
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 56

CONVERSION OF SQL QUERY TO NATURAL LANGUAGE

Dhairya Timbadia

Undergraduate Student, Rajiv Gandhi Institute of Technology, Andheri, Mumbai
---***--
Abstract - This project aims to develop a system which
converts a natural language statement into SQL query to
retrieve information from respective database. The natural
language input statement taken from the user is passed
through various Open NLP natural language processing
techniques like Tokenization, Parts of Speech Tagging,
Stemming and Lemmatization to get the statement in the
desired form. The statement is further processed to extract the
type of query. The final query is generated by converting the
basic and condition clauses to their query form and then
concatenating the condition query to the basic query.
Currently, the system works only with Oracle SQL database.

Key Words: Natural language Processing, Query,
Tokenization, Parts Of Speech Tagging, Stemming and
Lemmatization.

INTRODUCTION

Natural Language Processing is a subfield of Artificial
Intelligence used to build intelligent computers that can
interact with the human being like a human being. It bridges
the man-machine gap. The main purpose of Natural
Language Query Processing is for the interpretation of the
English sentences by computer. In spite of all the challenges,
it is being used widely for research purpose. Natural
Language Processing can be used to access the database by
asking questions in Natural Language and getting the
required results. Asking questions in natural language to
databases is a very convenient and easy method of data
access, especially for users who do not have knowledge
about the complicated database handling query languages
such as SQL (Structured Query Language).

There are many challenges in the conversion of natural
language query to SQL query like ambiguity which means
that one word can have more than one meaning. In this case,
one word maps to more than one sense. Another challenge is
the formation of complex SQL query and next challenge is
about Discourse knowledge in which immediately preceding
sentence affects the interpretation of next sentence for
example if the user enters SELECT and INSERT query at the
same time, then such a case is not understandable by the
system.

Literature Review

The problem we address is a subcategory of a broader
problem; natural language to machine language. SQL is
opportunistic for its distinctive, high level language and close
connection to the underlying data. We utilize these

characteristics in our project. SQL is tool for manipulating
data. To create a system which can generate a SQL query
from natural language we need to make the system which
can understand natural language.

Most of the research done until now solves this problem by
teaching a system to identify the parts of speech of a
particular word in the natural language which is called
tagging. After this the system is made to understand the
meaning of the natural query when all the words are put
together which is called parsing. When parsing is
successfully done then the system generates a SQL query
using proper syntax of Oracle SQL.

Existing System

The existing approach is to generate the query from the
knowledge of SQL manually. But certain improvement done
in recent years helps to generate more accurate queries
using Probabilistic Context Free Grammar (PCFG). The
current implemented standard is QuePy and similar, disjoint
projects like them. These projects use old techniques; QuePy
has not been updated in over a year. The QuePy website has
an interactive web app to show how it works, which shows
room for improvement. QuePy answers factoid questions as
long as the question structure is simple. Recent research
such as SQLizer presents algorithms and methodologies that
can drastically improve the current opensource projects.
However, the SQLizer website does not implement the
natural English to query aspect found in their 2017 paper.
We wish to prove these newer methods.

Research Gap

The following are some of the types of inputs that are not
presently handled by our system. Find the capacity of the
classroom number 3128 in building Taylor.

 SELECT *

FROM classroom

WHERE classroom capacity = ’3128’ AND classroom building
= ’Taylor’

In this particular example, the system fails to decide whether
to take ‘capacity of class- room’ or ‘classroom number’ as an
n-gram. Hence, the mapping fails

Who teaches Physics?

SELECT *

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 57

FROM department WHERE

department dep name = ’Physics’

In this example, the implicit query module of our system is
able to map Physics to ’department name’ attribute from
table ’department’. But it fails to identify that ’who’ refers to
a person (an instructor). Our system struggles with column
value references in the natural language. It can hang trying
to find the match to the column value to a word in the
schema.

Problem Statement and Objectives

The objective of our project is to generate accurate and valid
SQL queries after parsing natural language using open
source tools and libraries. Users will be able to obtain SQL
statement for the major 5 command words by passing in an
English sentence or sentence fragment. We wish to do so in a
way that progresses the current open source projects
towards robustness and usability. This project makes use of
natural language processing techniques to work with text
data to form SQL queries with the help of a corpus which we
have developed. En2sql is given a plain English language as
input returns a well-structured SQL statement as output.

