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Abstract

This study describes HIV infection dynamics by considering a system of dif-

ferential equations, which governs the interaction of uninfected CD4+ T-cells

with free virus. The biological steps between the viral infection of CD4+ T-cells

and production of HIV virions are incorporated into the system by consider-

ing the division of infected cells into two classes. A combined drug therapy

is introduced into the system so as to reduce the viral load and thus increase

the number of CD4+ T-cells. Emergence of the variants of drug resistant virus

occurs due to the continuous viral replication in presence of drug therapy. This

causes an incomplete viral suppression which enhances the risk of progression

of disease towards AIDS. The system takes into account this fact by consider-

ing the two types of viral strains: wild-type and drug resistant strain. Further,

the impact of immune response is considered on this twin-strain system under

combined drug therapy. The stability of each of the three steady states emerg-

ing in this system are analysed. Conditions are obtained for the existence and

stability of uninfected and infected steady states. Results from numerical sim-

ulations are exhibited to illustrate the evolution of both wild-type and mutant

strains before and during therapy in the presence of immune response.

Keywords: CD4+ T-cells; HIV infection; drug resistant virus; mutation; effi-

cacy; immune response

1 Introduction

Immune system of a body consists of T-cells, which are the key players in the de-

fence of the body against pathogens. These cells provide immunity to extracellular

pathogens by transmitting signals to antibodies. With CD4 receptors on their surfaces

these T-cells (called, CD4+ T-cells) coordinate the immune system. HIV (human

immunodeficiency virus) attacks those cells which are having CD4 receptors on their
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surfaces. Therefore, the process of HIV infection starts with binding of its gp120

protein with these CD4+ T-cells. The HIV envelope and CD4+ T-cell membrane

fuse together and allow the HIV virus to enter into CD4+ T-cell. Then, the virus

transfuses the genetic material (viral RNA) into the host cell. After this transfusion,

the viral RNA takes the help of reverse transcriptase enzyme to form DNA. With

the help of integrase enzyme, HIV insert this viral DNA into DNA of CD4+ T-cell.

Once integrated into the DNA of CD4+ T-cell, HIV begins to produce long chains

of HIV proteins. Protease enzyme cuts these protein chains into smaller pieces and

form the structure of a new HIV virus. Then, through budding process, newly formed

copies of virus exit out of the host cell. These copies proceed further to infect a new

cell and the process continues. Consequently, the human body detects the invasion

of virus and reacts by stimulating CD4+ T-cells, which, in turn, stimulate the CTLs

(i.e., CD8+ T-cells). These CTLs kill the infected CD4+ T-cells by proliferation

and surrounding. One of the major problem with HIV is its potential for mutations,

which increase the chances of escaping the attention of both antibodies and CD8+

T-cells. The virus infects faster than the replenishment of CTLs. Thus, this causes

the depletion of CD4+ T-cells. Once the CD4+ T-cell count of an infected individual

reaches below 200mm−3 cells, the stage is characterised as AIDS (acquired immune

deficiency syndrome).

In the past, several mathematical models have been developed to describe the inter-

nal dynamics of HIV infection in an individual [1-7]. The models were designed by

considering three compartments containing uninfected, infected CD4+ T-cells and

virus population. In 1993, Perelson [1] developed a model by considering an addi-

tional class of infected CD4+ T-cells i.e., latently infected class, which proceeds to

productively infected T-cells to produce the virus. Rong et al. [8] considered an age

parameter in the model to identify the class of infected cells. Srivastava et al. [9]

considered the division of infected cells into two classes: pre-RT class and post-RT

class. Pre-RT class represents the cells that have been infected by the virus, but be-

fore the completion of reverse transcription. The post-RT class contains the infected

cells that have finished the reverse transcription process and are capable of producing
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new virus. Later studies [8-15] used these models to understand the mechanisms of

HIV-1 infection and to devise drug therapy strategies to counter it.

Presently, there are four types of antiretroviral drugs used in the treatment of AIDS.

These drugs are capable of interrupting the activities of the enzymes, which are essen-

tial to complete the different stages of the HIV replication cycle. For example, fusion

inhibitors prevent the fusion of HIV envelope with host cell membrane. Integrase

inhibitors block the activity of enzyme integrase that inserts the HIV DNA into the

DNA of the host cell. Reverse transcriptase inhibitors (RTI) directly block the action

of reverse transcriptase enzyme and mitigate the replication of HIV virus. Protease

inhibitors block the activity of protease enzyme and thus preventing the immature

HIV from becoming a mature virus. Thus, the new copies of HIV will not be able to

infect the healthy cells. The simultaneous administration of two or more antiretrovial

drugs are always preferred to control the extremely high replication rate of HIV.

The failure of drug therapy regimen occurs because of many host and viral factors,

such as nonadherence to the treatment protocol, deleterious side effects, poor drug

absorption. But, the presence or emergence of drug resistant viral strain is found

to be a major factor. Many mathematical models have been proposed to study the

dynamics of HIV with antiretroviral responses and the evolution of mutant strains

[15-21]. An HIV infected patient can produce billions of viral particles everyday [7].

