of Non-Recursive Algorithms is 

just by counting the number of basic operations of a 

series of formulas or code. An Iterative or Non-

recursive Algorithm is numerous times that a loop is 

cycled to do an operation. Loops will become a series of 

sums for the number of times that the operations 

inside the loop are processed. 

Mathematical Analysis of Recursive Algorithms 

involves repeatedly counting the number of series’ 

basic operations when calling the same function within 

its function. 

Mathematical Analysis on both algorithms includes the 

count of frequency when an operation is processed and 

necessary memory for each algorithmic code. 

The objective of this study is to find the time 

complexity of both algorithms, usage, and other 

variables that might affect the algorithms themselves. 

The results between the two algorithms will then be 

analyzed and compared considering the criteria of TE 

and SE. 

2. REVIEW OF RELATED LITERATURE 
Time series is one of the most frequently used forms of 

data obtained from physical or computational 

experiments. Time series analysis techniques have 

been extremely useful in many fields, including 

economics, geology, meteorology, material science, 

medical science, and so on. The major goals in 

evaluating time series analysis are twofold. This 

investigates the structure, features and patterns of the 

time series data itself using statistical techniques like 

regression methods, spectral analysis, stochastic 

modeling and in our case, which is mathematical 

analysis of recursive and iterative algorithm.[2][10] 

Most researchers believe that the algorithmic solutions 

for the Tower of Hanoi proposed by Frame and Stewart 

are optimal. 

Interestingly, many also feel no need to prove this fact, 

even if it was pointed out already in 1941 by the 

problem’s editor of the 

American Mathematical Monthly[6][9] 

                F(n,p) ← reflects Frame's Algorithm 

Fi(n,p) ← same as F(n,p), but no monotonicity is req.;    

               S(n,p) ← reflects Stewart's Algorithm 

Ai(n,p) ← reflects an algorithm taking into account 

all partitions; 

           A(n,p) ← same as F(n,p), but no monotonicity is 

req. 

              Equation Proposed to solve multi-peg Tower of   
                                Hanoi[6][7][8] 

 
The time complexity of iteration can be found by 

finding the number of cycles being repeated inside the 

loop.[3][5][13] 

 

 

 

            Sample Equation for Iterative Algorithm[3][5][11] 

You can find the time complexity of recursion by 

finding the nth recursive call value in terms of previous 

calls. Finding the destination case in terms of the base 

case therefore gives us an idea of the complexity of the 

time of recursive equations. [4][5][11] 

Usually, recursive versions are appropriate for simple 

hardware due to the lower effort required for their real 

time operation when compared to the non-recursive 

ones.[5-8][11] 

 

3. METHODOLOGY 

 

The methodology section discusses and illustrates 

the pseudocode of both Non-Recursive and 
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Recursive method of the Tower of Hanoi Algorithm, 

given: 

n == 3; n is the number of disks 

peg == 3; peg is the number of rods, named ‘A’, ‘B’ 

and ‘C’ 

3.1  Pseudocode of Non-Recursive Algorithm 

Wherein: 

Source Peg = Rod 1 = Rod ‘A’ = from_rod 

Auxiliary Peg = Rod 2 = Rod ‘B’ = aux_rod 

Destination Peg = Rod 3 = Rod ‘C’ = to_rod  

 

a. Calculate the total number of moves 

required:                                              

                                              2n +1 

n ← number of disks. 

 

b. If the number of disks (i.e. n) is even then 

interchange destination peg and auxiliary peg 

utilizing the bubble sort algorithm. 

if (n % 2 == 0) 

                 {  

                 char temp = pole3; pole3 = pole2;   

                  pole2 = temp; 

                  } 

c. for i = 1 to total number of moves: 

 

if i%3 == 1: legal movement of top disk 

between source peg and destination peg 

               if i%3 == 2: 

                legal movement top disk between   

               source peg and auxiliary peg. 

if i%3 == 0 

legal movement top disk between

 auxiliary peg and destination peg. 

                Repeat step 3 until all disks are in                  

                destination peg/Rod ‘C’ 

      4.     End. 

3.2 Pseudocode of Recursive Algorithm 

This algorithm makes use of only one method that 

contains conditional statements which stimulates the 

repetitions of steps in solving the problem. 

Wherein: 

Source Peg = Rod 1 = Rod ‘A’ = from_rod 

Auxiliary Peg = Rod 2 = Rod ‘B’ = aux_rod 

Destination Peg = Rod 3 = Rod ‘C’ = to_rod  

 

a. Initialize recursive 

methodtowerOfHanoi (n, ‘A’, ‘C’, ‘B’); 

b. If ( n == 1 ), Move disk from A to rod C 

Else, recall method in step 1 with following   

parameters: 

 

towerOfHanoi(n-1, from_rod,   

aux_rod,to_rod); 

 

Once again, recall method in step 1 with the   

following parameters 

 

towerOfHanoi(n-1, aux_rod, to_rod, 

from_rod); 

Repeat step 2 until all disks are in 

‘to_rod/Rod C’. 

c. End. 