Methodology

1. Data Collection

With the domain level knowledge of SQL we will create a
corpus which will contain words which are synonymous the
SQL syntax to SELECT, LIMIT, FROM, etc. This is common
among the open source projects we have seen. Many of the
open source projects we have inspected use such keywords,
thus coming up with a generous keyword corpus will be
easy. If our English to keyword mapping results are not
desirable, we may use an online thesaurus API. An Oracle
SQL database will be constructed with data from the public
Yelp SQL Database [13]. We chose the yelp dataset because it
is fairly large, has a good amount of tables, and we have
some domain level knowledge about Yelp already. This data
will be used as a corpus and for testing. The corpus will be
constructed from the table names, column names, table
relationships, and column types. The database corpus will be
used in an unsupervised manner to keep the program
database agnostic. A set of substructure queries will be used
as a starting point for the queries. The natural language
tokens will be matched to these.

2. Solution Structure

Figure 1 Solution Structure

Algorithm Design

Following will be our algorithm

1. Scanning the database: Here we will go through the
database to get the table names, column names, primary and
foreign keys.

2. Input : We will take a sentence as a input from the
user (using input.txt)

3. Tokenize and Tag : We will tokenize the sentence
and using POS tagging to tag the words

4. Syntactic parsing: Here we will try to map the table
name and column name with the given natural query. Also,
we will try to identify different attributes of the query.

5. Filtering Redundancy: Here we will try to eliminate
redundancy like if while mapping we have create a join
requirement and if they are not necessary then we remove
the extra table.

6. Query Formation: Here we will form a complete SQL
query based on MySQL syntax.

7. Query Execution: Here we will execute the query on
database to get results.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 58

Results and Discussion

1. Implemented Algorithm’s Pseudo-code

We propose a system which looks to overcome the
shortcomings of existing system that gets a natural language
sentence as an input, which is then passed through various
phases of NLP to form the final SQL query.

2. Tokenize and Tag

The input natural language query gets split into different
tokens with the help of the tokenizer, word tokenizer, from
’NLTK’ package. The tokenized array of words is tagged
according to the part-of-speech tagger using the Stanford
POS tagger. All processes following this step use these tagged
tokens for processing. We also implement

3. Analyze tagged tokens

Based on the tagged tokens of earlier step, the noun map and
verb list is prepared through one iteration over the tokens.
The tokens corresponding to aggregate functions are also
mapped with their respective nouns using a pre-created
corpus of words. The decision whether the natural language
statement represents a data retrieval query (SELECT) or a
DML query (INSERT, UPDATE, DELETE) is taken at this stage
with the help of certain ’data arrays’ for denoting type of
query. For example, when words like ’insert’ and its certain
synonyms appear in the input, the type of query is ’INSERT’
and so on. In any type of query, the tentative tags ’S’
(SELECT), ’W’ (WHERE), ’O’ (ORDER BY) are mapped to the
nouns indicating the clauses to which they belong. For this,
we have designed ’data dictionaries’ for different clauses.
These data dictionaries consist of the token-clause term pair,
for e.g. aggregate clause data dictionary is ”number”:
”COUNT”, ”count”: ”COUNT”, ”total”: ”SUM”, ”sum”:

”SUM”, ”average”: ”AVG”, ”mean”: ”AVG”. Thus, if any of these
tokens is encountered, it is likely to have aggregate clause
and accordingly the nouns are tagged with the clause tag.

4. Map to table names and attributes

Using the noun map and verb list, the table set is prepared,
which will hold the tables that are needed in the query to be
formed. This is based on the fact that the table names are
either nouns or verbs. The noun map is used to find the
attributes which are needed in the final query. The
attributes, the table associated with the attribute and the
clause tag are stored in an attribute-table map which is used
in the final stage of query formation. This is done using the
string matching algorithm that we have implemented in our
system. The words in the input sentence need not exactly be
as they are in the database. The stemmer and lemmatizer are
applied on the words before they are matched using our
string matching algorithm. The data obtained during this

step i.e. table set and attribute-table map, is most likely to be
in the final query, however, it might be refined later.

5. Filter redundancy and finalize clauses of the query

Using the various data dictionaries defined, the system has
already decided which clauses are likely to exist in the final
query and has mapped the data to the clauses. But, some of
the data has to be finalized at this stage. The data related to
GROUP BY and HAVING clause is collected using the previous
data and the basic rules of SQL. For example, if aggregate
function is compared to a constant, i.e. ’MAX(salary) > 40000’,
then ’HAVING’ clause has to be used instead of ’WHERE’
clause.