The process of reverse transcription by which RNA genome is reverse transcribed into

proviral DNA is highly error prone. Thus, the chances of occurrence of mutations is

quit high [22-23]. Due to mutations, single or combined, there is a reasonable chance

of occurrence of drug resistant virus before the initiation of drug therapy [16]. They

also suggested that under a wide range of conditions, treatment failure occurs due to

the preexistence of drug resistant virus. Bonhoeffer et al. [17] analysed that if there

is inherited drug resistant virus, then a very effective therapy would reduce the viral

load at the initial stage. But, it would increase the resistant virus strains. Kirschner

and webb [24] showed such an increase in drug resistant virus during monotherapy

treatment of HIV infection. They made a comparison between the treatment out-

comes, with drug therapy initiated at different T-cell levels. Mclean and Nowak [18]
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determine that resistant virus would dominate the wild type virus during the course

of multidrug therapy treatment. Riberio et al. [25] calculated the drug resistant virus

before the initiation of therapy and suggested the preexistence of drug resistant virus

in patients. Nowak et al. [13] compared the results of twin-strain model with clinical

data available on drug resistance development in patients. Bonhoeffer and Nowak [26]

suggested that it matters whether the drug resistant virus exists before the onset of

therapy or produced by residual virus replication during therapy. Further, different

drug regimens may be required in each case to get maximum clinical benefits.

It is noted that the reverse transcription is an important stage of the HIV replication

life cycle and therefore the classification of infected cells is done in two subclasses:

pre-RT and post-RT class. Using this classification, Srivastava et al [27] proposed a

twin-strain model to study the effect of drugs (RTI and PI) on the evolution of drug

resistant HIV mutants. In this present study, the pre-RT and post-RT classification is

considered to modify the existing mathematical models of twin-strain virus. Further,

it is noted that a healthy immune response of the host person creates an additional

compartment in the model which can help in delaying the progression of HIV [28].

In the recent study, Kamboj and Sharma [29] discussed the importance of coupling

between the immune response and multidrug therapy. Thus, in the present study,

along with the full logistic term representing the proliferation of T-cells, the immune

response of the body is incorporated into the model. Motive of this work is to analyse

the effectiveness of drug therapy over the two strains of virus, i.e., drug sensitive as

well as drug resistant virus. Further, the role of immune responses on drug resistant

virus strain is explored. Ultimate expectation is any possibility of complete eradica-

tion of both types of strains in the presence of combined drug therapy with immune

response. In this study, any variable representing cell population is considered as a

continuous, differentiable variable and the exact value of population is approximated

through the nearest integer value of the corresponding variable.
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2 Model formulation

In the present model, a patient is considered under multidrug treatment with healthy

cells T (t) and infected cells I(t), which are infected with free virus V (t). The pop-

ulation of infected cells I(t) is further divided into two categories: T1(t) for pre-RT

class and T2(t) for post-RT class. The cells in pre-RT class (i.e., T1(t)) will proceed

to post-RT class to complete the HIV replication life cycle at a rate α. But, on the

application of the RTI drug with efficacy η ∈ (0, 1), all the cells in pre-RT class will

not be able to complete reverse transcription process. Therefore, a fraction (ηαT1) of

them will revert back to uninfected class and the remaining will proceed to post-RT

class and turn into productively infected virus. The protease inhibitor (PI) drug with

efficacy γ ∈ (0, 1), prevents the post-RT cells to produce non-infectious virions with

rate γN . Then, (1 − γ)N measures the concentration of infectious virions, where

N denotes the average number of viral particles produced by an infected cell. That

means, the effect of PI restricts only to the infectious (V ) virions, which constitutes

a part of the newly produced virions. Since the replication rate of HIV virus is expo-

nentially high therefore, the process of reverse transcription of viral RNA to proviral

DNA is highly error prone. Consequently, the probability of occurrence of mutations

is very high. For example, the average number of changes per genome is 0.3 per

replication cycle, i.e., after reverse transcription about 22 percent of infected cells

should carry proviral genomes with one mutation [30]. Hence, in presence of mul-

tidrug therapy, two strains of the virus, i.e., drug sensitive strain and drug resistant

strain, are to be incorporated in the model. Now, the infected cells in pre-RT class are

to be divided into two categories, i.e., T1 = T s
1 + T r

1 ; infected either by drug sensitive

virus (T s
1 ) or drug resistant virus (T r

1 ). Similarly, T s
2 and T r

2 , the parts of T2 cells,

are infected by drug sensitive and drug resistant virus respectively. Vs and Vr be the

population of infectious virus, which are drug sensitive and drug resistant respectively.