3.3 Mathematical Analysis 

In relation with both the following pseudocode shown 

above, the researchers will then develop a program 

using java code. Line by line, the frequency count and 

the memory requirement of both algorithms will be 

determined using mathematical analysis before 

comparing the two algorithms. 

4.RESULTS 

 

4.1 Time Efficiency/Frequency Count 

Comparison 

In regards to the Recursive TOH Algorithm, the 

following are changed to simplify procedures: 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 03 | Mar 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 302 
 

● towerofHanoi = TOH 

● source_peg = A 

● auxilary_peg = B 

● destination_peg = C 

●  

Table 4.1 

Steps NR-TOH Algorithm R-TOH 
Algorithm 

 

Step 1 N N   

Step 2 if(i%3 = = 1) 

moveDiskBetwee 

nTwoPoles(A, C, pole1, 

pole3); 

if(i%3 = = 2) 

moveDiskBetwee 

nTwoPoles(A, B, pole1, 

pole2); 

if(i%3 = = 0) 

moveDiskBetwee 

nTwoPoles(B, C, pole2, 

pole3); 

if(n==1)   

Step 3 1 case 1 case   

Step 4 
(Frequency 

Count) 

 

TOH(n, A, C, B) 
TOH(1, A, C, B) 
= 1 
TOH(2, A, C, B) 
= TOH(1, A, C, 

B) +1+ TOH(1, 
A, C, B) 
= 3 
TOH(3, A, C, B) 
= TOH(2, A, C, 

B) +1+ TOH(2, 
A, C, B) = 
3+1+3 
= 7 
TOH(4, A, C, B) 
= TOH(3, A, C, 

B) +1+ TOH(3, 
A, C, B) = 
7+1+7 

  = 15 

TOH(5, A, C, 
B) = TOH(4, A, 

C, 
B) +1+ TOH(4, 

A, C, B) = 

15+1+15 

= 31 

TOH(6, A, C, 
B) = TOH(5, A, 

C, 
B) +1+ TOH(5, 

A, C, B) = 

31+1+31 

= 63 

. 

. 

. 

TOH(n, A, C, 

B) 

= 

2 n−1 

Step 5 

(Order of 
Growth) 

Given F.C =2n2 +2n 
O.G. = O(n2) 

Given F.C = 2 
n−1 

O.G. = 

O(2n) 

4.2 Space Efficiency/Memory Requirement 

Comparison 

 

                                 Table 4.2 

 NR-TOH 
Algorithm 

R-TOH 
Algorithm 

Memory 

Requirement 

2n2 +2n + 28 10n − 10 

  

5. DISCUSSION 

5.1  In accordance with Table 4.1 

As a result, The number of frequencies in the Recursive 

approach has an exponential value rather than the 

Iterative approach. The Execution Time of the 

Recursive Algorithm is highly complex meaning it is 

very slow compared to the No Recursive Algorithm. 
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5.2 In accordance with Table 4.2 

In this table we made a comparison of Memory 

Requirement of both algorithms. We compute the 

necessary memory for iterative algorithm by its 

method to loop for solving the Tower of Hanoi 

problem. As for the Recursive algorithm, we calculate it 

within its method by the number of times the method 

is named. 

CONCLUSION 

As for the usage of either of these techniques is a trade-

off between time complexity and size of code. If time 

complexity is the point of focus, and the number of 

recursive calls would be large, it is better to use 

iteration. However, if time complexity is not an issue 

and shortness of code is, recursion would be the way to 

go. 

Recursion involves calling the same function again, and 

therefore, has a very short code length. However, as we 

saw in the analysis, when there is a considerable 

number of recursive calls, the time complexity of 

recursion can become exponential. Therefore, in 

shorter code, the use of recursion is advantageous, but 

higher time complexity. Iteration is a code block 

repetition. This involves a larger size of code, but the 

time complexity is generally lesser than it is for 

recursion. 

With regard to the overhead, Recursion has the 

overhead of repeated function calls, which is due to 

repetitive calling of the same function, the time 

complexity of the code increases manifold. There is no 

such overhead involved in iteration. Infinite Repetition 

in recursion can lead to CPU crash but in iteration, it 

will stop when memory is exhausted. Infinite recursive 

calls can occur due to some errors in specifying the 

base condition, which never becomes incorrect, which 

keeps calling the function, which can lead to machine 

CPU crashing. Infinite iteration due to a mistake in 

iterator assignment or increment, or in the terminating 

condition, will lead to infinite loops, which may or may 

not lead to system errors, but will surely stop program 

execution any further. 

7. RECOMMENDATIONS 

For future research, the study must stick with the 

comparison of both Algorithms and the computation of 

Time and Space Efficiency must be applied on other 

problem solving puzzles such as the Tower of London 

Puzzle, slightly similar to TOH. Second, The study still 

needs additional proof, more analytic and computation 

methods can be included to justify the results in this 

paper without increasing the number of pegs. 
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