As mentioned in the earlier step, the refinement of data must
be done. Here, the redundant tables and attributes are
removed using some filter algorithms. For example, one of
the algorithm filters the table and their corresponding
attributes which are a subset of some other table in table set.
i.e. if table set has [table1, table2] and table1 has attributes
[a1, a2] and table2 has [a1, a2, a3] after the previous steps,
then table2 is enough to represent all the attributes required
and hence table1 is removed. There are various other
algorithms applied in order to filter the results and finalize
the table set and table-attribute map.

6. Form the final query and execute

Currently, as our system handles only MySQL queries, the
templates used for the query formation will be according to
the MySQL syntax. According to the type of query selected in
the second stage of the process (Analyze tagged tokens), the
appropriate template is chosen.

The template is selected from the following:

For data retrieval queries (SELECT):

SELECT <select clause> FROM <tables>

WHERE <where clause> ORDER BY <order by clause >
GROUP BY <group by clause> HAVING <having clause>
LIMIT <limit clause>.

For data manipulation queries (INSERT, UPDATE, DELETE):

INSERT INTO <insert clause> VALUES <values clause>

UPDATE <update clause> SET <set clause> WHERE <where
clause>

DELETE FROM <delete clause> WHERE <where clause>

Based on the data about various clauses collected from
earlier steps and the information about attributes and tables
stored in the attribute-table map, the final query is formed
by filling in the information into the appropriate template.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 59

Depending on the clause data collected from earlier steps,
corresponding <> are filled.

Depending on the relation between multiple tables, the
decision of INNER JOIN or NATURAL JOIN is taken. For
example, if there are two tables. If these two tables have one
common attribute and is named the same in both, then there
is NATURAL JOIN between the tables. But if the common
attribute is named differently in the two tables, then there is
INNER JOIN between the tables.

 CONCLUSIONS

 This project has given us a great opportunity to come up
with a solution for writing tedious queries. This project
though helps resolving basic queries but with time it can
made powerful to handle complex queries, normalization
and also can be extended for NoSQL. We were able to learn
and implement NLTK, cosine, tf-idf of python3. We have got
accuracy around 30-50% in basic queries.

REFERENCES

1. A Natural Language Database Interface Based on a
Probabilistic Context Free Grammar, IEEE International
Workshop on Semantic Computing and Systems 978-0-7695-
3316-2/08 $25.00 © 2008 IEEE DOI 10.1109/WSCS.2008.14

2. Domain Specific Query Generation from Natural
Language Text, The Sixth International Conference on
Innovative Computing Technology (INTECH 2016) 978-1-
5090-2000-3/16/$31.00 ©2016 IEEE

3. Generic Interactive Natural Language Interface to
Databases (GINLIDB), Proceedings of the WSEAS
International Conference on Evolutionary Computing ISSN :
1790-5109 ISBN : 978-960-474-067-3

4. Natural Language Interface to Database Using
Modified Co-occurrence Matrix Technique, 2015
International Conference on Pervasive Computing (ICPC)
978-1-14799-6272-3/15/$31.00(c)2015 IEEE

5. Natural language to SQL Generation for Semantic
Knowledge Extraction in Social Web Sources, Indian Journal
of Science and Technology, Vol 8(1), 01-1, January 2015 ISSN
(Online) : 0974-5645 ISSN (Print) : 0974-6846 DOI :
10.17485/ijst/2015/v811/54123

6. Natural Language Query Processing Using Semantic
Grammar, Gauri Rao et al.

/ (IJCSE) International Journal on Computer Science and
Engineering Vol.02, No.02, 2010, 219-223 ISSN 0975-3397

7. SQLizer : Query Synthesis from Natural Language,
Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 63.
Publication date : October 2017

8. Synthesizing Highly Expressive SQL Queries from
Input-Output Examples, PLDI’17, June 12-23, 2017,
Barcelona, Spain ACM.

978-2-4503-4988-8/17/06…$15.00
http://dx.doi.org/10.1145/3062341.3062365

9. "Sqlizer API." Easily Convert Files into SQL
Databases | SQLizer. N.p., n.d. Web. 27 Feb. 2018.

10. Machinalis. "Quepy." A Python Framework to
Transform Natural Language Questions to Queries. N.p., n.d.
Web. 27 Feb. 2018.

11. "Natural Language Toolkit¶." Natural Language Toolkit -
NLTK 3.2.5 Documentation. N.p., n.d. Web. 27 Feb. 2018.

12. Alarfaj, Salah. "SalN3t/NlpSQL." GitHub. N.p., 11 Dec.
2017. Web. 27 Feb. 2018.

13. Yelp. "Yelp SQL Dataset." Yelp Dataset. N.p., n.d.
Web. 27 Feb. 2018.

http://dx.doi.org/10.1145/3062341.3062365