To incorporate the response of the immune system, the CTLs/ immune cell pop-

ulation (E) present in the body is to be included in the model. Since, after reverse
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transcription, CTLs attack only productively infected (post-RT) cells. It means, the

other infected cells, which either revert back to uninfected class or in which reverse

transcription has not been completed (i.e., pre-RT cells) do not have the ability to

express HIV and cannot invite CTLs for immunity support. Therefore, the intensity

of the immune response should depend on the concentration of post-RT cells (T s
2 and

T r
2 ). The mathematical model representing the above dynamics is written as follows:

dT

dt
= s − µT + rT (1 − T

Tmax

) − kVsT − kVrT + (bs + ηsαs)T
s
1 + (br + ηrαr)T

r
1 ,(2.1)

dT s
1

dt
= kVsT − (µ1 + αs + bs)T

s
1 , (2.2)

dT s
2

dt
= (1 − µm)(1 − ηs)αsT

s
1 − δsT

s
2 − dxET s

2 , (2.3)

dVs

dt
= Nδs(1 − γs)T s

2 − µvVs, (2.4)

dT r
1

dt
= kTVr − (µ1 + αr + br)T

r
1 , (2.5)

dT r
2

dt
= µm(1 − ηs)αsT

s
1 + αr(1 − ηr)T r

1 − δrT
r
2 − dxET r

2 , (2.6)

dVr

dt
= Nδr(1 − γr)T r

2 − µvVr, (2.7)

dE

dt
= p(T s

2 + T r
2 ) − dEE, (2.8)

with T (0) = T00, E(0) = E0, T s
1 (0) = T10, T s

2 (0) = T20, Vs(0) = V10, T r
1 (0) =

T11, T r
2 (0) = T21, Vr(0) = V20.

In equation (2.1), s represents the rate at which new T-cells are created from sources

within the body, such as thymus. The natural decay of these cells with time is given

by µT . The logistic expression rT (1− T
Tmax

) represents the T-cells created by the pro-

liferation of existing T-cells, in the presence of infection. Detailed discussion on the

role of logistic term is found in [4, 31-32]. The parameter k represents the interaction-

infection rate of T-cells with the virus, assumed to be same for both strains and µ1 is

the death rate of infected cells in pre-RT class. In equation (2.2) and (2.5) bs and br

are the reverting rates of infected T-cells to uninfected class due to the non-completion

of reverse transcription for respective strains. In equation (2.3) and (2.6) δs and δr

denotes the death rate of actively infected cells in post-RT class for respective strains.
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In equation (2.4) and (2.7) µv denotes the clearance rate of virus which is assumed to

be same for both strains. N in equation (2.4) and (2.7) represents the average num-

ber of viral particles produced by an infected cell, assumed to be same for both strains.

The parameters ηs (γs) and ηr (γr) in [0, 1) represent the efficacy of drug RTI (PI)

corresponding to drug sensitive and drug resistant virus strains, respectively. The

parameter µm in equation (2.3) and (2.6) represents the rate at which cells infected

by drug sensitive virus mutate and become drug resistant virus during the process of

reverse transcription. The parameter dx denotes the rate of clearance of infected cells

(T s
2 and T r

2 ) by CTLs. Therefore, term dxET r
2 and dxET s

2 in equation (2.3) and (2.6)

represents the loss of infected cells (T s
2 and T r

2 ) by CTLs. For simplicity, it is assumed

that the immune cell population (E) are produced at the same constant proliferation

rate p and the death rate dE whether they are produced as a result of the presence

of either kind of productively infected cells (T s
2 and T r

2 ).

3 Analysis

The variables of the mathematical model (2.1-2.8) considered in the previous section

represents the populations and for the model to be biologically realistic, it does not al-

low the cell populations to grow unbounded or get a negative value for all time. For the

positivity of the solutions of the model, a non-negative orthant, R8
+ = {x ∈ R8|x ≥ 0},

is defined to contain, forever, any trajectory that starts in it. For this model, we have

dT
dt
|T=0 = s + (bs + ηsαs)T

s
1 + (br + ηrαr)T

r
1 ≥ 0,

dT s

1

dt
|T s

1
=0 = kVsT ≥ 0,

dT s

2

dt
|T2s=0 = (1 − µm)(1 − ηs)αsT

s
1 ≥ 0, dVs

dt
|Vs=0 = N(1 − γs)δsT

s
2 ≥ 0,

dT r

1

dt
|T r

1
=0 = kVrT ≥ 0,

dT r

2

dt
|T r

2
=0 = µm(1 − ηs)αsT

s
1 + αr(1 − ηr)T r

1 ≥ 0,

dVr

dt
|Vr=0 = N(1 − γr)δrT

r
2 ≥ 0, dE

dt
|E=0 = p(T s

2 + T r
2 ) ≥ 0.

This shows that the vector field (T, T s
1 , T s

2 , Vs, T
r
1 , T r

2 , Vr, E), on each bounding hyper-

plane of R8
+, is pointing to the inward direction of R8

+. That means, all the solution

trajectories initiating in R8
+, will remain inside R8

+ for all t. Hence, the positivity of
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the solutions initiating in the interior of R8
+ is guaranteed. Further on adding the

equations (2.1), (2.2), (2.3), (2.5) and (2.6), we have,

d

dt
(T+T s

1 +T s
2 +T r

1 +T r
2 ) = s−µT+rT (1− T

Tmax

)−µ1T
s
1−µ1T

r
1−δsT

s
2−δrT

r
2−dxE(T s

2 +T r
2 ),

≤ s + rT (1 − T
Tmax

) − µ(T + T s
1 + T s

2 + T r
1 + T r

2 ),

(since δs > δr > µ1 > µ).

Let us denote C = max
{

s + rT (1 − T
Tmax

)
}

, for T ∈ (0, T0], where T0 =
(r−µ)+

√
(r−µ)2+4r1s

2r1

with r1 = r
Tmax

, obtained in next section from equation 2.1 so that lim
t→∞

sup(T +T s
1 +

T s
2 + T r

1 + T r
2 ) ≤ C

µ
. Therefore, without any loss of generality, it can be assumed

that lim
t→∞

sup T (t) ≤ C
µ
, lim

t→∞
sup T s

1 (t) ≤ C
µ

lim
t→∞

sup T s
2 (t) ≤ C

µ
, lim

t→∞
sup T r

1 (t) ≤ C
µ
,

lim
t→∞

sup T r
2 (t) ≤ C

µ
. Now, this bound for T s

2 and T r
2 enables to find the bounds for

Vs(t) and Vr(t) and E(t) from the equations (2.8) and (2.9), respectively. So, finally,

we have a bounded set S = {(T, T s
1 , T s

2 , Vs, T
r
1 , T r

2 , Vr, E) ∈ R8
+;

0 ≤ T, T s
1 , T s

2 , T r
1 , T r

2 ≤ C
µ
, 0 ≤ Vs ≤ N(1−γs)δsC

µvµ
, 0 ≤ Vr ≤ N(1−γr)δrC

µvµ
, 0 ≤ E ≤ 2Cp

dEµ
}.

Then, any solution trajectory, which initiates from an interior point of R8
+, enters S

and remains there forever.

4 Steady states

The model system (2.1)-(2.8) has three steady states:

(a) The infection free steady state E0 = (T0, 0, 0, 0, 0, 0, 0, 0)), where, for a new pa-

rameter r1 = r
Tmax

, the equation (2.1) is solved to get T0 =
(r−µ)+

√
(r−µ)2+4r1s

2r1

.

(b) The infected steady state Er = (T , 0, 0, 0, T r
1 , T r

2 , Vr, E), with only drug resistant

viral strain, where T =
(r−µ+β2)+

√
(r−µ+β2)2+4(β1+r1)s

2(β1+r1)
, T r

1 = kTVr

µ1+αr+βr
,T r

2 = µvVr

Nδr(1−γr)
,

Vr = k1T − k2,E = pµvVr

dENδr(1−γr , k1 = N2αrδr
2dek(1−ηr)(1−γr)2

dxpµ2
v(µ1+αr+βr)

, k2 = NdEδ2
r (1−γr)

dxpµv
,

β1 = (1−ηr)αr+µ1)kk1

µ1+αr+βr
, β2 = k2β2

k1

.

(c) The infected steady state with both drug sensitive and drug resistant strains

present, is given by Em = (T̃ , T̃ s
1 , T̃ s

2 , Ṽs, T̃
r
1 , T̃ r

2 , Ṽr, Ẽ), where

Ṽs = k7T̃ − k8 − k9Ṽr, Ṽr =
α1T̃ 2 − β3T

γ1T + δ1

,

T̃ s
1 =

kT̃ Ṽs

µ1 + αs + bs

, T̃ s
2 =

µvṼs

Nδs(1 − γs)
,
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T̃ r
1 =

kT̃ Ṽr

µ1 + αr + br

, T̃ r
2 =

µvṼr

Nδr(1 − γr)
, Ẽ =

p(T̃ s
2 + T̃ r

2 )

dE

,

k7 =
kdeN

2δ2
s(1 − γs)2(1 − ηs)(1 − µm)αs

dxpµ2
v(µ1 + αs + bs)

, k8 =
deNδ2

s(1 − γs)

dxpµv

, k9 =
δs(1 − γs)

δr(1 − γr
,

α1 = k7k10, β3 = k8k10, γ1 = k9k10 + k7k14 − k11, δ1 = k12 − k14k8.

T̃ is obtained as the root of the cubic equation, given by

α3T̃ 3 + α4T̃ 2 + α5T̃ + α6 = 0,

where

α3 = ((kk9 − k) +
br + ηrαr

µ1 + αr + br

− bs + ηsαs

µ1 + αs + bs

)α1 + (
bs + ηsαs

µ1 + αs + bs

kk7 − kk7 − r1)γ1,

α4 = γ1(−µ + kk8 −
bs + ηsαs

µ1 + αs + bs

kk8 + r) + δ1(−kk7 +
bs + ηsαs

µ1 + αs + bs

kk7 − r1) +

β1(k − kk9 +
bs + ηsαs

µ1 + αs + bs

kk9 −
br + ηrαr

µ1 + αr + br

kT ),

α5 = sγ1 + (kk8 − µ − bs + ηsαs

µ1 + αs + bs

kk8 + r)δ1, α6 = sδ1.

Further, it is noted that Vr = T r
1 = T r

2 = 0 if µm = 0. Thus, the steady state Em1

reduces to steady state with sensitive virus only, (say, Es).

5 Stability of steady states

The asymptotic stability of a steady state is decided by the eigenvalues of jacobian

matrix. In the present problem, the system (2.1)-(2.8) is linearized around a steady

state and the corresponding jacobian matrix J is obtained as follows:

J =













−M bs + ηsαs 0 −kT br + ηrαr 0 −kT 0
kVs −(µ1 + αs + bs) 0 kT 0 0 0 0
0 (1 − ηs)(1 − µm)αs −(δs + dxE) 0 0 0 0 −dxT s

2

0 0 N(1 − γs)δs −µv 0 0 0 0
kVr 0 0 0 −(µ1 + αr + br) 0 kT 0
0 µm(1 − ηs)αs 0 0 αr(1 − ηr) −(δr + dxE) 0 −dxT r

2

0 0 0 0 0 N(1 − γr)δr −µv 0
0 0 p 0 0 p 0 −dE













where M = µ − r + 2r1T + kVr + kVs is a positive value.
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5.1 Stability of uninfected steady state E0

At steady state E0, the corresponding jacobian matrix (say, J0) is obtained by sub-

stituting T = T0 and T s
1 = T s

2 = Vs = T r
1 = T r

2 = Vr = E = 0 in the jacobian matrix

J. The characteristic equation |J0 −λI| = 0 corresponding to the jacobian matrix J0

is given by

(λ + M0)(λ + dE)P0(λ)Q0(λ) = 0; M0 = µ − r + 2r1T0 > 0, (5.1)

where P0(λ) = λ3 + A0λ
2 + B0λ + C0 and Q0(λ) = λ3 + A1λ

2 + B1λ + C1.

The coefficients of these polynomials are expressed as follows:

A0 = µ1 + αs + bs + δs + µv, B0 = (µ1 + αs + bs)(δs + µv) + δsµv,

C0 = kαsδs(1 − ηs)(1 − γs)(1 − µm)(N01 − N)T0; N01 = (µ1+αs+bs)µv

kT0αs(1−ηs)(1−γs)(1−µm)
,

A1 = µ1 + αr + br + δr + µv, B1 = (µ1 + αr + br)(δr + µv) + δrµv,

C1 = kαrδr(1 − ηr)(1 − γr)(N02 − N); N02 = (µ1+αr+br)µv

kT0αr(1−ηr)(1−γr)
.

The characteristic equation (5.1) provides λ = −M0 and −dE as two eigenvalues

of the jacobian matrix J0. The remaining six eigenvalues are obtained from the roots

of P0(λ) = 0 and Q0(λ) = 0. The stability of uninfected steady state E0 is ensured

through the negative real parts of all the eight eigenvalues of J0. Obviously, the

eigenvalues −M0 and −dE meet this requirement. But, for other six eigenvalues, the

roots of P0(λ) = 0 and Q0(λ) = 0 are to be checked.

According to Routh-Hurwitz criterion [33], all the roots of P0(λ) = 0 and Q0(λ) = 0

will have negative real parts if and only if A0, B0, C0, A1, B1, C1 are all positive and

A0B0 > C0, A1B1 > C1. It is noted that A0, B0, A0B0 − C0, A1, B1, A1B1 − C1 are

all positive, and therefore, the onus of deciding the asymptotic stability of E0 stays

with the value of C0 and C1 only. The coefficients C0 and C1 are positive if N01 > N

and N02 > N respectively. That means, the asymptotically stability of the uninfected

state E0 is ensured with N < N01 or N < N02. On the other hand, for N > N01 or

N > N02, C0 and C1 become negative, which implies a sign change in the coefficients

of the cubic equations P0(λ) = 0 and Q0(λ) = 0. Then, according to the Descartes’

10

          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 02 | Feb 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 



rule of signs, one positive root of the equation implies a positive eigenvalue for J0.

That means, the uninfected state E0 cannot be stable for N > N01 and N > N02.

Also for N = N01 or N = N02, the cubic equation P0(λ) = 0 or Q0(λ) = 0 yields a

zero eigenvalue and the reduced quadratic equation will have roots with negative real

parts. Thus, according to Routh-Hurwitz conditions, the state E0 becomes neutrally

stable, when N = N01 or N = N02, .

Proposition 1. The uninfected steady state E0 is locally asymptotically stable

if N01 and N02 are greater than N .

5.2 Stability of steady state (Er) infected with only drug re-
sistant viral strain

The jacobian matrix Jr evaluated at steady state Er is obtained from the Jacobian

matrix J, by substituting T = T , T s
1 = T s

2 = Vs = 0, T r
1 = T

r

1, T r
2 = T

r

2, Vr = V r and

E = E. The corresponding characteristic equation |Jr − λI| = 0 is expressed as

P1(λ)Q1(λ) = 0, (5.2)

where P1(λ) = λ5+A3λ
4+B3λ

3+C3λ
2+D3λ+E3 and Q1(λ) = λ3+A4λ

2+B4λ+C4.

The coefficients of these polynomials are expressed as follows:

A3 = k4 + k5 + k6 + M1; M1 = µ − r + 2r1T r + kVr > 0,

B3 = µvdE + (k4 + k5)k6 + k4k5 + pdxT
r

2 + (k4 + k5 + k6)M1 − (br + ηrαr)kV r,

C3 = (k4 + k5)µvdE + k4k5k6 + dxp(µv + k4)T
r

2 − kαrδr(1 − ηr)(1 − γr)NT + (µvdE+

(k4 + k5)k6 + k4k5 + pdxT
r

2)M1 − k(br + ηrαr)(k5 + k6)V r,

D3 = µvdEk4k5 + dxpk4µvT
r

2 − kαrδr(1− ηr)(1− γr)(dE + M1NT + (k4 + k5)µvdEM1

+k4k5k6M2 + pdx(µv + k4)M1T
r

2 − k(br + ηrαr)(µvdE + k5(µv + dEV r))

+αrδrk
2(1 − ηr)(1 − γr)NTV r − kp(br + ηrαr)dxV rT

r

2

E3 = k4k5µvdEM1+k4µvdxpM1T
r

2−k(1−ηr)(1−γr)αrδrdENM1T−k(br+ηrαr)k5µvdEV r

−kpµv(br + ηrαr)dxV rT
r

2 + k2αrδr(1 − ηr)(1 − γr)dENTV r,

A4 = u1 + αs + bs + µv + δs + dxE,

B4 = µv(µ1 + αs + bs) + (δs + dxE)(µ1 + αs + bs + µv),
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C4 = (δs + dxE)(µ1 + αs + bs)µv − kN(1 − µm)αsδs(1 − ηs)(1 − γs),

where k4 = µ1 + αr + br, k5 = δr + dxE, k6 = µv + dE.

The eigenvalues of Jr will have negative real parts if the roots of P1(λ) = 0 and

Q1(λ) = 0 have negative real parts. In this case, the infected steady state Er, if

exists, becomes asymptotically stable. According to Routh-Hurwitz criterion, the

equation P1(λ) = 0 will have roots with negative real parts if A3 > 0, B3 > 0, C3 > 0,

D3 > 0, E3 > 0, A3B3C3 > C2
3 + A2

3D3 and (A3D3 − E3)(A3B3C3 − C2
3 − A2

3D3) >

E3(A3B3 − C3)
2 + A3E

2
3 . In an analogous manner, Q1(λ) = 0 will have roots with

negative real parts if A4 > 0, B4 > 0, C4 > 0 and A4B4 − C4 > 0.

Proposition 2. The steady state Er infected with only drug resistant viral strain,

if exists, will be asymptotically stable if the following conditions are satisfied

i)A3 > 0, B3 > 0, C3 > 0, D3 > 0, E3 > 0, A3B3C3 > C2
3 + A2

3D3 and

(A3D3 − E3)(A3B3C3 − C2
3 − A2

3D3) > E3(A3B3 − C3)
2 + A3E

2
3

ii) A4 > 0, B4 > 0, C4 > 0 and A4B4 − C4 > 0.

5.3 Stability of steady state (Em) infected with both viral
strains

The jacobian matrix Jm for the infected steady state Em is obtained by substituting

T = T̃ , T s
1 = T̃ s

1 , T s
2 = T̃ s

2 , Vs = Ṽs, T r
1 = T̃ r

1 , T r
2 = T̃ r

2 , Vr = Ṽr, E = Ẽ in the

jacobian matrix J. It is noted that the corresponding characteristic equation

|Jm − λI| = 0, (5.3)

is an eighth degree equation. This matrix Jm could not be divided into blocks so

as to get a smaller degree characteristic equations, as in the previous cases. Thus,

it is difficult to find the nature of roots for this eighth degree equation analytically.

Hence, the nature of roots of equation (5.3) is checked numerically, whenever required.

Proposition 3. The infected steady state Em, if exists, will be asymptotically stable
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if determinantal (5.3) will have all the roots with negative real parts.

6 Numerical example

The system (5.1)-(5.8) of nonlinear ordinary differential equations is solved numeri-

cally using MATLAB for the following values of various parameters [1,27,34].

N = 1000, Tmax = 1500mm−3, (s, k) = (10, 0.000024)mm−3day−1;

(bs, br, αs, αr, δs, δr) = (0.1, , 0.06, 7, 2, 0.26, 0.16)day−1 and

(r, µ1, µv, p, dx, dE, µm) = (0.3, 0.015, 2.4, 1.02, 0.01, 0.1, 0.03)day−1.

Initial conditions are chosen as

T (0) = 300mm−3, T s
1 (0) = T s

2 (0) = Vs(0) = T r
1 (0) = T r

2 (0) = Vr(0) = 10mm−3, and

E(0) = 1mm−3. Numerical example is solved for different combinations of efficacies

(ηs, γs, ηr, γr) in drug therapy. The drug efficacies for drug sensitive and drug

resistant strains are related as ηr = ǫηs, γr = ǫγs, where ǫ ∈ (0, 1) represents the

resistance level of HIV mutants.

Case 1. Without drug therapy (i.e., ηs = γs = ηr = γr = 0)

For the values of various parameters mentioned above, all the roots of the equation

(5.3) have negative real parts. This satisfies the conditions in proposition 3, and hence

implies the existence of the steady state Em, given by (T, T s
1 , T s

2 , Vs, T
r
1 , T r

2 , Vr, E) =

(553.75, 2.01, 9.918, 1074.4, 0.42, 1.01, 66.89, 111.39)mm−3. Both the virus strains i.e.,

wild-type (Vs) and mutant (Vr) coexist but the mutant strain Vr is very low due to low

mutation rate µm = 0.03. Therefore, the wild type virus Vs dominates over the mutant

virus, before the initiation of therapy. Thus, it may be noted that the mutant virus

Vr was existing before the initiation of antiretroviral therapy on a chronically infected

HIV patient. For µm = 0, the steady state Em reduces to another steady state Es

given by (T, T s
1 , T s

2 , Vs, T
r
1 , T r

2 , Vr, E) = (536.11, 2.14, 10.89, 1180.4, 0, 0, 0, 111.13)mm−3.

The presence of mutant virus is observed, as the mutations starts from wild-type to

the mutant strain (i.e., µm 6= 0). The variations of T-cell population, wild type virus

Vs, mutant virus Vr and the total viral load V = Vs + Vr are shown in figure 1, for
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Figure 1: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time

different values of µm. In this figure, with increase in µm, the wild type virus Vs de-

creases and mutant virus Vr increases but the total virus V decreases. Consequently,

the decrease in total virus V results in an increase of the T-cell population (T ).

Case 2. RTI drug therapy only

It is calculated that the conditions given in proposition 2 are satistied for ǫ = .5 and

the efficacies (ηs, γs)=(0.6, 0), (0.7, 0), (0.8, 0), (0.9, 0). Therefore, the steady state

Er exists for the above values of efficacies. In each case, the resistant virus dominates

the sensitive virus. The sensitive viral load (Vs) decreases and vanishes in about 50

days, as shown in figure 2b. The resistant viral load (Vr) also decreases with increase

in efficacy ηs and, for ηs = 0.9, ηr = 0.45, it reaches the steady state of 500mm−3 in

about 150 days, as shown in figure 2c. For µ = 0.03, the Vr obtained in this case

is higher than that obtained in absence of drug therapy. That means, drug therapy

is increasing the drug resistant strains. The total viral load (V ) decreases with the

increase of ηs, as shown in figure 2d. Consequently, the T-cell population increases

with the increase of ηs as shown in figure 2a. It is noted that the system could never

attains the uninfected steady state E0 for any ηs ∈ (0, 1). Therefore, despite the
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Figure 2: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time for γs = 0

vanishing of sensitive virus, there will never be complete eradication of total virus,

because of the presence of drug resistant virus.

Case 3. PI drug therapy only

Analogous to the case 2, the conditions given in proposition 2 are satisfied for the

pairs of efficacies, given by (ηs, γs)=(0, 0.6), (0, 0.7), (0, 0.8), (0, 0.9). Therefore, the

steady state Er exists for the above pairs of efficacies. In this case, again the resistant

virus dominates the sensitive virus. For µ = 0.03, the resistant strains obtained in

this case is higher than that obtained in absence of drug therapy, but less than that

obtained with RTI. The sensitive strains decrease and vanish in about 15 days, as

shown in figure 3b. The resistant virus also decreases with increase in efficacy γs and,

for γs = 0.9, γr = 0.45, it reaches the steady state of 300mm−3 in about 150 days, as

shown in figure 3c. The T-cell population increases but viral load decreases with the

increase of efficacy γr, as shown in figures 3a and 3d, respectively. The total viral

load obtained in this case is lower than that obtained for RTI in figure 2d.

It is noted from figures 2 and 3 that PI drug is more effective than RTI, as the

resistant virus and the total virus obtained in this case is weak as compared to case
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Figure 3: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time for ηs = 0

of RTI drug. Analogous to the case 2, there will never be complete eradication of

resistant virus, in this case also. It is further noted that the drug PI works more
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Figure 4: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time for ηs = 0 without immune system

efficiently, when immune cell contribution is taken into consideration. For γs = 0.9,
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it is observed from figure 4 that, in the presence of immune response, the resistant

virus attains its steady value 300mm−3 in about 150 days. Whereas, in absence of

immune response, the corresponding steady value 3000mm−3 is obtained in 250 days.

Also, in presence of immune response, the sensitive virus vanishes in about 10 days,

which is 40 days earlier than the time taken in the absence.

Case 4. Combined (RTI+PI) drug therapy

For the pairs of efficacies (ηs, γs)=(0.5, 0.6), (0.6, 0.7), (0.7, 0.8), (0.8, 0.9), and ǫ = .5,

the conditions given in proposition 2 are satisfied. Therefore, the steady state Er

exists. For each of these pairs of efficacies, the sensitive virus vanishes in about 10

days, as shown in figure 5b. It is noted from figure 5c that, for (ηs, γs)=(0.8, 0.9),
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Figure 5: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time

the resistant virus dominates the sensitive virus and reached its steady state value

180mm−3 in about 150 days. The resistant virus decreases with increase in efficacy of

drug. Consequently, the total virus V decreases and attains steady value 180mm−3 in

150 days, as shown in figures 5c and 5d, respectively. Therefore, the T-cell population

increases with decrease in total virus as shown in figure 5a. This implies that the

combined drug therapy may eradicate the sensitive virus but may not be able to

eradicate the resistant virus. Therefore, due to the presence of resistant virus, the
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combined drug therapy of a very high efficacy fails to eradicate the virus completely.

The T-cell population obtained is higher and the total viral load obtained is very low

in comparison to the cases of single drug therapy (PI and RTI). For combined drug
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Figure 6: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time without immune system i.e., dx = p = dE = 0

therapy, in the absence of immune response of the individual, it is noted from figure

6 that the resistant virus again dominates the sensitive virus, which vanishes after

40 days. The resistant virus obtained in this case attains its steady value 3000mm−3

in about 300 days, for (ηs, γs) = (0.8, 0.9), as shown in figure 6c. This value of

resistant virus is higher than that obtained for active immune response. Therefore, it

is observed from figures 6a and 6d that, the total viral load (V ) obtained is high and

T-cell population obtained is low for (ηs = 0.8, γs = 0.9), as compared to the case of

active immune response. This shows the importance of active immune response with

combined drug therapy in eradicating the resistant strains.

The parameters involved in the model to describe the role of active immune system

are proliferation rate of immune cells (p), interaction rate of immune cells with the

infected cells (dx) and the death rate of immune cell population (dE). For the already

chosen values of relevant parameters and (ηs = 0.5, γs = 0.6), the variations of T-cell

population, sensitive virus, resistant virus and total virus are shown in figure 7, for

different values of p. From figure 7c, the decrease of resistant virus is observed, with
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the increase in proliferation rate p, so as to attain its steady value 150mm−3 for p=2.5,

in about 200 days. The sensitive virus vanishes in about 10 days as shown in figure

7b. Therefore, the total virus V decreases and consequently, the T-cell population

increases with increase of p, as shown in figures 7d and 7a respectively.
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Figure 7: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time

The variations of T-cell population (T ) and total virus (V ) with infected cells are

shown in figures 8a and 8d, respectively. The values of interaction rate of immune

cells, i.e. dx, are fixed at 0.005, 0.01, 0.05 and 0.1. It is noted that, the T-cell

population (total virus) increases (decreases) with increase in dx. The sensitive virus

vanishes and resistant virus decreases with increase in dx as shown in figures 8b

and 8c, respectively. The variations of T-cell population, sensitive virus, resistant

virus and the total virus is shown in figure 9, for different values of death rate of

immune cell population (dE). From figures 9c and 9d, with the increase in parameter

dE, the resistant virus Vr dominates the decreasing sensitive virus, which ultimately

disappears in about 50 days. As a result, in figure 9d, the total virus V increases.

Consequently, the T-cell population decreases with increase of dE, as shown in figure

9a.
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Figure 8: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time
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Figure 9: Variations of T-cell population (T ), sensitive virus (Vs), resistant virus and
total virus (V ) with time

In the figure 10a, the population of resistant virus calculated for (ηs = 0.5, γs =

0.6) and p = 2.5 is 170mm−3. Whereas, this population is found to be 180mm−3

when (ηs = 0.8, γs = 0.9) and p = 1. This shows that the with the support of a
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strong immune system (i.e., higher proliferation rate), even a drug of lesser efficacy

can reduce the resistant virus to a desired level, which otherwise needs the drug of

very higher efficacy. The variation of resistant virus for (ηs = 0.5, γs = 0.6, dx = 0.1)

and (ηs = 0.8, γs = 0.9), dx = 0.01 are shown in figure 10b. It is noted that the

resistant virus obtained in the former case is less as compared to the latter case.

That means, the drug of lesser efficacy can work quite efficiently in the presence of a

strong immune system, in comparison to weak immune system. The decrease in dE

implies a strong immune system, as shown in figure 10c. This is observed from the

decrease in resistant virus population as (ηs = 0.5, γs = 0.6, dE = 0.05) are replaced

with (ηs = 0.8, γs = 0.9, dE = 0.5).
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Figure 10: Variations of resistant virus (Vr) with time for parameters a) proliferation
rate p b) interaction rate dx c) death rate dE

7 Conclusions

A mathematical model consisting of a system of nonlinear differential equations is

considered to study the mechanism of emergence of resistant virus strain under a

composite drug treatment along with an active immune response of human body.

The present study analyses how a combined drug therapy in presence of immune

response could become more effective drug therapy for both strains of the virus. It

is shown that the drug resistant virus may exist before the initiation of therapy and

increases in presence of therapy due to mutations. It is observed that the combined

drug therapy of very high efficacy is able to reduce the viral load. It further in-
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creases the T-cell population to a desired level, which should be essential to reduce

the risk of disease progression. But, it does not eradicate the resistant virus com-

pletely. That means, the drug regimen fails to eradicate the virus completely, due

to the presence/emergence of drug resistant virus. Further, it is noted that the drug

resistant virus can be reduced by strengthening the immune response of the body,

i.e., by increasing/decreasing the values of those parameters on which the effective-

ness of immune system depends. For example, by increasing the proliferation rate

and interaction rate of immune cells and decreasing the death rate of immune cells,

the drug of lesser efficacy will be able to reduce the resistant virus upto a level that

is maintained by drug of higher efficacy. This leads to an interpretation that the

problems appeared due to the high dosages of drug therapy required to maintain the

viral load to a low level may be resolved by alternative treatments that enhances a

patient’s natural immune response. It is possible that the drug of higher efficacy alone

may not be able to eradicate the viral load completely because of presence of drug

resistant virus. Whereas, the progression of disease towards AIDS may be prevented

through low efficacy drugs but with the support of immune response. The considered

model may be modified further with the introduction of time delay associated with

immune response of the body. The concentration of any drug in the blood and in the

cells varies continuously due to various factors. Whereas, in mathematical models,

drug efficacies are generally assumed to be constant. Thus, to get a more realistic

picture of HIV dynamics with resistant virus, the model used in the present study

can be modified further to incorporate the time dependent efficacies of the drugs.
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